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Abstract : With a view to ensuring the validity of multivariate calibration models in 
the presence of temperature variations, a new methodology, individual contribution 
standardization (ICS), is proposed to correct for temperature-induced spectral 
variations. The methodology was applied to shortwave NIR spectral data sets 
recorded at different temperatures. The results showed that  ICS can almost 
eliminate temperature effects resulting in calibration models that exhibit good 
predictive performance. Compared with other methods, such as continuous 
piecewise direct standardization, ICS has the advantages of easy implementation, 
simple selection of the calibration model and less restrictions on the training 
samples. Copyright 2004 IFAC 
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1. INTRODUCTION 
 
Spectroscopic techniques are increasingly being 
applied in process analysis (Blaser, et al., 1995; 
Lewiner, et al., 2001) as a result of their potential for 
on-line application and the short analysis time. Due 
to the lack of selectivity of the target species, in 
many chemical processes, multivariate methods such 
as Partial Least Squares (PLS) (Höskuldsson, 1988)  

are applied for the building of robust calibration 
models. Generally these models are valid only when 
the spectra of the future samples (test samples) are 
measured at the same external conditions as the 
calibration samples  (training samples). However in 
industrial applications, on-line spectral process 
measurements are often affected by fluctuations in 
external variables such as temperature, thereby 
invalidating the multivariate calibration model if the 
effects of the external variations on the spectral 

measurements are not taken into account when 
developing the model. 
 
One approach proposed for addressing external 
sources of variation has been to implicitly 
incorporate the effect of temperature (or other 
variables) into the calibration experimental des ign. 
Wülfert, et al.  (1998) studied the effect of fluctuating 
temperature on the predictive ability of a multivariate 
calibration model for NIR spectra. They concluded 
that by implicit ly including temperature in the model, 
satisfactory predictive performance was observed, 
although the complexity of the model was increased. 
As neither the temperatures of the calibration 
samples nor that of the future samples is included 
explicitly in the model as independent or dependent 
variables, the accuracy of the results will not be 
optimal. 
 



An alternative approach to the handling of 
temperature influences is  through the explicit 
inclusion of temperature into the calibration model 
by treating the temperature of the samples as an extra 
independent variable appended to the spectra or as 
another dependent variable, for example. Wülfert, et 
al., (2000a) investigated this approach. Their results 
showed that none of the approaches that explicitly 
include temperature in the calibration model results 
in an improvement in the performance of the 
calibration model when compared to the more basic 
idea of implicit inclusion.  
 
It was proved that non-linear ities such as temperature 
effects (Iwata, et al., 1997) cannot be filtered out or 
resolved through the application of an orthogonal 
basis transformation (Wülfert, et al., 2000a), such as  
the wavelet transformation. An alternative approach 
has been to use robust variable selection models to 
decrease the influence of temperature variations on a 
model’s predictive performance (Swierenga, et al.,  
2000). It was observed that models based on robust 
variable selection may be better than, or similar to, 
implicit global models with respect to prediction 
errors. However, a disadvantage related to variable 
selection models is that there is a need for an 
understanding of the underlying chemical system. 
 
Wang, et al.  (1991, 1993) developed piecewise direct 
standardization (PDS) to correct for complex non-
linear spectral variations to enable calibration 
transfer between measurements performed on two 
different instruments or under two different sets of 
conditions (say two different temperatures). 
However, a requirement is that measurements are 
made for a selected subset of samples for  both the 
calibration and test temperatures, for example, 
thereby mak ing the approach  unsuitable for 
correcting temperature-induced spectral variations in 
process analysis, since it is not possible to measure 
the spectra of a selected subset of samples under all 
possible temperatures since t emperature is a 
continuous variable.  
 
Continuous piecewise direct standardization (CPDS)  
(Wülfert, et al., 2000b) is a generalization of PDS to 
continuous variables. To overcome the restriction of 
PDS, CPDS fits polynomials to the corresponding 
elements of the discrete PDS transformation  matrices 
under different temperatures. The transformation 
matrix for a new temperature can then be estimated 
from the established polynomials. CPDS can provide 
results that are superior to the implicit or explicit 
inclusion of temperature into the calibration model.  
 
Three parameters (the number of latent variables, the 
width of the window size and the degree of the 
polynomial) have to be estimated to build the CPDS 
correction model. The optimization procedures are 
complex and time consuming. The requirement that  
the spectral measurements are obtained for exactly 
the same subset of samples at all calibration 

temperatures cannot always be satisfied in process 
analytical applications. Moreover, the corresponding 
elements of the discrete PDS transformation matrices 
under different temperatures may not follow smooth 
non-linear models. The difference between the 
transformation matrix estimated for a new 
temperature by the polynomial models established 
and the actual one may not be trivial,  hence the 
resulting prediction would be inaccurate. 
 
In this paper , a new methodology is proposed,  
Individual Contribution S tandardization (ICS), for 
the correction of temperature-induced spectral 
variations. The method is evaluated using a NIR data 
set and the results are compared with CPDS.  

 
 
2. THEORY AND ALGORITHM 

 
Suppose the rows of the spectral data matrices  

)( 1tX , )( 2tX ,.., )( KtX  are the corresponding spectra 
of the training mixture samples measured at training 
temperature 

1t , 
2t , …, and 

Kt , respectively with 
known concentration matrix Y.   The objective is to 
build multivariat e calibration models that can predict 
the concentrations of the chemical components in 
future mixture samples from the spectral data 
measured at certain temperatures. If the temperature 
of future mixture sample, kt , is equivalent  to any  of 

1t , 2t , …, Kt , a prediction can be made using the local 
model built between )( ktX and Y.  

 
However temperature, as stated, is a continuous 
variable. It can therefore take any value. Due to the 
difference in temperature between the future samples 
and the training samples, the local model built on the 
training samples cannot give correct predictions for 
future samples if the temperature-induced spectral 
variations have not been appropriately corrected for. 
  
To correct for the influence of temperature, the 
continuous piecewise direct standardization (CPDS) 
algorithm (Wülfert, et al., 2000b) adopts the 
following strategy. First a partial least square (PLS) 
calibration model between the spectral data )( reftX  

and the concentration matrix Y  is establis hed for a 
selected reference temperature 

reft  from the training 

temperatures. The next step is the calculation of the 
discrete calibration transformation matrices between 
the spectra measured at the remaining training 
temperatures and the reference temperature. These 
are found through piecewise direct standardization 
(PDS) (Wang, et al., 1991): 
 

)()()( kkref ttt PXX = ,  );,,2,1( refk ttKk ≠= L  (1) 

 
The transformation matrix )( ktP  is a banded matrix 

that  can correct for the spectral variations resulting 
from the temperature differences between two 



distinct measurement temperatures. The 
transformation matrix )( ktP  is obtained by 

regressing the elements, )( refj tx  (wavelength j,  

reference temperature reft ) on a window )( kwj t−x  to 

)( kwj t+x .   The widow width is )12( +× w . The 

regression vectors )( kj tb  are then calculated using 

PLS and the transformation matrix )( ktP  is 
constructed  by placing )( kj tb  in the jth column, that 

ranges from row wj −  to wj + . A polynomial is then 
fitted to each element along the bands  of the main 
diagonal of the transformation matrices )( ktP  

);,,2,1( refk ttKk ≠= L against the temperature 

difference
kt∆  (

refkk ttt −=∆ ): 

 

jikjikjijikji etctbatp ,,,,, +∆+∆+= 2)(  (2) 

 
Once the par ameters of the polynomials have been 
estimated, the transformation matrix )( testtP  for the 

spectral matrix )( testtX  of the test samples measured 

at temperature 
testt  can be calculated. The 

temperature effects can then be removed: 
 

)()()( testtestreftest tttt PXX =→  (3) 

 
The concentrations can be predicted by using the 
local model at the reference temperature. To obtain 
satisfactory results, three parameters have to be 
optimized prior to building the final CPDS model, 
the number of latent variables for calculating the 
regression vector )( kj tb , the width of the bands about 

the main diagonal (window size )12( +× w ) and the 
degree of the polynomials to fit the elements of the 
transformation matrices. The best values for the three 
parameters are determined by leave-one-out cross 
validation. This approach is time consuming. 
Furthermore, the selection of the reference 
temperature is critical for accurate predictions.  
 
In their original paper, Wülfert, et al. (2000b) 
proposed selecting a midpoint calibration 
temperature for better results .  Intuitively, for test 
samples measured at different temperatures, the best 
reference temperatures should be different. The 
smaller the difference between the reference and test 
temperature, the better the results. However, building 
CPDS models for all calibration temperatures is 
challenging. The optimal values for the three 
parameters may not be the same when different 
reference temperatures are considered .  Consequently 
considerable time has to be spent optimising these 
parameters for each reference temperature. Even if 
the optimal values for the three parameters are found, 
the elements on the bands of the transformation 
matrices may not follow smooth non-linear functions. 
Hence, the results of CPDS may not be reliable. 

Generally, t emperature has a different impact on 
different chemical species in mixture samples, and 
the absorbance of each chemical species at different 
wavelengths will follow simple monotonic smooth 
non-linear functions with respect to temperature. 
These facts clearly indicate that the temperature-
induced spectral variations should be modelled 
separately for each chemical species in mixture 
samples. Consequently the individual contribution 
standardization  (ICS)  approach developed adopts the 
following strategy. The response patterns 

)( kl ts ),,2,1( ml L= of chemical species  l  under 

temperature kt  can be resolved using the following 

direct regression approach:  
 

)()( kk tt XYS +=   
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A polynomial is then fitted for each element  of 

)( ktS ),,2,1( Kk L=   against temperature
kt . 

 

jikjikjijikji etctbats ,
2

,.,, )( +++=  (5) 

 
After

jia ,
, 

jib ,
and 

jic ,
 have been estimated, the 

response pattern matrix )( testtS of the chemical 

species under test temperature testt can be calculated. 

Given the spectral matrix )( testtX of test samples 

measured under temperature 
testt , the contribution of 

the chemical species can be approximately  estimated: 
 

)()(ˆ
testtest tt += SXY  (6) 

 
As a result of the existence of interferences such as 
background, Ŷ  is not necessarily an acceptable 
estimate of the co ncentration matrix for the test 
samples. However, it can be used to transform 

)( testtX  to )( reftest tt →X , as though  it were measured 

under reference temperature, 
reft :  

 
)())()((ˆ)( testtestrefreftest ttttt XSSYX +−=→  (7) 

 
Here, )( reftS  is the response pattern matrix of the 

chemical species for reference temperature
reft . 

))()((ˆ
testref tt SSY −  can be viewed  as the difference 

introduced by the temperature variation between  
)( testtX  and )( reftest tt →X . 

 
After the spectral variation introduced by the 
difference in temperatures has been corrected for, 
calibration models established under reference 



temperatures can be developed  to predict the 
concentration of all the chemical species in the test 
sample. It should be observed that  from a set of 
calibration models for the spectra measured for all 
training temperatures ( 1t , 2t , …,and Kt ), the one 
with the  temperature closest to that of the test 
sample is selected.  Therefore, the most appropriate 
calibration model can be used to predict the 
concentration of the test sample. In addition  ICS does 
not require the same subset of samp les for all training 
temperatures. This characteristic of ICS offers some 
advantages over CPDS in process applications. 
 
 

3. APPLICATION 
 
An NIR data set  was selected to compare the 
performance of CPDS and ICS. The data was 
collated  from ninety five NIR spectra for 19 ternary 
mixtures of ethanol (C1), water (C2) and 2-propanol 
(C3) recorded at five different temperature levels 
(30oC, 40oC, 50oC, 60oC and 70oC)  in the range 
580nm to 1049nm with a resolution of 1nm using an 
HP 8454 spectrophotometer equipped with a 
thermostable cell holder. The spectral region between 
749nm and 849nm was used for slop e and offset 
corrections  and the 200 absorbances in the range 
850nm to 1049nm were selected for the data analysis.  
 
The 19 samples at each temperature were divided 
into 13 training and 6 test samples. Experimental 
details can be found in Wülfert, et al. (2000b), and 
the data is available at http://www-its.chem.uva.nl.  
The root-mean-squared error of prediction (RMSEP) 
was used as the performance criterion to assess the 
predictive power of ICS and CPDS. The RMSEP was 
calculated as follows: 
 

∑
=

−
=

testN

i test

testitesti

N
yy

RMSEP
1

2
,, )(

)
 

(8) 

 
Here,

testiy ,
 is the known concentration of the ith test 

sample, testiy ,
)  is the corresponding value estimated 

by ICS or the CPDS model. 
testN  denotes the number 

of test samples.  The data analysis was undertaken on 
a Pentium computer using Matlab version 6.5 
(Mathworks, Inc). All the programmes including ICS, 
CPDS and PLS1 were written in house.  
 
 

4. RESULTS AND DISCUSSI ONS 
 
Mean-centred spectra ( X ) were used as the 
prediction variables with the concentrations of water, 
ethanol and 2-propanol defining the predicted 
variables )(y . For each chemical component, five 
local PLS1 calibration models with four latent 
variables (suggested by Wülfert , et al. 2000b)  w ere 
built from the spectra of the training samples 

meas ured at five different temperatures (30 oC, 40oC, 
50oC, 60oC and 70oC).  The results of the local PLS1 
models with 4 latent variables are provided for 
comparison in Table 1.  
 

Table 1. RMSEP (×10-2 Mole fraction) of the test set 
for local models 

 
Temp. (oC) Components 

Tpred       Tcal C1 C2 C3 
30          30 1.8 0.9 1.2 
40          40 1.1 0.7 0.9 
50          50 1.7 1.1 2.2 
60          60 1.0 0.4 0.8 
70          70 1.1 0.4 1.5 

 
Before any detailed discussion on the performance of 
ICS is progressed, the validit y of the assumption 
underpinning ICS is investigated. Fig. 1 shows the 
response patterns of all the three chemical species 
resolved by direct regression. It is evident that the 
variations in the response patterns with respect to 
temperature follow simple monotonic smooth non-
linear functions. 
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Fig.1. The resolved response patterns  of ethanol 

(upper), water (middle) and 2-propanol (bottom)  
at 30oC (solid), 40oC  (dotted), 50oC (dash dotted), 
60oC (dash) and 70oC (plus).  

 
The appropriateness of applying second order 
polynomials to model the temperature effects is also 
apparent from the agreement between the response 
patterns of the three chemical species at 50oC  
resolved by direct regression and the corresponding 



ones estimated by applying ICS using the spectra 
measured at temperatures other than 50oC (Fig. 2) 
 

 
 
Fig.2. The response patterns of the three chemical 

species at 50 oC.  Solid lines: resolved by direct 
regression; Dotted lines: estimated by ICS. 

 
The previous results confirm the theoretical basis of 
ICS. The effectiveness of ICS for the correction of 
temperature induced spectral variations is illustrated 
through a typical set of results. Fig. 3 shows the 38 
spectra for the 19 samples measured at 30oC and 
50oC. Significant spectral differences introduced by 
temperature variations can be observed. When the 
ICS correction model built on the spectra of all the 
samples measured at training temperatures other than 
50oC is applied, it can be observed that the 
temperature effects are effectively removed (Fig. 4). 
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Fig.3. Spectra of all the 19 samples measured at 30oC  
(solid line) and 50oC (dotted line). 
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Fig.4. Spectra of all the 19 samples measured at 30oC  

(solid line) and those after corrections (dotted 
line) from 50oC to 30oC by ICS.  

 
The predictive performance of the ICS correction 
model and  those of CPDS are presented  in Tables 2 
and 3, respectively. The best results for the ICS and 
CPDS models for the test samples measured at 40oC, 
50OC and 60oC are comparable to those for the local 
models. This demonstrates that both ICS and CPDS 
can remove, to some extent, the influence of the 

temperature-induced spectral variations on the 
predictions.  
 

Table 2. RMSEP (×10-2 Mole fraction) of test sets 
after application of ICS correction model  

 
T cal (oC) T pred 

(oC) 
Comp. 

40 50 60 70 
 C1 1.2 1.3 1.2 1.3 

30 C2 2.3 2.3 2.7 2.8 
 C3 2.4 2.9 3.1 3.7 
  30 50 60 70 
 C1 1.4 1.2 1.0 0.8 

40 C2 0.7 0.6 0.8 1.0 
 C3 1.5 1.1 1.3 1.6 
  30 40 60 70 
 C1 2.1 0.9 1.5 1.6 

50 C2 1.8 1.3 1.3 1.4 
 C3 1.7 1.4 2.3 2.9 
  30 40 50 70 
 C1 1.8 1.2 1.1 0.9 

60 C2 0.9 0.7 0.6 0.9 
 C3 1.8 1.4 1.1 1.1 
  30 40 50 60 
 C1 3.6 2.0 2.0 1.5 

70 C2 5.9 4.6 3.6 2.3 
 C3 4.2 4.2 3.2 2.6 

 
Table 3. RMSEP (×10-2 Mole fraction) of test sets 

after application of CPDS correction model 
 

Tcal(oC) Tpred 
(oC) 

Comp 
40 50 60 70 

 C1 5.3  2.5    4.7 7.1 
30 C2 2.6 1.2 1.1 1.2 
 C3 4.8 1.6 3.8 5.9 
  30 50 60 70 
 C1 1.2    1.3 1.5 1.7 

40 C2 2.4    0.8   0.9 0.9    
 C3 2.5 1.6 1.8 2.1 
  30 40 60 70 
 C1 1.8 1.0    1.4 1.3 

50 C2 1.8    1.4 1.0 0.7 
 C3 2.0 1.4 1.6 1.3 
  30 40 50 70 
 C1 1.7    1.1    1.0 3.4 

60 C2 1.3   0.6    0.8 1.2 
 C3 1.4 1.2 0.7 4.0 
  30 40 50 60 
 C1 2.1    2.2 3.3 9.6 

70 C2 3.3    2.6    1.7 3.6    
 C3 1.2 3.0 4.1 13 

 
However the ICS and CPDS models demonstrate 
different abilities in terms of extrapolation. The 
average prediction errors of the CPDS models for the 
two extreme test temperatures, 30oC and 70oC, are 
significantly larger than those for ICS. In the CPDS 
models, with respect to different reference 
temperatures, variations in the prediction errors for  



water (C 2) for the test samples for the two extreme 
test temperatures are considerably smaller, compared 
with ethanol (C1) and 2-propanol (C3). This  is a 
consequence of the higher absorption coefficients and 
larger temperature effects of water. The temperature 
effect of water dominates the variance in the spectra. 
CPDS tends to model the temperature effects of water. 
Hence when the CPDS models , with respect to 
different reference temperatures, are used for 
extrapolation, variations in the prediction er rors of 
ethanol and 2-propanol will be larger than those for 
water. In contrast, ICS tries to model the temperature 
effects of each chemical species individually.  

 
When ICS models,  with respect to different reference 
temperatures, are used for extrapolation, the 
variations in the prediction errors of the three 
chemical species should be comparable. T he results 
in Table 2 validate this hypothesis. Moreover, the 
results confirm that the calibration model built at the 
temperature closest to the test temperature provides  
better prediction results for the test samples after ICS 
correction, while CPDS does not possess such an 
advantage (Table 3). 

 
 

5. CONCLUSION 
 
It has been demonstrated that the influence of 
temperature-induced spectral variation on the 
predictive abilities of multivariate calibration models 
can effectively be removed through the proposed ICS 
approach. This is achieved by fitting polynomials for 
each element of the response patterns of the chemical 
species in mixtures against temperature. The 
estimated polynomials can then be used to predict the 
response patterns of the chemical species at the test 
temperature. The difference between the spectrum of 
the test sample measured at  the test temperature and 
the corresponding spectrum theoretically measured at 
the reference temperature can then be calculated. 
After the temperature-induced spectral variations 
have been corrected, the calibration model can 
provide satisfactory predictions for test samples 
measured at temperatures other than the reference 
temperature.  
 
Compared with CPDS, ICS has the following 
advantages: 1) Its implementation is straightforward. 
Unlike CPDS, only one parameter (the order of the 
polynomial) needs to be preset. In practice, the order 
of the polynomials can be set to a pre-defined vale of 
two. 2) ICS does not require the same training 
samples  to be measured at different temperatures.  3) 
Since the calibration model built on the temperature 
closest to the test temperature can give more accurate 
predictions for test samples, it is  straightforward to 
select the appropriate calibration model for the test 
samples.  
 
A limiting factor in the application of ICS is that the 
system under study should be a white system (such as 

a crystallization process) , i.e. there is no unknown 
chemical sp ecies in the system. This is not necessary 
for CPDS. Hence, CPDS is still the only 
chemometric method available for the correction of 
temperature fluctuations in grey systems, despite its 
limitations in terms of its application. Further 
research is focus sing on standardization methods for 
the spectra of grey systems. 
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