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Abstract: In Real-Time Optimization (RTO) systems, the performance of the RTO 
depends strongly on the selection of measured variables and of sensors used for their 
measurements. Many studies have investigated the selection of variables (e.g., 
Krishnan, et al., 1992; Fraleigh, et al., 1998). This study extends previous work by 
considering the error in the implementation of the RTO results due to imperfect 
sensors used in process control. A practical optimal sensor design strategy based on 
nonlinear closed-loop Monte-Carlo simulations is developed. Case study results 
demonstrate that the implementation error can be essential for determining the 
appropriate sensors. 
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1. INTRODUCTION 

 
Significant economic benefits can be obtained by 
applying operational optimization to chemical units 
or plants (Marlin and Hrymak, 1997). During the 
past ten years, with the development of numerical 
methods and computing power, many successful 
industrial applications of real-time optimization 
(RTO) have been reported (van Wijk and Pope, 
1992; Bailey et al., 1993; Brewer and Lopez, 1998).  
 
The various existing process optimization 
techniques can be classified into two general 
categories: direct search and model-based 
optimization (Garcia and Morari, 1981). Direct 
search methods explore the plant response surface 
directly for the optimum operating conditions 
through a series of plant experiments, while model-
based methods use process models to estimate the 
plant optimum. This paper concentrates on model-
based process optimization systems. 
 
A typical model-based RTO system is composed of 
several subsystems: process data validation, model 
update, economic optimization, and RTO results 
implementation. A general structure for the model-
based RTO system is shown in Fig. 1. 

 

 
Fig. 1 General structure of RTO system 
 
From Fig. 1, it can be seen that, in real-time 
optimization systems, feedback is applied to 
compensate for model errors and unmeasured 
disturbances. As a result, the performance of the 
RTO depends strongly on the selection of measured 
variables and of sensors used for their 
measurements. Several studies have investigated 
the selection of variables (Kage and Joseph, 1990; 
Krishnan et al., 1992; Zhang, 1998). These studies, 
however, only consider the parameter updater as an 
isolated system rather than examining the effect of 
measurements on the RTO performance. Fraleigh 
et al. (1998) considered the whole closed-loop 
RTO system and developed a sensor system design 
cost criterion which allows the designer to compare 
various measurement combinations with respect to 
uncaptured profit due to setpoint variance and bias.  
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This study extends previous work by considering 
the error in the implementation of the RTO results 
due to imperfect sensors used in process control. A 
practical optimal sensor design strategy based on 
nonlinear closed-loop Monte-Carlo simulations is 
developed. Sensor design candidates are evaluated 
in terms of true plant economic performance with 
consideration of various typical uncertainties 
experienced in industrial processes. The optimal 
sensor design strategy is illustrated with a 
distillation optimization example. Simulated case 
studies show that considering implementation error 
can be essential for determining the appropriate 
sensors. 
       
In the next section, methods for optimal sensor 
design are briefly described. A design strategy 
based on closed-loop Monte-Carlo simulations is 
then presented with considering several critical 
issues in sensor selection problem. Section 3 
contains the problem formulation and case study 
design. Case study results are presented in Section 
4. The final section are the conclusions. 

 
 

2. OPTIMAL SENSOR SELECTION FOR RTO 
SYSTEMS 

 
For illustrative purpose in the following discussion, 
the closed-loop RTO system of Fig. 1 is simplified 
to include only three major subsystems shown in 
Fig. 2. Here it is assumed that the process 
measurements z  are corrupted by random, zero-
mean, stationary noise N  and the process 
controllers are capable of implementing the 
calculated setpoints. 

 
Fig. 2 Simplified RTO system 
 
Generally, two approaches can be used for optimal 
sensor design: linear approximation and Monte-
Carlo simulation. Linear approximation method 
was developed by Forbes and Marlin (1996). The 
central idea is based on the fact that each element 
of Fig. 2 can be considered as a nonlinear map. For 
arbitrarily small deviations from the plant optimum, 
the nonlinear maps of each element can be 
represented by their first-order approximations. 
The resulting system of linear equations can be 
reduced to an iterative relationship in perturbations 
to the predicted optimum setpoints ( *

mδx ): 
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where *
px  is the plant optimum setpoints; *β  and 

*z  are model parameters and process 
measurements at the plant optimum, respectively; 
k  is the iteration counter. 
 
For RTO system excited by process noise and with 

( ) 0δx*
m =0 , the setpoint covariance matrix *

mxQ is: 
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where zQ  is the given covariance matrix of process 
measurements. 
 
Thus, by using differential sensitivity analysis, a 
closed-loop RTO system shown in Fig. 2 can be 
represented by a linear approximation. The sensor 
design candidates can be evaluated by studying the 
setpoints covariance matrix *

mxQ . 

 
Although the linear approximation method has 
been demonstrated to be effective for small-scale 
process problems (Fraleigh, 1998), when applied to 
large-scale optimization systems, it may be 
impractical due to the potentially intense 
computational expense associated with the 
derivative calculations. Another shortcoming of 
this method is that the design procedure is based on 
linear approximation of the closed-loop RTO 
system, which means the analysis is only locally 
valid and the range of validity is unknown.  
 
Monte-Carlo simulation, on the other hand, is a 
relatively straightforward method. Instead of 
performing linear sensitivity analysis, it evaluates 
design candidates by closed-loop RTO simulations. 
Given the sensor noise and typical uncertainties, 
the entire closed-loop RTO system can be 
simulated by considering the interaction of the 
three major subsystems shown in Fig. 2.  
 
Compared to linear approximation approaches, 
Monte-Carlo simulation does not approximate the 
sensitivity of the loop elements and hence provides 
more accurate results for optimal sensor design 
problem. This advantage is significant especially 
when the systems considered are highly nonlinear. 
In addition, it can be applied in most of the 
commercial available optimization system products. 
In this paper, closed-loop Monte-Carlo simulation 
method is employed for the optimal sensor design 
with several important issues to be recognized. 
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The first is the impact of implementation error on 
the RTO performance when the process control 
system enforces the RTO results. No previous 
study has considered this factor. In industrial 
practice, high accuracy sensors may not be 
available or might not be economically justified. In 
this case, the implementation error has to be 
considered. It’s a trade-off between sensor cost and 
plant profit: when high accuracy sensors are not 
used, RTO performance might be degraded by 
selecting relatively lower accuracy sensors instead.  
 
Another important issue in optimal sensor design is 
the design strategy. To make the design decision 
quickly, a screening method is also proposed. The 
motivation for incorporating the screening method 
in design strategy is that in industrial practice, there 
are usually many, say, tens or even hundreds of 
design candidates to be evaluated. To make the 
important design decisions quickly, the screening 
method can be used to eliminate some of the design 
candidates before testing the best candidate on 
closed-loop Monte-Carlo simulations. The detailed 
strategy is described in the following steps: 
 
1. Assume high accuracy sensors are available, 

perform closed-loop Monte-Carlo simulations 
without considering implementation error; 

2. Assume high accuracy sensors are not 
available, set proper error level for each of the 
individual setpoints; 

3. Use screening method to evaluate the design 
candidates. Detailed procedure is given below: 
a) For each design candidate, randomly 

select one or several sets of setpoints from 
previous closed-loop RTO iteration points; 

b) For the selected set of setpoints: 
i) Generate the implementation error 

according to the error level given in 2. 
and add it to the setpoints;  

ii) Run plant Monte-Carlo simulations; 
c) Eliminate some of the design candidates 

by comparing their RTO performance; 
4. Test the design candidates that pass step 3 by 

closed-loop Monte-Carlo simulations with 
implementation error. 

 
By following the design steps stated above, we can 
get both of the optimal sensor design results 
with/without implementation error, with reduced 
computing time. 
 
It should be noted that the RTO performance 
should be calculated based on the plant model, not 
on the model used by the optimizer. This practice 
arises from the fact that due to model/plant 
mismatch, the optimum setpoints predicted by the 
optimizer don’t necessarily guarantee an optimum 
performance in the true plant. Since we are more 
concerned about economic profit of the true plant, 
it is essential to evaluate the sensor design 
candidates in terms of the plant performance.  

 
 
 

 
 

3. PROBLEM FORMULATION AND CASE 
STUDY DESIGN 

 
 
3.1 Process description 
 
The case study considered is a deisobutanizer from 
Sunoco Sarnia hydrocracker plant (Bailey et al., 
1993). It is a 65 bubble cap tray distillation column, 
operating at approximate 500kPa, which separates 
isobutane from normal butane. The nominal feed 
conditions are given in Table 1.  

 
Table 1 Deisobutanizer feed conditions 

 
Propane ( 3C )   3.83 
iButane ( 4iC ) 63.76 
Butane ( 4nC ) 28.22 

Composition 
(mol %) 

iPentane ( 5C )   4.19 
Flow (Mmols/day) 6.424 
Temperature (˚C)   94.8 
Pressure (kPa)      1730.4 

 
To match as closely as possible the behavior of the 
realistic distillation operation, the deisobutanizer 
model has been modified to include additional 
components, such as a total condenser model, 
flooding correlations, and pressure drop 
correlations, etc. 
 
There are 32 ideal trays in the final model with one 
feed flow that enters the tower on tray 14. The 
model has 488 equations which are written in an 
equation-based format. All the variables are scaled 
by selecting appropriate engineering units. The 
case studies are solved using MINOS in GAMS 
(Brooke et al., 1998). 
 
 
3.2 Problem formulation 
 
Model updater Mathematically, the model updater 
is a special type of nonlinear optimization problem, 
in which there is no distinction between 
independent and dependent variables. The process 
model h  can be expressed in terms of measured 
variables mx , unmeasured variables ux , fixed 
parameters α  and estimated parameters β  (the 
data in Table 1 except pressure), as given in (3): 

( ) 0βαxxh um =,,,                         (3) 
 
Many formulations are available for the model 
updater. In this study, we consider both of the data 
reconciliation and parameter estimation in model 
updater. Naturally, we have considered the gross 
errors in process measurements that have been 
identified and removed prior to the updating phase.  
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Model-based optimizer Model-based optimizer 
provides optimum operation policy based on the 
updated model and an economic objective function. 
The objective function accounts for the profit/cost 
of plant operation. Generally, it is a function of 
product profit and the costs of energy and raw 
materials. In this study, a nonlinear objective 
function based on plant cost is employed (Seferlis, 
1995). It includes the cost of the utilities and the 
differential value of the components in the two 
product streams. The model-based optimizer can be 
stated as follows:  

( )
( ) 0βαxxg

0βαxxh
di

di

xx di

≤

=

+++=Φ

,,,

,,,..

,,
,

ts
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where Φ  is the plant cost ($/d); ix  are the 
optimization variables; dx  are the dependent 
variables; α  are the  fixed parameters; β  are the 
updated parameters; g  are the inequality 
constraints account for the product quality 
specifications; BQ  and DQ  are the reboiler and 
condenser duties (TJ/d); hkDx ,  is the heavy key 
component in the top product; lkBx ,  is the light key 
component in the bottom product; D , B  are the 
top and bottom products (Mmol/d), respectively; 

BC , DC , hkC , lkC  are the cost coefficients. The 
values of the cost coefficients are given in Table 2. 

 
Table 2 Cost coefficients for objective function 

 
BC  DC  hkC  lkC  

2.40 0.40 15000 15000 
 
There are three optimization variables in the 
model-based optimizer, one of which is the 
overhead pressure, the other two are either 
component compositions or tray temperatures, 
depending on the case scenarios (See Table 3). 
 
Plant After the three optimization variables are 
determined, the degrees of freedom of the plant is 
zero, and the plant simulation can be performed by 
solving the following equations. 

( ) 0βαxxh di =,,,                        (6) 
 
 
3.3 Case study design 
 
As we know, for a distillation tower, there are 
usually three possible positions for the composition 
analyzers: on the top product, on the bottom 
product, or on the feed, leading to 8 analyzer 
combinations available for the distillation RTO 
system. As on-line composition analyzers are 
expensive, it is necessary to determine which 
combination is the best for the distillation operation.  
 
Setpoints are selected to match measurements 
available. For each case scenario, there are three 
setpoints, one of which is the overhead pressure, 

the other two are either component compositions or 
tray temperatures, depending on the corresponding 
analyzer and measurement sets. As previously 
stated, the updated parameters β  in this study are 
the feed composition, flow rate, and temperature.  
 
The sensor design candidates, their setpoints, and 
measurement sets are given in Table 3. The other 
measurements are the common measurements that 
are based on the on-line process data currently 
available in the deisobutanizer operation and are 
used by all the design candidates. 
 

Table 3 Sensor design candidates 
 

Measurements 
Setpoints 

Dx  Bx  *
fdx  others 

1 4,nCDx
4,iCBx ovP

3,CDx
4,nCDx  

4,iCBx  
5,CBx  fdx  

2 4,nCDx
4,iCBx ovP

3,CDx
4,nCDx  

4,iCBx  
5,CBx  --- 

3 4,nCDx 25T ovP
3,CDx

4,nCDx  --- --- fdx  

4 4,nCDx 25T ovP
3,CDx

4,nCDx  --- --- --- 

5 5T  
4,iCBx ovP --- --- 4,iCBx  

5,CBx  fdx  

6 5T  
4,iCBx ovP --- --- 4,iCBx  

5,CBx  --- 

7 5T  25T ovP --- --- --- --- fdx  

8 5T  25T ovP --- --- --- --- --- 

fdF , 

DF , BF , 

RF , stF , 

2T , 5T , 

18T , 25T , 

31T , ovP

*all components measured 
 
In Table 3, Dx , Bx , fdx  are the compositions of 
top product, bottom product and feed; ovP  is the 
overhead pressure; fdF , DF , BF , RF , stF  are the 
flow rates of feed, top product, bottom product, 
reflux and steam to boiler, respectively; iT  are the 
tray temperature measurements. 
 
In this case study, all the measurements have zero-
mean white noise added to the true plant values; the 
noise on each of the individual measurements is not 
correlated, nor is the noise autocorrelated in time. 
The standard deviations for the measurements are 
3% for flow rates, 0.5% for pressures, 5% for 
compositions, and 0.5˚C for temperatures; the 
percentages are of the base case value. 
 
Besides measurement noise, process disturbances 
are also considered. As feed composition variation 
is the major disturbance in distillation operation, 
four typical feed composition disturbance cases are 
investigated in this paper. Table 4 lists these 
disturbance cases. 
 

Table 4 Disturbance cases 
 

 Case1 Case2 Case3 Case4

3,Cfdx   5.06   3.83 10.03   9.03 

4,iCfdx 58.00 41.22 59.56 59.56 

4,nCfdx 14.07 50.76 26.22 23.22 

Feed 
Comp.

(mol %)
5,Cfdx 22.87  4.19   4.19   4.19 



     

Model/plant mismatch is another typical 
uncertainty experienced in optimization. In this 
study, structural model/plant mismatch is 
introduced in the number of ideal trays in the RTO 
system model. The feed tray number and tray 
temperature measurements are also changed 
proportionally to the total ideal tray number. 
 

Table 5 Model/plant mismatch 
 

 True Plant RTO System 
Tray No. 32 29 

Feed Tray No. 14 13 
2 2 
5 4 

18 16 
25 23 

Tray Temp. 
Measurements 

31 28 
   

 
4. CASE STUDY RESULTS 

 
The 8 design candidates stated above are evaluated 
by using the strategy developed in this study. In 
each case scenario the simulated data are obtained 
by taking 300 closed-loop RTO iterations with each 
iteration involving model updater, model-based 
optimizer and plant, of which 100 iterations are for 
the base case, the other 200 are for the disturbance 
case. The disturbance is introduced at the 100th 
closed-loop RTO iteration.  
 
RTO performance is calculated for each case. As a 
measure of the loss in economic performance of the 
RTO system due to imperfect optimization, the 
additional cost, that is, the offset between the mean 
value of the simulated data and the minimum value 
of the true plant cost is used to evaluate the design 
candidates. As any setpoints other than the plant 
optimum setpoints will lead to degraded plant 
performance, which in turn, yield higher plant cost, 
the offset is always positive, and the smaller the 
magnitude of the offset, the better the RTO 
performance. Fig. 3 illustrates the offset data of 
candidate 6 in disturbance case 1 without 
considering implementation error.  

 
Fig. 3 RTO Performance Evaluation 
 

To evaluate the design candidates, first, we perform 
closed-loop RTO simulations without considering 
the implementation error. In this case it is assumed 
that perfect sensors are available in the 
deisobutanizer operation. The design results are 
given in Table 6. It should be noted that the base 
case data in Table 6 are averaged from those of the 
base cases in the four disturbance cases. 
 

Table 6 Sensor design offsets without 
implementation error 

 
 Base Case1 Case2 Case3 Case4

True Cost 4251 2948 4514 3982 3761
1   153     92   165   143   133
2   151     90   163   141   131
3     73     57     94     69     69
4     40     27     53     37     42
5     62     51     61     92     90
6   198   409   136   381   397
7     21     96     20   219   223

Cost Offset
($/d) 

8   116   459    77   333   385
        

From Table 6, it can be seen that candidates 1 - 5 
consistently perform well in all the case studies. 
Candidates 6 - 8, on the other hand, yield 
significantly higher plant cost. Thus in the case 
where perfect sensors are available, design 
candidates 1 - 5 are recommended and 3 - 5 
perform slightly better than 1 and 2.  
 
In the subsequent studies, it is assumed that the 
perfect sensors are not available and hence the 
implementation error should be considered with 
appropriate implementation error. The 
implementation error level is the same as that of the 
sensor noise defined in Section 3.3. To reduce the 
computing time, instead of performing closed-loop 
RTO simulations directly, a screening method is 
first used to eliminate some of the design 
candidates. In this study, we select four sets of 
intermediate setpoints, say, 20th, 40th, 60th, 80th 
iteration points from the previous simulated data, 
and carry out 100 open-loop plant simulations for 
each set of setpoints. The offset data used to 
evaluate the design candidates are obtained by 
averaging the simulated data that are generated 
from the four sets of setpoints. Table 7 gives the 
screening results on base case. The intermediate 
setpoints come from the simulated data that 
produce the base case results in Table 6. 
 
Table 7 Sensor design offsets by screening method 
 

  20th 40th 60th 80th Average
1   152   158   158   155   156 
2   148   148   165   157   155 
3   166   202   161   228   189 
4   190   178   212   153   183 
5 1692 2385 2667 2505 2312 
6 1319 2143 2058 2146 1917 
7 1498 1767 2068 1689 1756 

Cost Offset 
($/d) 

8 1623 2017 1727 1951 1830 
      

Closed-loop RTO Iteration 

3357

2948

4449 
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Comparing Table 6 and 7, significant cost increases 
are observed in candidates 5 - 8, while the offset 
changes in 1 and 2 are negligible. Though RTO 
performance of 3 and 4 are worse, they are still 
acceptable. Thus by using the screening method, 
we can directly eliminate design candidates 5 - 8 
without performing closed-loop RTO simulations. 
 
To test and evaluate the design results in Table 7, 
further closed-loop RTO simulations are performed 
on design candidates 1 - 4 in order to give the 
design decisions with the consideration of 
implementation error. Table 8 gives the final sensor 
design results. From Table 8, it is clearly shown 
that design candidates 1 - 2 perform better than 3 - 
4. Thus in the cases where perfect sensors are not 
available, design candidates 1 - 2 are recommended.  
 
Table 8 Sensor design offsets with implementation 

error 
 

 Base Case1 Case2 Case3 Case4
True Cost 4251 2948 4514 3982 3761

1   156     93   164   146   132
2   154     92   165   143   134
3   203   149   326   165   160

Cost Offset 
($/d) 

4   176   128   226   185   150
        

Comparing the sensor design results with and 
without implementation error, it can be seen that 
the implementation error critically affects the 
design decisions. For example, candidate 5 would 
be the preferred design if implementation errors 
were not considered because it has a close 
approach to the best performance and only one 
costly analyzer. However, we see in Table 7 that 
this design gives very high costs with 
implementation errors. In addition, we see that the 
capital cost for three analyzers is not justified by 
the performance reported for candidate 1 in Table 8.  
Therefore, candidates 2 - 4, which all use two 
analyzers, remain as viable candidates.  From Table 
8, candidate 2 has the lowest cost and therefore, is 
the preferred design when considering 
implementation error. 
.  
 
 

6. CONCLUSIONS 
 
Optimal sensor design provides a systematic way 
for selecting sensors of the RTO systems. In this 
paper, the importance of the implementation error 
to sensor selection problem is studied. A practical 
sensor design strategy based on nonlinear closed-
loop Monte-Carlo simulations is developed. The 
strategy incorporates a screening method to 
eliminate some of the design candidates in a 
preprocessing phase, which helps to make the 
important design decisions in a timely manner. 
 
A series of case studies based on a distillation 
column have been performed with typical 
uncertainties experienced in industrial processes. 
The case study results demonstrate that the explicit 

consideration of implementation error is especially 
important for the cases where high accuracy 
sensors are not available or are very costly. It is 
also shown that this factor can be essential for 
correctly determining the appropriate sensors. 
 
 

REFERENCES 
 
Bailey, J. K., Hrymak, A. N., Treiber, S. S., 

Hawkins, R. B. (1993). Nonlinear optimization 
of a hydrocracker fractionation plant. 
Computers and Chemical Engineering, 17(2), 
123-138. 

Brewer, W. M., & Lopez, S. F. (1998). Successful 
closed-loop olefins plant optimization. 
Hydrocarbon Processing, 6, 83-89. 

Brooke, A., Kendrick, D., Meeraus, A., & Raman, 
R. (1998). GAMS: A User’s Guide, GAMS 
Development Corporation. 

Forbes, J. F., & Marlin, T. E. (1996). Design cost: a 
systematic approach to technology selection for 
model-based real-time optimization systems. 
Computers and Chemical Engineering, 20(6/7), 
717-734. 

Fraleigh L. M., Guay, M., & Forbes, J. F. (1998). 
Optimal sensor network design for real-time 
optimization. American Institute of Chemical 
Engineering Annual Meeting, Miami. 

Garcia, C. E., & Morari, M. (1981). Optimal 
operation of integrated processing systems. 
American Institute of Chemical Engineeing 
Journal, 27(6), 960-968. 

Kage, K., & Joseph, B. (1990). Measurement 
selection and detection of measurement bias in 
the context of model based control and 
optimization. Industrial Engineering and 
Chemical Research, 29, 2037-2044. 

Krishnan, S., Barton, G. W., & Perkins, J. D. 
(1992). Robust parameter estimation in on-line 
optimization – part I: methodology and 
simulated case study. Computers and Chemical 
Engineering, 16(6), 545-562. 

Marlin, T. E., & Hrymak, A. N. (1997). Real-time 
optimization of continuous processes. Fifth 
International Conference on Chemical Process 
Control. American Institute of Chemical 
Engineering Symposium Series, 316, 156-164. 

Seferlis, P. (1995). Collocation models for 
distillation units and sensitivity analysis studies 
in process optimization. Ph.D. Thesis, 
McMaster University, Hamilton, Ontario, 
Canada. 

van Wijk, R. A., & Pope, M. R. (1992). Advanced 
process control and on-line optimization in 
Shell refineries. Computers and Chemical 
Engineering, 16(Suppl.), S69-S80. 

Zhang, C. (1998). Nonlinear data reconciliation 
and parameter estimation for real-time 
optimization. M. Eng. Thesis, McMaster 
University, Hamilton, Ontario, Canada. 

 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



