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Abstract:  This paper presents a framework for developing vision-based inferential 
sensors. This framework not only gives a summary of existing methodologies, but 
also combines the methods used in other areas, such as traditional machine vision, 
multivariate image analysis and multivariate data analysis, and gives a broad vision 
for future developments of the area. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
One of the most important elements in the successful 
monitoring and control of systems is fast, reliable 
and inexpensive on-line sensors. However, not all the 
important variables can be measured on-line. In this 
situation, a strategy often used is to estimate the 
unknown variable from other easily measured 
variables through a model, known as inferential 
control. 
 
In this paper, attention is focused on a new 
generation of inferential sensing techniques, where 
process or product property variables difficult to 
measure are estimated using information extracted 
from online acquired images. This type of sensor can 
greatly improve the quality control performance in at 
least two areas: i) industries that produce solid 
products such as food, polymers, pulp and paper, 
where product properties can only be measured 
periodically in a laboratory; and ii) processes whose 
performance is related to their visual appearance, 
such as flame in a combustion process. 
 
The petrochemical industry made rapid advances in 
multivariable model predictive control largely 
because they had the availability and abundance of 
inexpensive and informative sensors such as 
thermocouples, pressure transducers, flow meters, 
pH and ion-specific meters and gas chromatographs. 
This is a direct result of the fact that the major 

streams in petrochemical processes consist of well 
mixed gases and liquids which made the use of such 
sensors very easy. On the other hand, the solids 
processing industry has had much less success at 
implementing advanced control precisely because of 
the lack of such sensors. In industries that produce 
solid products, the product properties are generally 
measured periodically by manually collecting 
samples and then analyzing them in the laboratory. 
The analysis procedure may require that the samples 
be destroyed and the procedures are time consuming 
and manpower intensive. Therefore, it is usually 
impossible to obtain on-line quality measurements 
and even the simplest automatic control algorithm 
can hardly be implemented. In this situation, an 
inferential sensor based on an imaging system is very 
attractive. By taking images of the products, the 
samples remain untouched and the sampling rate can 
be very high. The product properties can then be 
predicted in real time from image data. 
 
In fact, using imaging techniques for industrial 
production is not a new concept. Machine vision has 
been developed for more than 30 years. However, 
there are three major differences between 
conventional machine vision and vision-based 
inferential sensor. First, the objectives and the types 
of the problems dealing with are different. A large 
amount of the problems in machine vision area 
involve locating and identifying objects, measuring 
the size of products, sorting different types of 
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products and detecting defects. These imaging 
systems are designed as a replacement of human 
vision and decision system. On the other hand, the 
objective of an inferential sensor is to quantitatively 
predict uneasily measured property variables for 
online monitoring and feedback control, which is 
actually beyond the capability of human vision 
system. Second, most images used in machine vision 
are greyscale or binary images while most images 
used for vision-based inferential sensors are 
multivariate images, such as multispectral images 
and color images. This is because multivariate 
images, compared with greyscale or binary images 
contain much more information. Third, since the 
problem type and image type are different, so do the 
methodologies developed. In machine vision area, 
most methods are used for greyscale images and to 
compute geometric characteristic of the objects. In 
the case of building inferential sensors, one is 
interested in extracting the subtle information (may 
or may not be seen) from multivariate images and 
relating the extracted information with some 
chemical or physical properties. 
  
Research on multivariate image analysis started in 
1970s mainly in remote sensing area. Afterwards, it 
has been developed in many other scientific areas, 
such as medical imaging in medical science and 
microscope multispectral imaging in chemistry. Most 
of these studies focus on how to efficiently display a 
multivariate image (e.g. visualisation of a 
hyperspectral image with 250 bands), on how to 
segment an image into different areas (e.g. 
segmentation of a satellite map with different 
features: road, river, land and grass) and on how to 
detect certain features (e.g. detection of cancer cells 
in an image obtained from Magnetic Resonance 
Imaging (MRI)). In other words, the purpose of these 
studies is to develop a human assistance system 
rather than an automatic system because the output is 
generally an image with enhanced appearance. 
   
Recently, more and more attention has been paid to 
the development of vision-based inferential sensor. A 
series of papers have been published to solve several 
different problems, including seasoning level 
prediction on snack food (Yu and MacGregor, 
2003a), pulp properties estimation using NIR 
imaging (Bharati et al., 2002) and environmental 
monitoring system for combustion process using 
flame color images (Yu and MacGregor, 2003b).  
 
In this paper, a general framework for developing 
vision-based inferential sensor is presented. This 
framework not only gives a summary of the 
approaches published in literature, but also gives 
other possible options by combining the methods 
developed in traditional machine vision and 
multivariate image analysis areas. This framework 
can be used as a guideline for future applications. 
 
   

2. MULTIVARIATE IMAGES 
 
A multivariate image is a set of congruent images. 
The definition for congruence in imaging is given by 

Geladi and Grahn (1996): two or more images are 
congruent if they can be stacked so that for each 
pixel in one image there is a corresponding pixel in 
the other image(s) that can be referred to the same 
position in the object or scene depicted.  
 
From the data storage point of view, a multivariate 
image is a three-way matrix. Two of the ways in this 
three-way matrix are the geometrical image 
coordinates which describe the image scene plane 
and usually treated as a pair. The third way is the 
‘variable’ way. Hence one could also view a 
multivariate image as a two-way array of pixel 
intensity vectors. Multivariate image data often 
contain highly correlated information among the 
variables because the individual images within one 
multivariate image are congruent. 
 
A multivariate image can be obtained from varied 
sources. A common way is to stack the images of an 
object at different radiation energies or wavelengths. 
This is a multispectral image. Magnetic Resonance 
Imaging (MRI) is another imaging technique to 
obtain multivariate images. By varying the 
parameters (most common parameters are the spin-
echo time and the relaxation delay time), a set of 
images can be obtained. A multivariate image can 
also be constructed by combining images obtained 
from different instruments. A multi-temporal image 
is a type of multivariate image as well, which 
consists of the images of the same scene but taken at 
different times. A color image can be also considered 
as a 3-variable multivariate image because a color 
image consists of 3 color channels: red, green and 
blue. Another technique of creating multivariate 
images is to combine a grayscale image with the 
copies of it that are derived from different spatial 
filtering operations.  
 
 

3. VISION-BASED INFERENTIAL SENSOR 
 
A vision-based inferential sensor consists of three 
basic elements: an imaging system (e.g. camera), a 
computer and a model which predicts the property 
variables using information from the images. In this 
paper, we mainly consider the model building 
problem.  
 
Though technically it is possible to build a vision-
based inferential sensor based on fundamental model, 
most sensors are data-based. Like building any data-
based model, the first thing is to collect a good 
training dataset, since the quality of the model is 
largely dependent on the quality of the training 
dataset. This training dataset should cover a large 
range of the operation range and the imaging 
condition should be kept as constant as possible. 
Both the images and the corresponding product 
properties need to be collected. If the dataset is 
collected in an online production mode, it is very 
crucial to ensure they have consistent time stamps in 
both images and property measurements.   
 
Obviously, no regression methods can directly relate 
a set of three-way image matrices to a set of property 
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variables. In most applications, a two-step procedure 
is adopted. In this two-step procedure, first a feature 
vector is extracted from each image, and then the 
extracted feature vectors are used as predictor to be 
regressed against properties variables. The feature 
extraction step is the key to build a successful model, 
not only because it largely reduces the problem 
dimension, but also, more importantly, it 
concentrates the related information. There are many 
different ways to extract features. In the framework 
proposed in the next section, we summarized the 
feature extraction methods into four categories. 
However, the choice of features is very case 
dependent and in many situations an iteration 
procedure is needed. 
 
To predict the property variable for a new image, one 
needs to first compute its feature vectors and then 
calculate the estimation through the regressed model. 
Figure 1 shows a basic scheme for model building 
and for new image prediction. 
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4. A FRAMEWORK FOR DEVELOPING 
VISION-BASED INFERENTIAL SENSOR 

 
In this section, a framework is proposed to give a 
guideline for building an inferential sensor using 
multivariate images. This framework is originally a 
summary of several applications. However, it has 
been extended to give more options by combining 
many other approaches used in the traditional 
machine vision, multivariate image analysis and 
multivariate data analysis.  
 
Figure 2 shows the proposed framework. In this 
framework, there are three steps: preprocessing, 
feature extraction and regression.  
 
 
4.1 Preprocessing 
 
Though other preprocessing techniques, such as 
removing noise and improving contrast may be used, 
here the preprocessing step mainly refers to variable 
dimension reduction. 
 
Variable dimension reduction could be a significant 
preprocessing procedure in dealing with multivariate 
images, especially for images with high variable 
dimension. Because the individual bands of a 

multivariate image are often highly correlated, the 
proper variable dimension reduction can not only 
remove or reduce this variable redundancy and 
increase the computation efficiency, but can also 
often result in a better signal to noise ratio and 
concentrate on the useful information.  
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Figure 2 Proposed framework for predicting 
process/product properties using multivariate images 
 
 
In both the snack food application (Yu and 
MacGregor , 2003a) and the flame application (Yu 
and MacGregor, 2003b), Principal Component 
Analysis (PCA) is used to reduce variable 
dimensions.  
 
To perform PCA on an M-band multivariate image 
(often referred to as multi-way PCA), one first 
unfolds the image matrix I, where each pixel is 
considered as an observation. Normal PCA can be 
then performed on the unfolded matrix I.  
 

EptI += ∑
=

A

a

T
aa

1

 

 
where A is the number of principal components, the 
ta’s are score vectors and the corresponding pa’s are 
loading vectors and E is the residual. 
 
Score ta’s can be refolded back into the original 
image size and form a new multivariate image with 
dimension A (the number of principal components), 
which could be much smaller than M (the original 
dimension). This new lower-dimensional 
multivariate image is sent to the feature extraction 
steps. 
 
There are many other options for variable dimension 
reduction. These optional methods have been used in 
the traditional multivariate image analysis and data 
analysis.  
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PCA belongs to a family of linear projection 
approaches. In these linear projection approaches, a 
low dimensional set of projection directions are 
defined by using certain criteria and the multivariate 
image data is then projected to this low dimensional 
subspace. The differences among the methods are 
different criteria. PCA, finds the subspace that 
explains the largest percentage of the variation,  
Discriminant Analysis (DA, including Fisher’s 
Discriminant Analysis, Canonical Component 
Transform and PLS Discriminant Analysis), finds the 
subspace that has the largest discriminating power 
(Maxwell, 1976; Lied and Esbensen, 2001), 
Independent Component Analysis (ICA) finds the 
subspace from which the projections of the data onto 
each of the basis vectors are independent (Kaarna et 
al., 2000), Projection Pursuit (PP) finds the subspace 
that captures the non-Gaussian distributed 
information (Ifarraguerri and Chang, 2000) and 
Decision Boundary Feature Extraction (DBFE) finds 
the subspace defined by the decision boundary (Lee 
and Landgrebe, 1993). Among these projection 
methods, PCA is the simplest one in computation and 
the one that has been most widely used.  
 
Other than linear projection methods, several non-
linear transformation methods, such as Self-
Organizing Map (Kohonen, 1984) and Sammon’s 
mapping (Sammon, 1969) can also be considered. 
However, the main drawback of these nonlinear 
mapping methods is that they often require long 
computation time (Bonnet et al., 1997). 
 
 
4.2 Feature extraction 
 
Feature extraction methods are summarized into four 
categories: channel features, transformation features, 
distribution features and region features. These 
features can be used independently or used in a 
combination manner. 
 
Channel features 
 
Channel features can be statistical measurements for 
each individual channel image, such as average 
values, standard deviations, moments and histogram.  
One example is found in Yu and MacGregor (2003a) 
where average colors of the snack food images were 
used as feature variables to predict seasoning level 
on the snack food product. Another example is given 
in Hätönen et al. (1999) where mean, standard 
deviation, skewness and kurtosis values of different 
RGB channels were used as feature variables to 
predict mineral concentrations in the flotation froth.  
 
When computing channel features, each channel 
image is processed one at a time as a grayscale image. 
Therefore, many image processing methods for 
grayscale images can be used to extract certain 
information, such as the use of wavelet transforms on 
each channel image to extract texture information.  
 
Transformation features 
 

Transformation features refer to the transformation 
matrix obtained in variable dimension reduction step, 
such as the loading vectors pa’s when use PCA. In 
Bharati et al. (2002), where several properties of pulp 
were predicted using NIR multispectral images,  the 
first principal component loading vectors were used 
as feature vectors. It has been pointed out in Yu and 
MacGregor (2003a) that if one performs PCA on an 
image data without mean-centering the first PCA 
loading vector is similar to the normalized average 
spectral (variable) response.  
 
Distribution features 
 
Pixel intensity histogram is an important tool and has 
been used extensively in grayscale image analysis. If 
in the dimension reduction step the variable 
dimension has been reduced to one, a histogram can 
be easily calculated and used as features.  
 
However, if reduced variable dimension still larger 
than one, distribution of the spectral (variable) 
response needs to be described using a multi-
dimensional histogram. Evidently, to obtain such a 
multi-dimensional histogram could be a very 
computation intensive work since the amount of 
calculation increases in an exponential manner as the 
number of dimensions increases. Furthermore, even 
if one does obtain such a high dimensional histogram 
as feature variables, he could encounter problems to 
obtain a good model in the regression step. In one of 
the feature extraction methods presented in Yu and 
MacGregor (2003a), all the snack food color images 
are first projected to a two-dimensional t1-t2 
subspace and then an unfolded 32×32 histogram was 
used as feature variables to represent each image. 
The results showed that the model obtained using 
these feature variables had good prediction ability for 
the images having the same size with the training 
images but could have large errors when predicting 
from images with smaller size..  
 
Yu and MacGregor (2003a) proposed another idea to 
further obtain a one-dimensional histogram. In their 
approach, t1-t2 score space was divided into several 
bins. Each bin was defined in a way that pixels 
falling into each bin were assumed having similar 
seasoning level. The counts of the pixels falling into 
each bin then formed a one-dimensional histogram. 
 
Follow up this idea; one can obtain a one-
dimensional histogram for a multivariate image by 
first segmenting the image into different parts and 
then counting the number of pixels falling into each 
part. Pixels falling into each part should have 
somehow common properties. In this way, the 
computation difficulties caused by high dimension 
are bypassed. However, how to segment the images 
becomes a new problem. More multivariate image 
segmentation approaches will be discussed in the 
‘region features’ section. 
 
The histogram is not the only distribution descriptor. 
It has been shown in Yu and MacGregor (2003a) that 
using cumulative histogram instead of histogram 
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often can have better signal-to-noise ratio and result 
in more reasonable parameter estimates. 
 
Region features 
 
Sometimes, the imaging scene consists of several 
distinguished regions with different characteristics. 
In this situation, a natural thinking is to segment 
these regions first and then compute the features for 
each region, which can be channel features, 
transformation features and/or distribution features.  
 
One example is the feature extraction method 
developed in Yu and MacGregor (2003b) for the 
flame application. In this application the objective is 
to predict several process properties, including heat 
of combustion of the waste feed and concentration of 
NOx and SO2 in the off-gas, using RGB flame images. 
To extract feature information from rapidly changing 
flame images, a flame luminous region is first 
separated from non-luminous region and nine feature 
variables are then computed for these two regions 
respectively. The separation of the flame luminous 
region and the non-luminous region was done by first 
projecting pixels onto the t1-t2 PCA score space and 
then defining a polygon mask in score space that 
indicates the flame luminous region. The boundary 
of this mask was obtained by a trial and error process, 
whereby one selects a mask area in the score plot, 
selects the pixels lying under it and highlights them 
in the image space, and iterates until one obtains a 
mask that segments the feature of interest. This 
segmentation approach was first introduced in 1989 
by Esbensen and Geladi, and has become a very 
effective method. In Yu and MacGregor (2003a), a 
product mask was defined to separate snack food 
product pixels and conveyor belt pixels. However, in 
their work, the mask is not defined by a full manual 
trial-and-error procedure, but based on the 
computation of some covariance property of the 
score combinations.  
 
As mentioned in the introduction section, 
segmentation is one of the major topics in traditional 
multivariate image analysis studies. Therefore, many 
other multivariate image segmentation techniques 
have been presented. 
 
Basically, the segmentation approaches for 
multivariate images can be divided into two main 
categories. In the first category, only spectral 
(variable) information of each pixel in the image 
plane is considered. In another words, pixels are 
treated independently of one another. Therefore, a 
pixel can be treated as an observation in multivariate 
data analysis. The classical classification methods, 
such as K-means (Duda and Hart, 1973), fuzzy C-
means (Boudraa et al., 2000), neural networks 
(Reddick et al. 1997), maximum likelihood (Liang et 
al. 1994) and discriminant analysis, can be directly 
used. Under the same category, segmentation can 
also be obtained by thresholding the pixel intensity 
values based on histogram information. This has 
been extensively used in the segmentation of 
grayscale images. For multivariate images, one 
option is to find a proper thresholding value for each 

individual band (variable) image and combine the 
results (Raya, 1990). However, in this way, the 
nature of the multivariate image has been ignored. 
Another option is to find a thresholding range in the 
M-dimensional space for an M-band image. For M=2, 
the thresholding range can be defined by the methods 
mentioned above (choosing a polygon mask). 
However, the computation of the M-dimensional 
histogram and choosing a proper range of the 
thresholding area will be very difficult for the case 
where there are more than two dimensions (M>2). A 
compromise solution is to choose polygon masks for 
each pair of the variable combinations.  
 
In the second category, spatial information as well as 
spectral (variable) information is used for 
classification. This is also known as multivariate 
image texture analysis. There are three general 
approaches to segment an image based on textural 
information. In the first approach, spatial and spectral 
information are considered simultaneously. The 
approaches presented are often extended from 
grayscale image texture analysis. Several 
segmentation methods based on Markov Random 
Fields (MRF) models and maximizing a posteriori 
distribution probability (MAP), which utilize both 
spectral and spatial information to model the local 
correlation structure of an image, have been 
presented (Kartikeyan et al., 2002). Kovalev et al. 
(2001) proposed a texture analysis method for 
multivariate image that is based on extended co-
occurrence matrices. Extraction and classification of 
homogeneous objects (ECHO) (Kettig and 
Landgrebe, 1976), is another texture segmentation 
method which is based on the spatial and spectral 
homogeneity of the regions. The listed methods 
above are only a few examples. However, methods 
considering both spatial and spectral information at 
the same time generally involve iterative 
computation and/or optimization that require 
intensive computation time. In the second approach, 
one or several representative images are generated by 
variable reduction or some other operation (e.g. using 
ratios). Then the texture methods for grayscale 
images can be applied on them individually. In the 
third approach, the images of one or several channels 
in a multivariate image are filtered or transformed. 
The newly filtered or transformed images are 
expected to contain the spatial information. A new 
multivariate image is then constructed by stacking 
the new images (and the original image) together. 
The segmentation methods in the first catalogue can 
then be used for classification. Liu and MacGregor 
(2002) studied both of the latter two approaches by 
using wavelets to extract the spatial information. 
 
4.3 Regression 
 
After extracting feature variables, the regression step 
is performed as in normal data analysis to build a 
model. Technically, any data based regression 
methods can be used in this step. The methods can be 
linear regression approaches, such as Multivariate 
Linear Regression (MLR), Partial Least Squares 
(PLS), Ridge Regression (RR). PLS is a method 
which can well handle highly correlated feature 
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variables and has shown to be a simple and effective 
approach. Although PLS is a linear regression 
methods, transformation or non-linear terms can be 
used to handle the possible non-linearity. For 
example, in Bharati et al. (2002), one of the pulp 
properties, DCM Resin, was transformed into ln 
(DCM Resin). The regression methods can be also 
nonlinear regression approaches, such as neural 
networks. In Wang et al. (2002), a neural network 
was used to predict the NOx emissive concentration 
of a boiler using features extracted from color flame 
images. 
 
In some situation, besides the feature variables 
extracted from images, other process measurements 
can also be used to build the model. In Yu and 
MacGregor (2003b), a PLS model was built to 
predict the product of heat of combustion of waste 
stream and the fuel flow rate. The heat of combustion 
was then obtained by dividing the PLS model 
prediction by the liquid fuel flow rate. Other than the 
feature variables, the flow rates of liquid fuel and 
natural gas were also used as the predictors. This is 
shown in equation: 
 

[ ] γv ˆˆ ⋅= nglf FFQ , where 
LfLf FHQ ⋅=  

lflf FQH /ˆˆ =  
 
where v is the feature vector extracted from the 
image data, 

ngF  is the natural gas flow rate, lfF  is the 
flow rate of liquid fuel, γ̂  is the model regression 
coefficient vector and 

LfH  is the heat of combustion. 
 

5. SUMMARY AND CONCLUSIONS 
 
A framework is proposed for building inferential 
sensors using multivariate image analysis for process 
monitoring and control. This framework not only 
gives a summary of existing methodologies, but also 
combines the methods used in other areas, such as 
traditional machine vision, multivariate image 
analysis and multivariate data analysis, and therefore 
gives a broad vision for the future development.   
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