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Abstract: The control structure has the dominant effect on control performance. 
Developing systematic methods for selecting the structure is challenging because of the 
multi-criteria nature of the problem. Some criteria include dynamic behavior of the 
controlled and manipulated variables, equipment capacities, and loop integrity. In this 
paper, a method is presented to address the complex nature of the problem, while using a 
formulation that can be solved in a reasonable computing time. The primary criterion is 
controlled variable performance, but additional criteria such as integrity are considered 
using meaningful metrics, such as Relative Gain Array. The crucial importance of using 
realistic scenarios and not relying on heuristics is demonstrated using two process 
examples.  Copyright © 2003 IFAC 
�
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1. INTRODUCTION 
�

Control structure selection is an important decision at 
the beginning of the control system design. Available 
control design methods range from heuristic rules to 
approximate metrics to mathematical programming.  
Luyben, et al. (1998) presented a nine-step heuristic 
design procedure for plantwide control design. 
Bristol (1966) developed the most widely used 
metric, the Relative Gain Array (RGA), which only 
needs steady state gain and gives very useful 
information for integrity and robustness. A more 
complete analysis of control performance requires 
the transient response of key variables.  Narraway 
and Perkins (1994) formulated the control structure 
selection and controller tuning together as a dynamic 
optimization using MINLP. Wang and McAvoy 
(2001) chose the control structure by optimizing 
dynamic performance for several subsets of 
controlled variables sequentially. Kookos and 
Perkins (2002) used linear dynamic model and 
integer variable for both structure and tuning 
selection, which makes a MILP problem with a very 

large number of integer variables. 
 
This paper presents a control structure design method 
that extends the optimization of the time-domain 
transient response and gives the best overall behavior 
in industrial situations, even though the design might 
violate one or more common heuristics.  Since 
control design is naturally a multiple criteria 
decision-making procedure, our method is flexible 
enough to consider several criteria simultaneously.  
In addition, the design must be performed for a set of 
conditions, i.e., a scenario, which represents the 
realistic situation.  For example, the scenario should 
include realistic disturbances, noise, uncertainty and 
equipment bounds.  Finally, since good controller 
tuning is essential when comparing alternative 
designs, our method includes a tuning optimization.  
To achieve these formidable results within 
reasonable computing time, we restrict ourselves to 
linear dynamic models and employ an efficient new 
optimization algorithm. 
 
The paper is presented as follows; Section 2 
describes the approach used for multiple criteria 
optimization, Section 3 defines the formulation for 
realistic scenarios, Section 4 discusses special 
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aspects of the solution method, and Section 5 
presents results from two cases studies. 
 
 

2. MULTIPLE CRITERIA 
 
There are many control design objectives (Marlin, 
2000) that address a range of requirements including 
safety, smooth operation, product quality, and 
production rate.  In addition, most systems involve 
inequality constraints on variables; some of these are 
hard (e.g., equipment performance limits) and others 
are soft (e.g., deviation from set point).  The most 
often used method to formulate multiple criteria 
optimization is to penalize the weighted summation 
of all criteria. In spite of its mathematical simplicity, 
this method has a major drawback. The weighting 
should reflect the relative importance among criteria, 
but in most cases we do not know this sensitivity 
information before we solve the problem. 
 
For multi-criteria optimization, we choose the e-
constraint method (Steuer, 1986). It optimizes one 
criterion with the other criteria bounded as 
constraints. 
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where cj(x) is the criterion as objective function and 
ci(x) are the criteria bounded by ei. This method can 
be solved by standard optimization software and the 
result is easy to understand. Steuer (1986) points out 
that by solving the problem several times with 
different ei, we can get a very useful byproduct, 
sensitivity among different criteria. 
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Our major focus in this paper is dynamic 
performance; therefore, a measure of performance of 
the controlled variable deviation from set point is 
very natural choice for the objective function, cj. 
Many other criteria could be included as the ancillary 
objectives, ci.  In this paper, we will demonstrate the 
approach by including integrity as an optional bound.  
Integrity has many definitions; here, we select "a 
system has integrity if the closed-loop dynamic 
system is stable when one or more loops are placed 
in manual (off) without changing the sign of the 
active feedback controller gains".  One widely used 
metric is relative gain array (RGA), which is a 
necessary condition for good integrity. 
 
 

3. FORMULATION WITH REALISTIC 
SCENARIO 

 
Control performance is strongly affected by the 
scenario.  Certainly, large, fast disturbances are 
worse than small, slow disturbances.  However, 
many other characteristics are important in control 

design and many of these have been ignored in 
previously published methods.  To achieve the 
flexibility required, we propose an optimization 
formulation that involves a linear dynamic model 
including a saturation model of the manipulated 
variable.  The decision variables are the integer 
variables that specify the control structure and the 
controller tuning.  The objective function is the 
integral error of the controlled variable deviation 
with a penalty for the control actions.  The resulting 
formulation is given in the following equations. 
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We use the summation of absolute error aek(t) and 
absolute manipulated variable movement auk(t) as 
objective function in (3). Equation (7) calculates the 
absolute variable of error and manipulated variable 
movement that are used in objective function. The 
plant is described by a linear time-invariant state 
space model in. (4), and we use more than one model 
to represent model mismatch. In (4), subscription k 
describes different models, N(t) is measurement 
noise, d(t) is disturbance.  Multi-loop PI controllers 
are used, (5). The tuning parameters are controller 
gain, Kc; integral gain, KI, which equals �T/TI. 
Equation (6) expresses the capacity of the 
manipulated variable with upper and lower bounds, 
uU,i and uL,i.   
 
The slack variables, sUk(t) and sLk(t), express the 
amount that the controller output violates the bound 
on the manipulated variable. For instant, if the 
calculated manipulated variable output uk,i(t-
1)+�uk,i(t) is greater than its upper bound uU,i, the 
actual manipulated variable output uk,i(t) is clamped 
to its upper bound by allowing slack variable sU

k,i(t) 
to be nonzero. The complementarity constraints 
guarantee that slack variables become nonzero only 
when the manipulated variables reach their limits. 
For instant, if manipulated variable uk,i(t) is less than 

     



its upper bound uU,i, that means inequality uk,i(t)�uU,i 
is not active, and by the complementarity  
constraints, the slack variable sU

k,i(t) must be zero.  
We note that this formulation also prevents reset-
windup. 
 
� is a binary matrix that has the same size as the 
controller and defines loop pairing. We define �ij = 1 
if the controller pairs ui with yj and �ij = 0 otherwise. 
Equation (8) states that the controller tuning 
parameters, Kc,ij and KI,ij  can be nonzero only when 
the corresponding �ij is one, which means the pairing 
ui � yj is chosen. Equation (9) limits the possible 
structure to diagonal structure, which means that 
there is one and only one controller in each row and 
column. 
 
Equation (10) forces the pairing we choose to have a 
positive RGA value, which is a necessary condition 
for integrity.  As we will see in the case studies, 
enforcing integrity has a major effect on the control 
performance.  Therefore, we will solve the problem 
with and without (10) to determine whether the good 
integrity property costs excessive degradation in 
control performance. 
 
 

4. SOLUTION METHOD 
 
Equations (3)-(10) define a mixed integer, non-
convex, non-linear programming problem, which is 
challenging to solve.  We take several steps to 
simplify the solution.  First, we evaluate the relative 
gain at each node of the integer problem, i.e., at each 
pairing before optimizing the continuous problem.  
This procedure is appropriate because the (steady-
state) relative gain depends on the process and the 
pairing, but not the disturbance or controller.  To 
address the non-convexity of the continuous 
problem, we take two actions. 
 
 
4.1 Good Initial Points 
 
The optimal tuning problem is non-convex, so a 
good starting point is very important to solve the 
problem. Since we can choose a pairing with a 
negative RGA, some of the controller signs might 
need to be different from their SISO loop tuning.  If a 
specific pairing has a negative relative gain, this does 
not ensure that the controller for this pairing should 
have its gain inverted.  Clearly, the non-convex 
problem is complicated and covers a very wide range 
of tuning values.  We propose a two-step procedure: 
a region elimination followed by an NLP in the 
identified region.  The regions are defined by the 
controller gain (sign and magnitude) and the integral 
constant (magnitude).  We have observed that good 
multiloop control can be achieved with an aggressive 
controller with a large Kc,ij or a large KI,ij (small TI,ij), 
depending on the particular problem. The regions are 
summarized in table 1. 
 
We evaluate the control performance within each of 
these regions for the design scenario by simulation.  

While the table can contain many cases, each case is 
solved quickly. Then, we bound the tuning within the 
best region for the control design optimization 
problem. 
 

Table 1  Possible tuning combinations 
 

Kc1 KI1 Kc2 KI2 … 
+low low +low low … 
+high low -low low … 
-low high +low low … 
… … … …  

 
 
4.2 IPM Solver – IPOPT-C 
 
A major challenge remains because the valve 
saturation formulation (6) introduces the 
complementary constraints. In our experience, 
standard NLP solvers will not reliably solve this 
problem. Therefore, we have selected to use IPOPT-
C, which is an Interior Point Method (IPM) solver 
solves general NLP.  It has been extended to handle 
complementary constraints (Raghunathan and 
Biegler, 2003).  The central-path following feature of 
this solver offers the potential for improved 
performance for this non-convex optimization.  Good 
results have been obtained, but global optimization 
cannot be guaranteed. 
 
 

5. CASE STUDIES 
 

5.1 Fluidized Catalytic Cracker (FCC) 
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Fig. 1. Fluidized catalytic cracker process and 

open-loop response



We will apply the method to the loop pairing for the 
fluidized catalytic cracker unit shown in Fig. 1. It 
converts heavy oil into lighter and more valuable 
products, such as gasoline and fuel oil. The reaction 
section has two major units, one is a plug flow 
(transportation) reactor called the riser, which has a 
residence time of only a few seconds.  The other unit 
is a fluidized bed vessel called regenerator, in which 
the catalyst is regenerated by burning the coke 
produced in the reactor using air.  The inventory of 
catalyst in a typical regenerator is on the order of 60 
tons.  Two temperatures must be controlled to 
achieve smooth operation. The temperature of the 
riser (Tris) is directly related to product quality and 
yield and to temperature limits of key equipment; 
therefore, it should be tightly controlled. The 
temperature of the regenerator (Trgn) is not as crucial 
as riser, but it should be controlled in a range about 
its set point. Two available manipulated variables are 
flow of catalyst (Fcat) and flow of air (Fair). 

 

 
The linearized model used in this study is based on 
Arbel et al. (1996). The open-loop response (Fig. 1) 
shows that the system has slow dynamics except loop 
Tris�Fcat, which has a fast inverse response. The RGA 
for this 2x2 system is shown in Fig. 1. If we want the 
control system with integrity, we have only one 
choice, pairing on Trgn�Fcat, Tris�Fair. The other 
pairing will have poor integrity.  Many heuristic 
design approaches would dictate that the relative 
gain must be positive.  However, we will proceed 
with a systematic evaluation of the dynamic 
performance.  The evaluation will begin with the 
simplest (unrealistic) scenario and add additional 
factors in the scenario until a realistic definition is 
attained (Table 2).  Using this procedure, we will be 
able to follow the effects of the scenario on the 
control design. 
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Fig. 4. Case C 
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Fig. 3. Case B 
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125

125

125

125

126

Tr
gn

 (F
)

100

100

100

100

100

101

101

Tr
is

 (F
)

Fig. 2.

Case 
RGA 
Mism
Noise 
Capac

Kp*Kc

IAE(T
Table 2 Cases for different scenarios 
 

A B C D E 
+ + + + - 

atch  � � � � 
  � � � 

ity    � � 
� 106 100 1 1 1 
ris) 21.2 54.3 32.7 72.2 31.1 
    

0 20 40 60
2

4

6

8

0

time (sec)

0 20 40 60
0

2

4

6

8

0

2

time (sec)

0 20 40 60
0.45

0.5

0.55

0.6

0.65

0.7

Fa
ir 

(lb
 a

ir/
lb

 fe
ed

)

time (sec)

0 20 40 60

6.5

6.6

6.7

6.8

6.9

Fc
at

 (l
b 

ca
t/l

b 
fe

ed
)

time (sec)

 Case A 

0 20 40 60
1252

1254

1256

1258

1260

Tr
gn

 (F
)

time (sec)

0 20 40 60
1000

1002

1004

1006

1008

1010

1012

Tr
is

 (F
)

time (sec)

0 20 40 60

0.5

0.6

0.7

Fa
ir 

(lb
 a

ir/
lb

 fe
ed

)

time (sec)

0 20 40 60

6.5

6.6

6.7

6.8

6.9

Fc
at

 (l
b 

ca
t/l

b 
fe

ed
)

time (sec)

Fig. 6. Case E 



We begin with the simplest scenario, without 
mismatch model, noise and valve constraints. The 
performance looks very good (Fig. 2). One guideline 
for tuning is that the product of the process gain Kp 
times the controller gain Kc should be around one. 
But, one of the controllers has a value of about 106! 
If we don’t consider model mismatch, this tuning 
gives good performance, but a very small model 
mismatch will make the closed-loop system unstable. 
Fig. 3 shows the result for optimizing the base case 
and mismatch models simultaneously, with one 
tuning. The controller gain is significantly reduced 
but still very big. Trgn only moves about 0.5�F, which 
will be overwhelmed by noise in real plant. The big 
controller gain will amplify the noise and make the 
performance much worse than its prediction.  Fig. 4 
shows the result with noise added in the formulation. 
The tuning now agrees with our guideline, and the 
performance is good. But in order to achieve this 
good performance, Fair has to make a big initial 
increase, which would require an air blower with 
about 600% extra capacity. This extra capacity 
would involve a two million dollar increase in plant 
capital investment. Fig. 5 shows the performance 
with a realistic extra plant capacity, which is the 
formulation we propose, which involves equations 
(3) – (10). The tuning and transient becomes 
reasonable, and the dynamic performance is realistic. 
In Fig. 5 the trajectory of Fair stays at its upper bound 
for several steps, which is saturation handled 
properly with the formulation.  We note that the 
performance of the riser temperature has degraded in 
Fig. 5 and is likely not adequate for this critical 
variable.   
 
Therefore, we chose to relax the requirement that the 
relative gain be positive. We report the results for the 
most demanding scenario in Fig 6, which shows the 
excellent performance for the riser temperature. The 
IAE with the negative RGA pairing is only half of 
the value achieved with the positive RGA pairing. 
  
The final decision on the control structure is made by 
the engineer based on the rigorous optimization 
results. For FCC process, the temperature of riser is 
crucial, since it is directly related to profit and 
equipment protection. We want to keep it as close to 
its set point as possible.  If the regenerator controller 
is placed in manual, the control system would be 
unstable because lack of integrity.  However, the 
regenerator temperature would drift away slowly 
because of its huge volume, so the operators have 
time to respond. Based on this analysis we would 
choose dynamic performance and give up integrity; 
we choose negative RGA pairing, which is Trgn�Fair, 
Tris�Fcat.  This is the industry standard control design 
for the FCC process considered in this example 
(Arbel, et al., 1996).  Note that it violates a 
commonly cited control heuristic, but it is widely 
applied. 
 
 
 
 
 

5.2 Fired Heater�
 
This case involves the control of the fired heater in 
Fig. 7, which has four burners and four coils in one 
firebox. The control goal is to manipulate the fuel to 
the four burners to control the four coil outlet 
temperatures. The transfer function model can be 
found in Manousiouthakis et al. (1986). The 
dynamics of each input-output is first-order, and the 
system has strong interaction.  Equation (11) reports 
the relative gain array.  

T3 T1 T2 T4 

F2 F3 F1 F4 

Fig. 7. Fired heater 
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We see that only two pairings have positive RGA and 
good integrity.  However, the previous case 
demonstrated the danger of basing a design on a 
heuristic.  Therefore, we proceed to apply additional 
short-cut estimates of control performance that can 
be obtained from steady-state gain information.  
Here, we use the relative disturbance gain, RDG 
(Stanley et al, 1985).  When the value of the RDG is 
less than 1.0, the multiloop performance, as 
measured by the integral error, is better than the 
single-loop performance. 
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We see that all pairings are predicted to be better than 
single-loop, which indicates that the individual loops 
interact in a favorable manner.  The highlighted 
pairings have the best  (lowest) integral error.  
However, it is well known that the integral error can 
be small because of positive and negative 
cancellation (this is not the squared error).   
 
Therefore, we proceed to the proposed design 
technique.  We can evaluate the best performance 
with integrity (positive RGA pairings) and without 
the requirement for positive RGA pairings.  In this 
case, the method finds the best dynamic control 
performance for a realistic scenario is achieved by 
the diagonal design highlighted in  (11), see Fig. 8.   
 
These rigorous results do not conform to the 
prediction from the RDG; in fact, the design 
indicated by (12) gives one of the poorest dynamic 
performances (Fig. 9).  The reason is the complex 
feedback dynamics that occur with this pairing, 
which results in poor performance.  This poor 
performance is not reflected in the heuristic, which is 

     



not affected by large positive and negative 
oscillations in the controlled variable that cancel. 
Again, we see that heuristics and approximate 
metrics can be misleading.  We note that the RDG 
has proven useful in eliminating candidates in other 
studies, so that this case study does not generally 
invalidate the RDG metric, which should always be 
combined with a transient analysis before a design is 
finally selected.  
 
The choice for the engineer in this case is easy, 
because good dynamic and integrity are achieved 
simultaneously.  The diagonal controller highlighted 
in (11) is selected. 

integrity. We anticipate its application as an 
interactive procedure. Engineers can use their 
process knowledge to make the final decision based 
on results with different limits on the inequality 
constraints in (1). 
 
Future work involves extending this methodology to 
handle more complex control structures, such as such 
a block-centralized structure. 
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6. CONCLUSION 
 
This paper has discussed an optimization-based 
control structure design method. We demonstrate 
that a realistic scenario formulation is essential; this 
method includes important factors such as model 
mismatch, measurement noise and equipment 
capacity limits, to makes the resulting tuning and 
dynamic performance prediction close to the 
achievable performance in real.  The multiple criteria 
framework enables us to tradeoff different design 
objectives, such as dynamic performance and 

plantwide control systems using a dynamic 
model and optimization. Ind. & Eng. Chem. Res. 
40, 5732-5742. 
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