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Abstract: To monitor a batch process, which is dynamic in nature, it is necessary to
consider the time varying relationship of its variables throughout the entire run. MPCA
models built with batch wise unfolded data have been used extensively for batch process
monitoring, these methods will not only consider the known samples to asses the ongoing
batch run, but will also consider a dynamic forecast of the future unknown samples. Such 
forecast, implicit in the methodology, is uncovered and analyzed in this work; and proven
to be a powerful feature of a batch-monitoring scheme built with MPCA and the batch-
wise unfolded matrix of batch data. Copyright © 2002 IFAC
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1. INTRODUCTION

Multivariate methods based-on multi-way PCA and
PLS  (Wold et al, 1987) have proven their usefulness
in batch process monitoring  (Kourti et al, 1995;
Nomikos, 1996; Nomikos and MacGregor, 1994;
Nomikos and MacGregor, 1995a; Nomikos and
MacGregor, 1995b). These methods have been widely 
studied and extensively applied in industry
(Kosanovich et al, 1996; Nomikos, 1996; Ramaker et 
al, 2002; Schlags and Popule, 2001; Tates et al,
1999). They are essentially the only powerful
approaches for monitoring batch processes when
there is no deterministic model available. Other
variation of the multivariate approaches  (Boque and
Smilde, 1999; Wold et al, 1998) are found in
literature, and have already been compared  (van
Sprang et al, 2002; Westerhuis et al, 1999). This work 
focuses on the approach proposed by Nomikos and
MacGregor (Kourti et al, 1995; Nomikos, 1996;
Nomikos and MacGregor, 1994; Nomikos and
MacGregor, 1995a; Nomikos and MacGregor,
1995b), and in particular in the estimation of the
missing trajectory information needed in the approach
when monitoring a new batch.

In the Nomikos-MacGregor method the 3
dimensional batch dataset consisting of J variables, I
batches and K time periods is rearranged as shown in
Fig. 1. A natural problem to overcome when
monitoring a new batch at time=k, where k<K is the
fact that there are K-k unknown samples (Fig. 2) and
therefore, the need to estimate or �fill in� these

unknown samples for the ongoing batch in order to
calculate a score value (note that this problem does
not exist when building the PCA model, when
analyzing historical data, or when monitoring only at
the end of each new batch). In their work, Nomikos
and MacGregor (Nomikos and MacGregor, 1994;
Nomikos and MacGregor, 1995b) acknowledge this
issue and propose three different ways to handle this
problem: to complete the observation vector with zero
deviation from the nominal trajectories (zero option:
Z); complete the observation assuming that the mean
centered and scaled current deviation from the
nominal trajectory will be maintained throughout the
rest of the batch (i.e. current deviations option: CD),
or estimate the �missing� values using the PCA
model (missing data option: MD).

Fig. 1. Unfolding of the 3D batch data matrix.



The control limits of the resulting monitoring charts
are dependent upon the used option  (Nomikos and
MacGregor, 1995b).  This �filling in� need of the
method has been criticized by several authors  (Cho
and Kim, 2003; Meng et al, 2003; Undey et al, 2003; 
van Sprang et al, 2002)  without any convincing
analysis to support their arguments.

In this work we demonstrate that monitoring a batch
process with the Nomikos-MacGregor method, and
using the MD approach to fill in the unknown
samples when monitoring a new batch, is in fact a
powerful model predictive monitoring scheme where
the future samples of the trajectories are predicted
with good accuracy even at the very beginning of the
batch run. 

The missing data in the future trajectory are predicted
much in the same way as an adaptive multivariate
time series forecast, but with optimal use of all the
available measurements up to current time and
detailed knowledge about the time varying correlation
structure among the variables throughout all the rest
of the batch.

1.1 Notation
 
In the following sections, a is used to represent the
total number of components in a PCA model; X
represents the original data set used to build the
model; T represents the known scores from the
original model; P represents the loadings of the PCA 
model, x is used to represent a vector of data from a 
new observation; t̂  is used to represent the estimate
of the score vector corresponding to x in the presence 
of incomplete data and t  is the value of the score
vector with the complet e data vector.

The dataset X contains I batches, each batch has J
variables sampled K times throughout the batch run.
X∈ℜ I×JK

, T∈ℜ I×a, P∈ℜ JK×a
, x∈ℜ JK×1

, ττ∈ℜ a×1,

t̂ ∈ℜ a×1.

Lower case bold letters (x) denotes a vector; upper
case bold letters (X) denote a matrix. For a certain
observation x with missing elements, we will group
all the missing elements at the end of the observation, 
the known samples in the observation will be denoted 
by x*, and the missing samples will be denoted by x#.
So, for a certain observation x with missing elements
all at the end of the vector, we denote as xT =  [x*T

x#T].

 This notation is applied to other matrices or vectors 
as well, e.g. P* refers to those rows of a loading
matrix P that correspond to the known variables
(elements) of x (x*); and P# refers to those rows of P
corresponding to the missing elements of x (x#).
These definitions are illustrated in figure 2. 

Fig 2. Notation and definitions

2. BATCH TRAJECTORY FORECASTING

2.1 Trajectory Forecasting using AR Models

To represent a batch trajectory with an AR
multivariate time series we say that each batch is a
collection of samples of the column vector χi such

that xT=[ T
1? , T

2? � T
K? ]. At time k, the model will

be able to make the forecast for the values of the
samples at time k+1 using Eq. 1 where q is the order 
of the model.

qknkkkk −−−+ ++++= ?f?f?f?f? L231211ˆ (1)

With this fixed model, it is possible to forecast the
remainder of the batch at any time, and then compute 
its scores. If the batch run consists of several phases 
(or stages) then it is desirable to fit a different model 
per phase.

2.1  Trajectory forecast using the PCA model

In their earlier work, Nomikos and MacGregor
(Nomikos and MacGregor, 1995b) clearly state that:
when using the MD approach, the missing unknown
values will be replaced by a prediction of these done
with the PCA model. In the following paragraphs this 
replacement mechanism is uncovered since it not
done explicitly but implicitly in the method, starting
from the score estimation problem.

The simplest way to estimate the score vector when
an observation contains missing data is to use the
single component projection method (SCP) (Nelson et
al, 1996). This method will calculate each of the
scores independently and sequentially as

**** /ˆ i
T

iiki pppzt =  where *z  is *x at time k deflated by 

all the previous components. This method has proven
to be the least performing of the missing data
handling methods (Nelson et al, 1996), however, it
has been reported to work in some cases (Lennox et
al, 2000). 

One natural improvement to the method is to use the 
forecast for the remainder of the trajectory, since it is 
possible to compute a prediction of the unknown



measurements #ˆ kx  using their corresponding loadings

and the score vector estimate (Eq.2); 

# #ˆ ˆ T
k k k=x P t (2)

Once the prediction of the unknown measurements at
time k is done, a new augmented vector can be
created using the known measurements and the new
predicted values (Eq.3)

[ ]TTT
aug

#* x̂xx = (3)

This approach was taken by Meng et al (Meng et al, 
2003), and Lennox et al (Lennox et al, 2000) to
forecast the unknown part of the trajectory in their
respective studies. However, this is only the first step
of a more complete solution which is the iterative
imputation (II) method proposed by Arteaga and
Ferrer (Arteaga and Ferrer, 2002), where the next step
to take now is to re-estimate the score vector by
multiplying the augmented vector of the known
measurements and the predictions, by the loadings
matrix (Eq. 4)

ˆ T T
k aug=t x P (4)

With this new estimate of the score it is possible to
iterate by re-calculating the augmented vector (Eq. 3)
and the score estimate (Eq. 4) until convergence is
reached in the score estimate. At convergence, the
estimate of the score is computed with a full
trajectory (that includes the known measurements and
the forecast for the rest of the trajectory) and the
whole loading matrix. 

The iterative-imputation  (Arteaga and Ferrer, 2002)
algorithm is a very illustrative way of understanding
how the missing data elements of the trajectories are
being replaced by the PCA forecast. This method has
been proven  (Arteaga and Ferrer, 2002) to be
equivalent to projection to the plane method, which
was used by Nomikos and MacGregor (1994, 1995a, 
1995b) in their early work.

1.4 The PCA forecast model vs. a time series forecast

Since it is clear that the MD  option uses a forecast of 
the trajectory to �fill in� the unknown measurements,
it is desirable to analyze the properties of the forecast 
model embedded in the PCA projection. To better
understand the PCA forecast model, it can be
expressed as a time series forecast model, in order to
contrast it with the properties of a conventional
multivariate time series models. In the following
paragraphs, the embedded one-step a head prediction
model is uncovered from the PCA prediction
expression to illustrate the nature of the prediction
model. However, equivalent expressions for any f-
step ahead forecast could have been used to illustrate
the same point.

Previously, the vector χk was defined as a column
vector that contains the J batch variables measured at

time k, such that: xT=[ T
1? , T

2? � T
K? ]. Using the

notation defined previously, we can express the
known batch samples at time k in terms of χk :

*
1 2[ ]=x ? ? ?LT T T T

k k (5)

From these equations, it is clear that the one step

ahead prediction 1ˆ k+?  corresponds to the forecast of

the first J elements of the #x̂ vector:

#
1 [1: ]

ˆ ˆ
k k J+ =? x (6)

Eq. 6 can be expressed as a function of the loadings
matrix (Eq. 7), from Eq. (2), and taking only the first 
J rows of the Pk

# matrix:

# #
1 [1: ] [1: ]ˆ ˆ ˆk k J k J k+ = =? x P t (7)

At time k, and assuming that projection to the model 
plane (PPOLS) is used to solve the missing data
problem, the estimate of the score is,

* * * * 1ˆ ( )k k k k k
−=T T Tt x P P P (8)

and substituting Eq. 5 and Eq. 8 into Eq. 7:
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The term # * * * 1
[1: ] ( )k J k k k

−  
TTP P P P  of Eq. 9 is a matrix 

of J rows and Jk columns; re-expressing each element 
of this matrix as φi,j and grouping now blocks of J
columns as new square matrices

iΦ , such that each

iΦ  has J rows and J columns giving place to k

number of Φ 's,
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gives the multivariate time series form for the one-
step-ahead forecast embedded in the PCA model (Eq.
11):
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This one step ahead forecast model has unique
characteristics: a) The order of the PCA forecast
model (Eq 15) expands, as new measurements are
available (k increases); b) An even more important
result is that the parameters of this model will adapt
as the batch evolves since the elements in P# and P*

change as more samples  become available. 

This means that all the φ elements in Eq. 10 and 11
are adapted as time progresses to account for the
changing auto-covariance and cross-covariance
structure captured by the PCA model, this is possible
because the MPCA batch model has embedded within
it knowledge of the time varying covariance among
all the variables over the entire time history of the
batch.

This contrasts with the conventional time series
model (Eq. 1) whose coefficients does not change and
will always use the same number of past
measurements in order to forecast the next sample. As
a result, the PCA prediction equation is actually and
adaptive, nonlinear function of the data available up
to the prediction time k and hence provides a much
more powerful prediction than any fixed multivariate
time series model; c) The same form of adaptive time
series prediction form of the PCA model cam be
derived for any f-step ahead prediction with the same
conclusions as above.

To further illustrate the adaptive nature of the PCA 
forecast model, consider the explicit forecast equation
for the one step ahead prediction at different times.
Figure 3 shows the values of the (2,2)j

kΦ  parameter 

for j= 5, 10, 20, 50, 80; and k=j,j-1, j-2�1; for the 
data set used by Nomikos and MacGregor in earlier
work (Nomikos and MacGregor, 1995b).

As seen in this figure, the parameters adapt and
expand, as more measurements are available. A result
of the adaptive nature of this model is that the
behavior of the forecast for the remaining unknown
samples changes with time in the batch.

This �adaptive� behavior of the PCA predictive
model is unique and results from the fact that the
MPCA model built for a training set of complete
batches has knowledge of how the auto and cross-
covariance structure of all the variables will change
over the reminder of the entire batch.

Fig. 3. Coefficient Φ kj (3,3) for known measurements 
as it adapts and expands with time

 
The tremendous amount of information captured by
the MPCA model gives it unique forecasting
capabilities, Fig. 4 shows the forecast for variable 4 in 
batch #7 in the industrial data set used by Nomikos 
and MacGregor (1995b), the forecast is done with
information up to time 30, notice how accurately the 
prediction follows the true unknown part of the
trajectory. The accuracy of the forecast done by the 
PCA is now contrasted among different options.

Fig. 4. Forecast done by the PCA model with samples 
up to time 30

 
 
3.  ACCURACY COMPARISON 

For batch i at time k (given that k <K), the forecast 
for each variable j generates a vector of errors in the 
future prediction  (Eq. 12)

1 2 3 4 5
[ ]e = Li j i j i j i j i j i j i j

k k k k k k k K-k
e e e e e e  (12)

defined by Eq. 13, and illustrated in figure 5. This (K-
k) vector contains the individual errors in the
prediction of the future unknown trajectory of
variable j, for samples k+1, k+2, k+3�K.



# #ˆi j
k ijk ijke x x= − (13)

This ji
ke  vector will decrease its length as the batch

evolves, because there are fewer remaining unknown
measurements (x#).

Fig. 5. Future prediction error in batch trajectory
forecasting.

The original training batch data consists of I
batches, each one with J variables, sampled K times
throughout the batch. For each ijk sample in the
original data set, we have a ji

ke vector. This set of

error vectors can be computed for each option
available to treat the unknown part of the trajectory.

To compare all the error vectors among options, it
is desirable to summarize the i j

ke  vector by one

summary statistic in order to quantify the future
prediction error as a scalar measurement of accuracy.
This accuracy will vary in time and therefore can be
plotted as a trajectory for each variable in each batch.
To accomplish this, two different approaches are
proposed:

a) To consider all individual errors
(

1 2 3
[ ]Li j i j i j i j

k k k k K-k
e e e e ) equally important and

simply square them, and add them in to one number, 
the Future Prediction Sum of Squares  (FPRESS) is
then defined by Eq. 14

( )2

1

K k
ij
k l

l

FPRESS
−

=
= ∑ ij

ke (14)

b) A second option is to weight each individual

error (
l

ij
ke ) by the inverse of the distance to the

current time sample, in such way that the one step
ahead prediction

1

ij
ke  becomes more important than

the (k-K) step ahead prediction
kK

ij
ke

−
; the weighted

Future Prediction Mean Square Error (FPMSE) is
defined in Eq. 15
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−
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The FPRESS will provide a measure of global
forecast accuracy, since it accounts for the error from
time k+1 to time K, on the other hand, the FPMSE
provides a measure of local forecast accuracy,
considering the immediate forecast more important
than the long term forecast. 

Figure 6 shows the mean trajectory of the FPMSE
for variable 4 in the industrial data set used by
Nomikos and MacGregor (1995b), each line
corresponds to a different way of handling the
unknown part of the trajectory, a multivariate fixed
time series model (TS), current deviations (CD), raw 
current deviations (CDraw), zeros (Z), and MD
represents the missing data option handled with any
method available, from single component projection
to conditional mean replacement  (Arteaga and Ferrer, 
2002).

Fig. 6. Mean FPRESS (top) and mean FPMSE 
(bottom) for variable 1 in simulated SBR dataset.

It is very clear how, from all the methods, the MD 
options have the least error in the forecast at every
time period over the whole trajectory, even from the
very initial samples in the batch. This behavior was
found to be true in general for all the variables for this 
data set for both of the two different future error
trajectory statistics (FPRESS and FPMSE), although
the CD and TS options on limited occasions showed
slightly lower values at a few time intervals. 

In batch process monitoring, when the missing data 
problem is handled correctly changes the initial
suggestion of the missing data option being unreliable 
at the beginning of the batch, as illustrated in this
work, and practically shown in the industrial
application by Zhang, Dudzik and Vaculik  (Zhang et
al, 2003) where a monitoring system for start-ups is
built solving the missing data problem with the PP
method with excellent results even at the very



beginning of the start-up � startups can be monitored
by using the same modeling technique as in batch
monitoring  (Kourti, 2003).

4. CONCLUSIONS

From the simulation results obtained in this work,
and from a careful analysis of the methods, two
general conclusions arise i) the filling in mechanism
is actually a powerful time-varying model predictive
forecasting feature that uses the PCA model of the
time-varying covariance structure in the data, and ii)
the filling in requirement in the Nomikos-MacGregor
method for batch monitoring should not be seen as a
problem to overcome. The multivariate (PCA/PLS)
models obtained using the Nomikos-MacGregor
approach for batch systems are dynamic models that
capture the time-varying relations among the
variables throughout the entire batch history.
Therefore, they are capable of producing forecasts of
the future unknown trajectories with optimal usage of
the available data and knowledge of time-varying
covariance structure among the variables. These
forecasts are far from being arbitrary assumptions
about the trajectories.
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