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Abstract 

Model Predictive Control (MPC) strategies are typically implemented in two levels: a steady-state target 
calculation and a control calculation. The steady-state target calculation consumes excess degrees of 
freedom within the control problem to provide optimal steady-state performance with respect to some 
specified objective. In some MPC approaches, the target calculation is formulated as a Linear Program 
(LP) with a pre-specified objective function and a linear or linearized steady-state model derived from 
that used in the control calculation. In large-scale problems, centralized MPC schemes find the optimal 
solution for the plant-wide optimization problem, but may not provide sufficient redundancy or 
reliability and can require substantial computation. On the other hand, in a decentralized MPC scheme, 
the target calculations are performed independently by ignoring interactions among units, and as a result 
will not usually find the optimal operation. In contrast to the centralized MPC approach, a decentralized 
MPC provides a high degree of redundancy with respect to the failure of an individual MPC. For large-
scale process control problems, the desired characteristics for an MPC implementation include: accurate 
and quick tracking of the changing optimal steady-state operation, a high degree of reliability with 
respect to failure within the MPC application (i.e., failure of a portion of the control system), and low 
computational requirements. Fully centralized or monolithic MPC and independent block-wise 
decentralized MPC represent the two extremes in the �trade-off� among the desired characteristics of an 
implemented MPC system. In this paper, we propose a coordinated, decentralized approach to the 
steady-state target calculation problem. Our approach is based on the Dantzig-Wolfe decomposition 
principle and has been found to be effective at finding the optimal plant operation while providing a 
high degree of reliability at a reasonable computational load.  
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Model predictive control (MPC) strategies have been 
successful in a wide range of industrial applications. In the 
current control hierarchy, MPC plays an important role as 
a connection between local steady-state optimization and 
basic dynamic control (Kassmann et al. 2000). The MPC 
framework can be further divided into a steady-state 
calculation and a control calculation. The goal of the 
steady-state calculation is to calculate the desired targets 

for both output and input variables at a frequency much 
higher than those computed from local economic 
optimizers. The target calculation provides optimal 
achievable set-points that are passed to the control 
calculation.  

Two approaches to using MPC in large-scale 
applications are centralized and decentralized MPC. By 
considering interactions among operating units, 



  
 
centralized MPC can offer plant-wide optimal control, 
including plant-wide target calculations. Unfortunately, 
the centralized MPC scheme contains a large-scale control 
calculation with little or no redundancy, implemented 
within relatively centralized computational environment.  
Alternatively, in the decentralized MPC scheme, the large-
scale control problem is decomposed into a set of separate 
MPC subproblems being solved independently. Though 
the completely decentralized MPC target calculation may 
fail to yield plant-wide optimal solutions, it has higher 
degree of reliability to subsystem failure and may require 
less computation. In our work, reliability refers to the 
possibility that some control subsystems or portions 
thereof are able to function when other subsystems fail. 

For large-scale process control problems, the essential 
trade-off is between: accurate and quick tracking of the 
changing optimal operation, reliability with respect to 
failure within the MPC application (i.e., failure of a 
portion of the control system), and computational 
requirements. Therefore, fully centralized or monolithic 
MPC and independent block-wise decentralized MPC 
represent the two extremes in the �trade-off� among these 
desired characteristics. In this paper, we propose an 
approach to coordinating decentralized steady-state target 
calculation that can yield the accuracy of centralization 
and the reliability of decentralization.    

In a decentralized MPC scheme, the flowsheet is 
separated into sections that have separate control systems. 
In the decentralized approach, target calculation takes the 
strategy that the upstream units pass their decisions to the 
downstream units without considering interactions. The 
downstream units treat the upstream decisions as 
disturbances. Thus, the decentralized approach usually 
produces sub-optimal results. If the target calculation 
could be coordinated as shown in Fig. 1, it may be 
possible to produce an optimal solution similar to that of 

the centralized approach. While Venkat and Rawlings 
(2003) are developing a communication-based scheme for 

the control calculations within a decentralized MPC 
scheme, the focus of our current study is steady-state 
targets optimization.  

This paper discusses one possible approach, by taking 
advantage of the Dantzig-Wolfe decomposition principle, 
to coordinating the interactions among decentralized MPC 
units and provides insight into the information that must 
be communicated between MPC subsystems and the 
coordinator to ensure high performance levels. The outline 
is as follows. Firstly, we introduce the Dantzig-Wolfe 
decomposition principle. Secondly, we formulate a 
coordinated LP target calculation problem by introducing 
a coordination mechanism. Then, we implement the 
decomposition algorithm to solve the large-scale 
constrained MPC target calculation problem. An 
illustrative case study demonstrates the efficacy of the 
proposed approach. 

Dantzig-Wolfe Decomposition Principle 

       The Dantzig-Wolfe decomposition principle (Dantzig 
and Thapa, 2002) is illustrated in Fig. 2.  
       

       A large-scale linear programming problem can be 
decomposed into independent subproblems, which are 
coordinated by a master problem (MP). The solution to the 
original large-scale problem can be shown to be equivalent 
to solving those subproblems and the MP through a finite 
number of iterations. During each iteration, the MP  
handles the linking constraints that connect the  
subproblems and the convexity constraints (which will be 
discussed later) for each subproblem, using the 
information supplied by the subproblems [fi , ui], where fi 
and ui are the objective function value and solution of the 
ith subproblem, respectively. Then the MP sends sensitivity 
information [π, γi], corresponding to the linking 
constraints and convexity constraints respectively, to all 
the subproblems for updating their objective functions. 
Consequently, the subproblems with updated objective 
functions are re-optimized independently. The above 
procedure is repeated until convergence and the solution is 
the optimum of the original large-scale problem.    
       Dantzig-Wolfe decomposition hinges on the theorem 
of convex combination and the column generation 
technique. To help understand the Dantzig-Wolfe 
decomposition principle, the following subsections briefly 
introduce these two fundamental components of the 
decomposition principle. 
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Figure 2. Mechanism of Dantzig-Wolfe Decomposition
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Theorem of Convex Combination 
 
       The theorem of convex combination (Lasdon, 2002), 
or D-W transformation (Dantzig and Thapa, 2002), states 
that an arbitrary point x in a convex polyhedral set 

},|{ 0xbAxxX ≥==  can be written as a convex 
combination of the extreme points of X plus a nonnegative 
linear combination of the extreme rays (normalized 
homogeneous solutions) of  X, or:  
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where }{ iu and }{ jv  are the finite set of all extreme points 
and the finite set of all extreme rays, respectively. If the 
feasible region is bounded, we can reformulate the 
problem by using the extreme points only.    
       The Dantzig-Wolfe decomposition principle is 
particularly powerful for solving structured linear 
programs (Chvátal, 1983). Consider a block-wise linear 
programming problem:  
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where the equality constraints in (3a) represent the linking 
constraints associated with n interacting subproblems. The 
equality constraints in (3b) and the inequality constraints 
in (3c) are the local constraints of independent 
subproblems. The master problem (MP) can be formulated 
as follows using the linking constraints in (3a) and the 
convex combination as stated in (1), assuming that the 
feasible regions of the subproblems are bounded.  
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where p(i) represents the number of extreme points of the 
feasible region of the ith LP subproblem, and 
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       The resulting MP problem has fewer rows in the 
coefficient matrix than the original problem. However, the 
number of columns in the MP is larger due to the increase 
in the number of variables associated with the extreme 
points of all the subproblems. The column generation 

method discussed in next section provides an approach for 
dealing with the increase in number of columns in the MP.  
 
Column Generation Technique 
 
       To solve a large-scale LP problem practically, a 
column generation technique is applied in solving the MP 
(Gilmore and Gomory, 1961; Dantzig and Thapa, 2002).  
If the MP is solved via the Simplex method, we only need 
a basic set that has the same number of basic variables as 
the number of rows. Thus we do not need to explicitly 
know all the extreme points of subproblems. This leads to 
solving an equivalent problem, the restricted master 
problem (RMP).  
       Assume that we have a starting basic feasible solution 
to the RMP and it has a unique optimum, the optimal 
solution provides us with multiplier vectors [π, γ] for the 
linking constraints in Eq.(4) and convexity constraints in 
Eq.(5), respectively. Then, subproblems are formulated 
and solved to find the priced-out column associated 
with ijλ : 
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and the ith subproblem is:  

m......, 1,2,i

)(0

=≤

=

−=

i
i

i

i
i

i

j
i

i
iiz

bxG

bxBs.t.

xπAcmin

eqeq                             (10) 

Therefore, we reach an optimal solution when the 
following condition is satisfied: 
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Optimality and finite convergence have been proved by 
Dantzig and Thapa (2002).   

Dantzig-Wolfe Decomposition and Coordinated, 
Decentralized MPC Target Calculations 

Typically, in a chemical plant, the process model used 
for centralized MPC scheme has a block-wise structure. 
Therefore, most chemical plants are potential candidates 
for the implementation of Dantzig-Wolfe decomposition 
to coordinate independent MPC calculations. The 
coordinator can be designed by considering the 
interactions among operation units that can be modeled as 
the linking constraints. 

In this work, we focus on the design of coordination 
mechanism for steady-state target calculations in MPC 
systems. Target calculation problems can be formulated 
either as an LP or a QP problem (Kassmann et al. 2000; 
Rao and Rawlings, 1999). In this work, we assume an LP 
formulation for the steady-state target optimization, with a 
linear or linearized plant model and a linear objective 
function.  
 
 
 
 



  
 
LP Formulation for Decentralized Target Calculations  

 
For each MPC subsystem, which includes a target 

calculation and a control calculation, we can formulate an 
LP problem shown in Eq.(12) for the steady-state target 
calculation at time k.  
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where ])()([)( kkk ss y,ux = or ])()([ kk y,u ∆∆ is a vector 
of steady-state input and output variables for the 
subsystem. The latter corresponds to the velocity form, 
where: 
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in which us and ys are the steady-state set-points computed 
at the kth target calculation, and up and yp are the predicted 
inputs and outputs at the previous target calculation. Here, 
the equality constraints are taken from the linear dynamic 
model: 

)()()()()()( ssssss d EDGUGY ++=                         (15) 
with the steady-state model: 

edKKuy ++= d                                                       (16) 
where d stands for disturbances and e for unmeasured 
noise. The inequality constraints result from physical 
limitations on the inputs and outputs, such as actuator 
limits or production quality. Other MPC target calculation 
formulations are possible such as including model bias and 
soft output constraints (Kassmann et al. 2000; Lestage, 
2002). 
 
Coordinated, Decentralized Target Calculations 
 
       The solution from the decentralized MPC target 
calculation may not be optimal because of plant/model 
mismatch resulting from ignoring the interactions between 
operation units. Since the interactions can be modeled as 
the linking constraints, we can find the plant-wide 
optimum by designing a coordinator to coordinate 
independent MPC target calculations in the decentralized 
MPC scheme. Here, we propose a coordinated, 
decentralized approach to find the plant-wide optimum in 
MPC target calculations by applying the Dantzig-Wolfe 
decomposition. 
       The interactions between two operating units can 
always be modeled by equating the output variables from 
the upstream unit and the input variables to the 
downstream unit. In formulating the subproblems, those 
streams connecting different operating units are torn and 
consistency relationships can be used to model the 
interactions between different units. Assume that we have 
m separate operating units. Each of them is controlled by 
one MPC subsystem. If n units have interactions, by 
introducing interprocess stream consistency as the linking 
constraints in Eq.(3a), we can formulate a large-scale LP 

problem that has a form of Eq.(3). This problem has a 
block-wise structure which can be solved efficiently by 
Dantzig-Wolfe decomposition. 
       At each sampling instant of the plant-wide MPC target 
calculation, a coordinated LP problem will be formulated 
and solved. Then all the calculated steady-state targets 
both for inputs and outputs, including interprocess stream 
variables, are passed to MPC control calculation.  

Illustrative Case-Study 

The system under consideration in this paper is shown 
in Fig. 3. The normalized gains for the system are given in 
Eq.(17a) through Eq.(17c). An identity matrix is chosen 
for Kd in Eq.(16) assuming that the disturbances influence 
the outputs directly. The locations where the disturbances 
entering the plant are shown as dashed lines in Fig. 3. 
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       Each operating unit has its own objective, which is a 
subset of information used by plant-wide optimizers, and 
the profit function cost coefficients are: 
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So for each operating unit, by tearing the interprocess 
stream, a linear program at the kth target calculation is:  
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where Gj  stands for the coefficient matrix associated with 
all the inequality constraints. The R.H.S. of the equality 
constraints )(kj

eqb  represents the updated model bias at 
each target calculation execution. The R.H.S. of the 
inequality constraints )(kjb  contains the lower bounds lb 
and upper bounds ub of the variables in the operation units. 
The bounds on the variables in this case study are shown 
in Eq.(20). 
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Figure 3. Interacting MIMO Operating Units



  

0.5]   0.45   0.3   0.45   0.15   0.45   0.3        
   0.4   0.45   0.4   0.45   0.15   0.3   0.3[=lb

               (20a) 

0.6]   0.55   0.5   0.55   0.25   0.55   0.5         
   0.5   0.55   0.5   0.55   0.25   0.5   0.5[=ub

             (20b) 

       Three different MPC strategies, centralized MPC, 
decentralized MPC and coordinated, decentralized MPC, 
are implemented to evaluate their abilities to track the 
changing optimum in steady-state target calculations. For 
the centralized MPC target calculation, a direct LP 
problem is formulated treating all the inputs and outputs, 
including interprocess interactions, as decision variables. 
For the decentralized MPC scheme, separate LP problems 
are formulated by passing the upstream decisions to 
downstream units as disturbances. Finally, the coordinated 
MPC target calculation incorporates the linking constraints 
in modeling the interactions and solves the RMP and 
independent subproblems iteratively.  
       In our case study, unknown disturbances are 
generated by filtering random series of uniformly 
distributed variates in order to restrict these disturbances 
within the interval ±0.05. These unknown disturbances are 
directly imposed on the outputs when the optimized 
targets are implemented in our simulation. By using the 
autoregressive models in Eq.(21) as simplified disturbance 
models, we predict one-step ahead disturbances based on 
the past information of estimated disturbances. The 
estimated disturbances used to update the disturbance 
model in (21) are calculated by comparing the measured 
outputs and model predictions at every control execution. 
At the current control calculation, the parameters, c1 and c2, 
in the disturbance model are estimated using the estimated 
disturbances in the past 10 control execution periods. The 
one-step ahead disturbances are predicted using the 
estimated c1 and c2. The process models are updated using 
the predicted disturbances. The steady-state targets are 
then calculated by using the updated process models.  
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       The following accumulated profit function is defined 
for performance comparison: 

∑−∑= ss TkVTkZP *)(*)(                                     (22) 
where Z(k) is the actual profit per unit time from the kth 
target calculation; V(k) represents the penalty for 
constraint violations when we implement the calculated 
targets; and Ts is the sampling period between two target 
calculations. 
       A benchmark has to be defined for comparing the 
performances of different MPC steady-state target 
calculation strategies. The benchmark used for comparison 
is defined as the maximum profit achieved when the plant 
is operated at the true optimum, which is calculated using 
the perfect process model and exact knowledge of 
disturbances. Although this maximum profit is not 
achievable, it is a useful basis for performance comparison.  
       Fig. 4 shows the profit achieved as a function of 
control execution using different MPC steady-state target 

calculation strategies. The coordinated target calculation 
gives the same achievable optimum as the centralized 
MPC scheme does (because the same interactions are 
considered in both approaches), while the decentralized 
scheme yields lower performance as interactions are 
ignored in the calculation. Note that, in the figure, two 
curves for the centralized scheme and coordinated scheme 
overlap each other and are very close to the true optimum.     
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 Figure 4. Calculated Targets Using Different Approaches 
        
       Table 1 compares the performance of different MPC 
strategies for a simulation of 290 target calculation 
executions. From Table 1, we can see that the centralized 
and the coordinated, decentralized target calculation give 
the same best achievable profit and achievable ratio to the 
true optimum, while the fully decentralized target 
calculation only captures around 95.7 % of the maximum 
profit. 

Table 1. Performance Comparison  
 

Strategy Profit  Achiev. 
Ratio 
(%) 

Comp.* 
Effort 

(s) 

Problem 
Dimension 

Central 1176.8 99.98 19.37 46×42 
Decentral. 1126.8 95.73 34.14/3 15×15×3 
Coordin. 1176.8 99.98 184.9/4 7×7 + 

15×15×3 
True-Opt. 1177.1 100 NA NA 
* All the simulations were performed in Matlab 6.5 on a 
Pentium III 1.0G Hz, 512M RAM machine. 
 
       Table 1 also reports the problem sizes for different 
steady-state target calculation strategies. The problem size 
is defined as the size of the coefficient matrix in the LP 
standard form used in the Simplex method. Therefore, 
slack and excess variables are added to convert the 
inequality constraints to equality constraints, and the 
columns of the coefficient matrices correspond to the 
process variables as well as the slack and excess variables. 
We can see that the centralized scheme has the largest 
problem size, which will grow significantly when the 



  
 
dimension of separate problems and the number of 
operation units in the flowsheet increase. The problem size 
for the decentralized MPC is reported as the dimension of 
the largest subproblem multiplied by the number of units. 
For the coordinated scheme, the problem size is expressed 
as the addition of two components, the dimension of RMP 
(the coordinator) and the problem dimension in the 
decentralized scheme (the subproblems).    
       The computational effort is also reported in Table 1. 
All the simulations were performed using one single-
processor computer. Therefore, the computation times for 
the decentralized and coordinated, decentralized strategies 
reported are divided by the number of processors required 
for parallel computation, assuming a decentralized 
computational environment. As shown in Table 1, the 
decentralized scheme requires the least computational 
effort, because the large plant-wide optimization problem 
is broken down into smaller independent optimization 
problems being solved using multiple processors. Table 1 
also shows that the coordinated approach requires 
approximately twice the computation time as compared to 
the centralized approach, even after accounting for the 
distributed computing environment that would normally 
be used for coordinated target calculations. To our best 
knowledge, little is known regarding the complexity or 
scaling of the Dantzig-Wolfe decomposition technique and 
since our example represents a single problem instance, no 
general conclusions can be drawn as to which approach is 
computationally �faster�. What must be noted is that the 
coordinated approach does provide a level of subsystem 
failure tolerance, which the centralized approach cannot. 
Such failure tolerance is an important feature for industrial 
automation systems.  
       Further, in our example, no attempts were made to 
develop efficient codes for the decomposition algorithm 
such as those reported by Martinson and Tind (1999) and 
Dantzig and Thapa, (2002) in our simulations. Further 
studies are required to investigate the potential reduction 
in computation time using the coordinated, decentralized 
strategy. A key point that should be drawn from our study 
is that the proposed approach does yield acceptable 
computational effort when implemented in parallel. As 
such, it provides an approach to plant-wide control that 
does not require a centralized computing environment.  

Conclusions and Future Work 

       In this paper, a new approach to solving plant-wide 
MPC target calculation by coordinating independent 
subproblems has been proposed. The coordinator is 
designed by considering the interactions between 
operation units, which are not considered in the existing 
decentralized MPC calculation scheme. In our study, the 
coordinated, decentralized MPC target calculation can 
provide the same performance as does the centralized 
scheme, while it can utilize parallel computation to ensure 
acceptable real-time calculation speeds. This scheme 
offers a higher reliability than the centralized scheme. In 

fact, the proposed scheme can provide the same reliability 
as the decentralized control scheme. The proposed 
approach only requires a minor modification in the 
existing decentralized MPC structure by applying Dantzig-
Wolfe decomposition. 
       A number of challenges remain in the decomposition 
of the MPC target calculations. Since subproblems are 
solved independently, this property ought to be naturally 
employed for parallel computing, which may have strong 
potential to enhance the solution efficiency. Furthermore, 
a full understanding of the complexity and scaling 
behavior of Dantzig-Wolfe decomposition algorithm is 
required to determine the feasibility of the proposed 
approach on industrial-scale problems. 
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