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Abstract: A systematic approach to grey-box identification of distributed param- 
eter processes is proposed. The principle idea is to integrate a novel moving finite 
element method for model reduction, with the toolbox MoCaVa for grey-box 
modelling of lumped parameter systems. A method is proposed for separating 
the model reduction error from discrepancies between model structure and mea- 
surement data, based on estimating the model reduction error in combination 
with simple hypothesis testing. This method can be used for validating the PDE 
structure as well as the order of the reduced model. To keep the model order at 
a minimum, the reduced model is augmented with a mesh controller, which uses 
error feedback to determine the size and location of the finite elements. 

1. INTRODUCTION 

Grey-box identification concerns calibration and 
validation of dynamic process models with par- 
tially known but uncertain structure, and in the 
presence of disturbances from the environment. 
A number of grey-box identification methods 
and toolboxes have been developed for modelling 
lumped parameter  systems governed by ordinary 
differential equations (ODE). However, they do in 
principle not cover distributed parameter system, 
which are nevertheless very common in the pro- 
cess industries. In order to extend the methods 
to distributed parameter systems, some form of 
model reduction, i.e., approximating PDEs with 
a set of ODEs, is required. 

In principle, model reduction can be performed 
a priori using any discretization method, e.g., fi- 
nite differences or finite elements, on any given 
discretization mesh. This is the typical approach, 
e.g., in software for parameter estimation (gPROMS, 

2004). However, as model reduction will introduce 
a model error, it is in general difficult to a priori 
determine an appropriate discretization method 
and model order that  will provide an acceptable 
accuracy. Moreover, it will in general be impossi- 
ble to decide whether discrepancies between the 
model structure and the available data are due 
to the original model structure or the model re- 
duction. Also, by employing an a priori fixed or- 
der discretization, valuable information about the 
original model structure is lost. Since a key-idea 
in grey-box identification is to exploit information 
about the underlying model structure, the knowl- 
edge that  a model structure indeed involves PDEs 
should therefore somehow be conserved. 

Our aim is to propose a systematic method for 
grey-box identification of distributed parameter  
processes. The ultimate goal is to integrate a 
flexible method for model reduction, based on 
moving finite elements (Liu and Jacobsen, 2001), 
with a method for grey-box identification as pro- 



posed in (Bohlin, 1991) and implemented in the 
software MoCaVa (Bohlin, 2001). The principle 
idea is to use the tools available in MoCaVa for 
calibration and validation also of the model reduc- 
tion. See Figure 1. In this paper, we consider two 
specific problems. 1) Separating model reduction 
error from model-data  discrepancies, by combin- 
ing model reduction error est imation with simple 
hypothesis testing; 2) Model order selection, i.e., 
determining the required order of the discretized 
PDE model for identification purposes. The pro- 
posed method is demonstra ted on a chromatogra- 
phy process used in bio-separation. 
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Figure 1. Integration of model reduction with 
MoCaVa 

2. P R O B L E M  FORMULATION 

Model reduction introduces a model error, and 
an important  issue in grey-box identification of 
P DEs is to therefore distinguish between error 
sources, as i l lustrated in Figure 2. There are dis- 
crepancies between the tentat ive PDE model and 
measurement  da ta  (el), discretization errors from 
model reduction of the tentat ive PDE model (e2), 
and discrepancies between the discretized model 
and the experimental  da ta  (e3). Identification of 
the PDE models aims at making el small, while 
the size of e3 can be obtained when applying 
identification methods on the discretized model. 
In principle, a significant error e3 can be caused 
by a poor model reduction rather than a poor 
structure of the tentat ive PDE model. Contrary, 
the ODE model may fit the experimental  da ta  well 
al though el is large. This may happen if also e2 
is large, and will thus lead to a falsely identified 
PDE model. Therefore, to ensure a small model 
error e,,  it is essential to establish whether the 
error e3, as est imated by available identification 
methods,  is due to e, or e2. 

In general, the problems discussed above cannot 
be solved by a priori discretization. Moreover, the 
required accuracy of the model reduction depends 
not only on the model structure,  but also on the 
experimental  da ta  as well as the intended use of 
the model. For identification purpose, it is usually 
crucial to use a low order ODE model as the 
model order directly influences the complexity of 
the succeeding identification procedure. 

PDE model  

• g r e y - b o x  identification methods  ~, 
O D E  model  ~ ~ Exper imental  data 

O D E - d a t a  discrepancy ( % ) 

Figure 2. Error sources in grey-box identification 
of PDEs 

2.1 Example:  parame ter  es t imat ion  of a convection- 
di f fusion process 

To illustrate the potential  problems with a priori 
discretization, consider a simple process involving 
convection and diffusion governed by 

v t - - v ~ + O . l v ~ ,  x ¢ [ 0 , 1 ] ,  t > o  (1) 

where x represents space and t time, with initial 
and boundary conditions given by 

v(x ,  O) - O, v( t )  x=0 - sin(bt), v~(t)l~=, - 0 

Treat u = v(0,t)  as the input and y = v(1, t) 
as the output  of this system. For simplicity, we 
assume no process disturbances nor measurement  
noises. The problem is to identify the system 
based on measured discrete-time outputs  y( tk ) .  
Two tentat ive PDE models are considered, one 
in correct form, one neglecting the diffusion term: 

5 4 A  " vt -- --avx + cvxx (2) 

54z3 " vt -- --avx (3) 

First,  model reduction is applied to the tenta- 
rive models. For stability reasons, an upwinding 
scheme is employed for discretizing the convection 
term vx while central difference is used for the 
diffusion term vx~, both on a fixed uniform mesh. 
Then, a weighted least square method is era- 
ployed, i.e., parameter  estimates are determined 
as the minimizer of some cost function V depend- 
ing on the prediction error, 0 - argmin0 V(0). To 
directly relate the prediction error to the goodness 
of the fit, we employ a relative error. The cost 
function is defined as variance of the prediction 
error, weighted by variance of the simulated out- 
puts (with output  mean removed). 

1 N 

v(0)- -< v(t ' 
var (~)  - [ E ( ~ ) ]  2 

(4) 

where ~(tk,0) are simulated outputs  of the dis- 
cretized PDE with the parameter  set 0 at t ime tk,  
N8 is the number of measured outputs,  var(f l )  and 
E(~) are variance and mean of ~, respectively. For 



Test set Model Input  N & ~ D(&) D(f)  Vmin Vreal(&, e) 
(a) AAA sin( t )  5 1.0908 0.0162 1.2423e-4 5.9197e-5 1.7840e-6 0.0017 
(b) AAA sin( t )  20 1.0064 0.0815 4.9710e-5 1.1088e-5 3.0927e-7 1.5668e-4 

(c) A/I• sin(t) 5 1.1237 - 8.7238e-4 - 8.8801e-5 0.0024 
(d) A/IB sin(t) 20 1.1316 - 0.0050 - 0.0030 0.0024 

(e) 3AA  sin(15t)  20 1.0245 0.0748 0.0011 1.9025e-4 0.0014 1.6480e-4 

Table 1. Estimation results for convection-diffusion process. True parameters: a=1,  
e=0.1; N- order of the reduced model; & and g: parameter  estimates; D: standard 
deviation; Vmin: cost function with the estimates set, obtained from the discretized 

model; Vreat: real cost function with tentative PDE. 

the tentative model fl4A, 0 - [a c] T, while for the 
tentative model J~4B, 0 - a. 
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Figure 3. Error sources in different test sets for 
the illustrating example. The heights of the 
blocks represent size of the corresponding 
error. 

In all test sets designed below, the input is a 
sinusoidal wave applied for 5 periods, and the 
output is recorded with 200 sampling points. The 
reason for using a simple sinusoid is to enable a 
simple illustration of the impact of the frequency 
content in the data. Tests (a) and (b) estimate 
parameters based on the model structure 3AA, 
with different model orders. Tests (c) and (d) 
are similar, but for the erroneous model structure 
3riB. Test (e) is similar to test (b), except the 
input frequency is increased. A graphical illustra- 
tion of the size of different error sources for all 
test sets are presented in Figure 3. The results are 
summarized in Table 1, from which three essential 
observations can be obtained. First, when the 
tentative model has a correct structure, significant 
biases in the estimates can be caused by a poor 
model reduction, which can then be improved by 

increasing the model order, as illustrated by (a) 
and (b). Note that  in (a), although the minimized 
cost function Vmin appears small, the real cost 
function, obtained from substituting the estimates 
into the tentative PDE model and discretizing it 
on a fine grid, is indeed large. This shows that  the 
obtained parameter estimates involve significant 
biases even though the data-fitting seems fine. 
Second, (c) and (d) reveal that  when a wrong 
model structure is used, e3 may appear small, but 
it is due to a large el counteracted by a large e2. In 
such cases, increasing the model order decreases e2 
but increases e3. The reason, in this particular ex- 
ample, is that  the model reduction introduces an 
artificial diffusion which plays the role of the diffu- 
sion in the true system. Note, however, that  this is 
not possible to detect by examining the standard 
deviations and the minimum cost function. Third, 
the required accuracy of the model reduction also 
depends on the frequency content of the data, as 
shown by (b) and (e). Due to the space limit, we 
do not include detailed discussion here but only 
point out that ,  for the purpose of identification, 
the discretized model should primarily approxi- 
mate the tentative PDE model in the frequency 
range where the data are concentrated. 

2.2 Separation of model reduction errors from 
model-data discrepancies 

From the above, it is clear that  in order to prop- 
erly fit and validate PDE models it is essential to 
be able to have some knowledge about the model 
reduction error. If the model reduction error e2 
is guaranteed small, methods for evaluating esti- 
marion results applied on ODE systems can be 
more or less directly applied to PDE systems. In 
principle, e2 decays to zero as the model order 
increases to infinity. However, higher order of the 
ODE model increases the complexity of the iden- 
tification. Hence, it is critical to choose a suitable 
model order for accuracy and efficiency purposes. 
Below, two approaches to separate e2 from model- 
data discrepancies, based on simple hypothesis 
postulation and testing, are considered. 

The first approach starts by discretizing the tenta- 
tive PDE model using the maximum model order 
Nmax that  one can practically accept, followed 



by parameter estimation based on this high order 
model. Assuming a negligible model reduction er- 
ror e2, a minimum cost function Vmin large than a 
pre-defined threshold (Vmin)~ot indicates the need 
to improve the model structure. Otherwise, reduce 
the model order gradually and repeat the param- 
eter estimation, so as to make Vmi~ (N) approach 
the given threshold. The resulting model order 
is then considered as "optimal", in the sense it 
provides both acceptable accuracy and efficiency. 
The main drawback of this approach is that  it typ- 
ically will require excessive computational loads. 
Further, it is difficult to determine whether the 
starting maximum model order yields a negligible 
(32. 

Second, start with a low model order and apply 
parameter  estimation on the discretized model. 
Then, increase the order N gradually, and per- 
form estimation on each discretized N ~h order 
model, so as to find an optimal N such that  
Vmi~(N) is (slightly) below the given threshold. 
This approach seems simple but indeed involves 
some problems. Since e2 may compensate for the 
model structure error el, Vmi~ calculated from the 
reduced model may not always decrease as N in- 
creases. For example, Vmi~ (N) may first decrease 
then increase, for an increasing N. If this happens, 
it implies that  counteraction of significant e2 and 
el produces a false minimum Vmin, and hence the 
structure of the tentative PDE model may need 
improvement. To deal with the problem one may, 
after obtaining the corresponding estimate 0 for 
a given N, re-discretize the PDE model with a 
high model order Nmax. Substituting the previ- 
ously obtained estimate 0 into this model, one can 
compare the resulting loss function V(O, Nmax) 
with that  obtained for the given N, V (0, N). If the 
difference between the two loss functions is large, 
one can assume that  the model reduction error 
is significant with model order N. This approach 
is more computationally efficient than the above 
approach, but still demanding due to the need to 
consider a large number of parameter estimations 
as well as high order models for validation of the 
results. 

To summarize, a suitable model order is essen- 
tial for achieving both accuracy and efficiency in 
grey-box identification of PDE processes. Since, 
in principle, the model reduction error asymptoti- 
cally goes to zero as the model order goes to infin- 
ity, it is possible to separate e2 from the model- 
data discrepancies by simple hypothesis testing, 
as discussed above. However, these approaches are 
computationally inefficient and sometimes involve 
numerical problems with the use of high model 
orders. To reduce the complexity, we discuss in 
the following how the problem can be handled by 
estimating the model reduction error and combin- 
ing it with hypothesis testing. 

3. A SYSTEMATIC APPROACH TO 
GREY-BOX MODELLING OF PDES 

To enable grey-box modelling of PDEs in a more 
systematic fashion, we propose to include estima- 
tion of the error e2, introduced by model reduc- 
tion. The estimated error ~2 can be used in combi- 
nation with simple hypothesis testing to separate 
e2 from model-data discrepancies. In order to keep 
the reduced model order close to the minimum 
required, a moving finite element method named 
OCMFE (Orthogonal collocation on moving finite 
elements), proposed in (Liu and Jacobsen, 2001), 
is employed. Available grey-box modelling meth- 
ods for ODE models can then be applied to the 
reduced model. 

The underlying discretization method employed 
in OCMFE is orthogonal collocation on finite el- 
ements (OCFE), proposed in (Carey and Fin- 
layson, 1975). In OCFE, the spatial domain is 
divided into elements, and the solution is ap- 
proximated by low order polynomials within each 
element. 

In general, it is not possible to obtain the true 
model reduction error. For finite elements meth- 
ods, the equation residuals are often used as mea- 
sures of the solution accuracy. With the use of 
OCFE, for instance, residuals are forced to zero 
on the collocation points, but are in general non- 
zero at non-collocation points. The integral size 
of the residuals can hence be used to provide 
some estimate of the model reduction error e2. 
In particular, large residuals will in general imply 
significant model reduction errors. However, the 
opposite does not necessarily hold, that  is, small 
residuals does in the general case not guarantee 
small model errors. In (Liu and Jacobsen, 2001), 
it is shown that  the residuals for linear problems, 
discretized with OCFE, always will be identi- 
cally zero while the solution may be arbitrarily 
in error. To get a more reliable error estimate 
we consider combining the residual with an error 
measure often used in polynomial interpolation, 
based on Nevilles interpolation algorithm (Press 
et al., 1988). This error measure is based on re- 
moving one interpolation point and then perform- 
ing a new interpolation based on the remaining 
points. The difference in predicted profile then 
serves as a measure of the solution error. We com- 
bine the residual based and interpolation based 
error estimates, and denote it Q. By comparing 
the size of Q to the solution profile, an estimate 
of the model reduction error is proposed as 

L (5) 

where the integration in time and space easily 
can be approximated by a simple quadrature. 



Note that  the error estimator as defined is data 
dependent. 

Quantitatively, one can not draw any exact con- 
clusion regarding the true error e2 from the size 
of ~2. However, it is reasonable to assume that  a 
decrease in the size of the estimated error implies 
a decrease also in the true error. This makes the 
error estimation useful when combining it with 
simple hypothesis testing. 

The method we propose here consist of start- 
ing with parameter estimation based on a low- 
order discretized model, and estimate the result- 
ing model reduction error ~2(N, ~). Then, increase 
the model order slightly to N + and re-discretize 
the PDE with the previously obtained ~. In gen- 
eral, this should decrease the estimated error i.e., 
~2(N+,~) < ~2(N,~). If the reduction is sig- 
nificant, N should be increased and the above 
procedure repeated until the difference becomes 
negligible. When so, check if Vmi~ is below the 
pre-defined threshold, and if the standard devia- 
tions of the parameter estimates are reasonably 
low. If both are satisfied, it indicates acceptable 
estimation results and a suitable model order. 
Otherwise, we may consider to improve the PDE 
model structure and/or  re-design experiments. 

In addition to use the above proposed error es- 
t imate for validation of the model reduction, we 
here also use it to improve the efficiency of the 
model reduction itself. This is done by augment- 
ing the discretized model with a feedback con- 
trol law using the element sizes and positions as 
manipulated variables with the aim of spatially 
equidistributing the instantaneous discretization 
error, i.e., the time derivative of e2. Equidistri- 
bution of error measures is common in numerical 
methods, and is based on the inherent assumption 
that  it leads to a reduced total error. The method 
amounts to a novel moving mesh method, and is 
described in (Liu and Jacobsen, 2001). 

4. APPLICATION ON A 
CHROMATOGRAPHY PROCESS 

We here apply the systematic approach discussed 
above on a chromatography process used for bio- 
separation. Chromatography processes typically 
possess a sharp and moving composition front and 
hence represent a challenging problem for finite 
dimensional modelling. Consider a real process 
studied by (Borgquist, 1999), and described by 

OC 1 02C OC 
Ot = Bo Oz 2 Oz' B o -  1039.5 (6) 

with initial and boundary conditions 

0C 
C ( z ,  o) - o, 

z z O  

- B o ( C -  1), OC z=l -g-zz - 0  

where C is the adsorbant concentration, z space 
and t time. z C [0, 1], t _> 0. Consider C at the 
right boundary, C(z - 1, t), as the output of this 
system, and assume that  the tentative model is 
in correct form. For simplicity we assume noise 
free measurement data. We consider estimating 
the parameter  Bo using the weighted lest square 
method presented in (4) above. 

Below, four tests are performed using different 
discretization methods and model orders. The es- 
t imation results are summarized in Table 2 while 
the simulated outputs are plotted in Figure 4. As- 
sume that  the threshold for measuring the good- 
ness of data-fitting is chosen as (Vmi~)tot = 10 -4, 
indicating that  a relative prediction error below 
0.01% is acceptable. In test (i) and (ii) we dis- 
cretize the tentative model using central differ- 
ence, resulting in 30 and 100 ODEs, respectively. 
Clearly, the parameter  estimate is improved by 
increasing the model order. Both the minimum 
cost function and the standard deviation of /)o 
are decreased in (ii), compared to (i). However, 
even with the model order as high as 100, Vmi~ 
from the discretized model is still larger than the 
threshold (Vmi~)tot, which hence requires further 
increase of N. Moreover, it is not trivial to deter- 
mine a suitable model order unless using involved 
hypothesis testing. 

Test (iii) employs OCFE on 5 elements with a 
6th-order polynomial for each element, i.e., a total 
number of 29 ODEs. Thanks to this more efficient 
model reduction method, with a similar model or- 
der as in (i), the estimation results are apparently 
improved. Moreover, the proposed error estima- 
tion method can now be utilized. As can be seen, 
compared to the error estimate based on 29 ODEs, 
an error estimate based on a slightly higher order 
model is decreased about 30%, indicating that  the 
model reduction needs to be improved. 

In test (iv) we employ the moving mesh method 
OCMFE. The spatial discretization mesh again 
consists of 5 elements with 6th-order polynomi- 
als on each element. As the mesh control con- 
tributes 4 ODEs, the total model order now be- 
comes 33. In this case, the difference between the 
estimated model reduction errors based on the 
selected model order and a slightly higher model 
order is much smaller. Compared to (iii), the esti- 
mated error e2 is reduced by a factor 8, and better 
estimation results are obtained, as indicated by 
the decrease of standard deviation of/)o and Vmin. 
An excellent output fitting is also obtained, and 
Vmin is now below the specified threshold. Indeed, 
the estimated parameter is very close to its true 
value. 



Test set Model reduction N /}o D(#o) Vmin(N) ~2(N,/}o) ~2(N+,/}o) 
(i) Central difference 30 600.0  1.5992 0.0101 - - 
( i i )  Central difference 100 1028.1 0.8535 4.3332e-4 - - 
(iii) OCFE 29 896.2  0.0598 5.4650e-4 0.0126 0.0091 
(iv) OCMFE 33 1043.7 0.0387 9.5380e-5 0.0018 0.0016 

Table 2. Parameter estimation of the chromatography process, based on a tentative 
model Ct - Cz/Bo - Cz~. True parameter Bo - 1039.5; N: order of the discretized 

^ 

model; Bo" estimate of Bo; D" standard deviation; Vmin" cost function obtained 
from the discretized model; ~2(N,/3o)" estimated model reduction error based on 

N th order discretized model with the parameter estimate/3o. 
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Figure 4. Data fitting for the chromatography pro- 
cess. (a) Measurements and modelled outputs 
in test (i) and (ii); (b) measurements and 
modelled outputs in test (iii) and (iv). Note 
that measured outputs and modelled outputs 
from test (iv) almost overlap. 

5. CONCLUSIONS AND FUTURE WORK 

We have considered the problem of grey-box iden- 
tification of PDE systems in a systematic fash- 
ion. We showed that by estimating the model 
reduction error, the problem of separating this 
error from model-data discrepancies can be sig- 
nificantly simplified, which hence provides an ef- 
fective complement to pure hypothesis postula- 
tion and testing. By employing the method of 
OCMFE for mesh control, a low order ODE model 
is achieved from the discretization of the original 

PDE model while preserving the model accuracy. 
This significantly reduces the complexity of the 
identification procedure. In the future, further 
problems involved in the integration of OCMFE 
with MoCaVa will be considered, e.g., the initial- 
ization and calibration of model order and control 
parameter in the model reduction, by utilizing 
statistical tools provided in MoCaVa. 
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