
AN AGENT-BASED FRAMEWORK FOR
CONTROL OF REACTOR NETWORKS WITH

AUTOCATALYTIC REPLICATORS

Eric Tatara, Fouad Teymour, and Ali Cinar

Department of Chemical and Environmental Engineering,
Illinois Institute of Technology, Chicago, IL 60616

Abstract: Several recent studies on autocatalytic reactions in single and coupled
continuous stirred-tank reactor (CSTR) networks have demonstrated a rich spec-
trum of complex behavior. From a control systems perspective, the operating
regime of a CSTR network can be manipulated by changing the flow rates between
the reactors. Systems of more than one CSTR require multiple controllers and may
need transients through several operating regimes to achieve the desired operation.
This may require a hierarchical control structure whereby local control objectives
can change dynamically in order to achieve the global control objective of the
system. An agent-based control system is used to observe and control various
aspects of a CSTR network. The primary focus of analyzing complex emergent
behavior is demonstrating methods or combinations of methods that influence the
behavior and capabilities of the agent-based control system. Simulation studies
illustrate scenarios of interest, especially conditions that lead to emergent behavior.
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1. INTRODUCTION

The behavior of continuous stirred tank reactors
(CSTRs) has been studied extensively over the
past several decades. Fascinating static and dy-
namic phenomena have been observed for many
classes of reactions including autothermal reac-
tions, autocatalytic reactions and polymerization
reactions. The analysis of Uppal and Ray (1974)
on the behavior of a CSTR with a non-isothermal
reaction was one of the first thorough investiga-
tions of complex behavior in chemical reaction
systems, extending the initial ideas presented by
Bilous and Amundson (1955). Complex dynamic
behavior has been identified through analytical
solutions of the state equations and their stability
characteristics. Further investigation of the non-
isothermal system (Uppal et al., 1976; Farr and
Aris, 1986) using the reactor feed flow rate as a

bifurcation parameter yield even more types of
complex behavior, such as mushrooms and isolas.

The work of Lin (1981) and Gray and Scott
(1983) on the isothermal autocatalytic reaction
A+nB → (n+1)B with decay B → C show that
cubic (n = 2) and quadratic (n = 1) autocat-
alytic reactions exhibit similar behavior to non-
isothermal reactions. The solution multiplicities
include isolas, mushrooms and limit cycles. Fur-
ther work has determined how the various model
parameters affect the stability criteria and condi-
tions for multiplicity as well as more sophisticated
numerical analysis of the periodic solutions (Gray
and Scott, 1984). Birol and Teymour (2000) have
studied isothermal autocatalysis when two com-
peting species are introduced to the system. It was
shown that with N species, although there may
be as many as 2(2N − 1) steady states, only one
species can exist stably in the reactor as t → ∞.



If several identical CSTRs are connected, such
that material is exchanged between them, the sys-
tem becomes spatially heterogeneous compared
with a single CSTR. The degree of heterogene-
ity can be varied by manipulating the intercon-
nections between reactors. Taylor and Kevrekidis
(1993) have extensively studied the effects of reac-
tor coupling via numerical bifurcation techniques
on the non-isothermal A → B system. Oscillatory
states tend to synchronize when the frequency
of the oscillations in each reactor are not too
different. Weak coupling of the reactors is usually
used, since strong coupling of a reactor network
causes the network to behave as one large reactor.

Recent work on multiple reactor configurations
with cubic autocatalytic reactions has demon-
strated that spatial heterogeneity enlarges the
boundaries of species survival (Birol et al., 2002).
Furthermore, detailed analysis has shown that
networks of reactors with autocatalytic replicators
produce highly complex bifurcation structures
and that the number of steady states increases
exponentially with size of the system (Tatara
et al., 2003). With the autocatalytic reaction
scheme, larger networks permit more steady states
and spatial combinations thereof than smaller net-
works. Although much of the bifurcation diagram
is dominated by unstable steady states, there ex-
ists a number of stable steady states for a large
range of feed flow rates.

In the case of a single CSTR with competing
autocatalytic species, a nonlinear control scheme
is necessary to first remove the invading species
and then return the host species to the original
steady state (Chaivorapoj et al., 2003). Systems of
more than one CSTR require multiple controllers
and may require transients through several op-
erating regimes to achieve the desired operation.
Furthermore, when the system contains multiple
reactors, situations arise such that global control
objective can be satisfied by several different com-
binations of local control objectives. This leads to
the requirement of a hierarchical control structure
whereby local control objectives can change dy-
namically in order to achieve the global control
objective of the system.

2. REACTOR NETWORK MODEL

A network of I interconnected CSTRs is modeled
by specifying the mass balance for an individual
reactor at position i in the network, where i =
1..I. Figure 1 shows the schematic for a system of
four CSTRs. The cubic autocatalytic reaction for
a single autocatalytic species is

R + 2P k−→ 3P (1)

P
kd−→ D (2)
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Fig. 1. 4-CSTR network schematic

R is the resource concentration, P is the species
concentration, D is a dead (inert) species, k is the
species growth rate constant, and kd is the species
death rate constant.

The production rates of the resource and species
concentrations for a network of size I are

V
dRi

dt′
= −V kRiP

2
i + F (R0 − Ri)

+ G(Ri−1 + Ri+1 − 2Ri) (3)

V
dPi

dt′
= V kRiP

2
i − Pi(F + V kd)

+ G(Pi−1 + Pi+1 − 2Pi) (4)

where R0 is the resource concentration in the feed,
Ri is the resource concentration in reactor i , Pi is
the species concentration in reactor i, F is the feed
flow rate, G is the interconnection flow rate and
V is the reactor volume. The feed stream contains
only resource. The state equations can be written
in dimensionless form as

dri

dt
= −krip

2
i +f(1−ri)+g(ri−1+ri+1−2ri) (5)

dpi

dt
= krip

2
i −pi(f +d)+g(pi−1+pi+1−2pi) (6)

by redefining the variables as ri = Ri/R0, pi =
Pi/R0, f = F/(V R2

0), g = G/(V R2
0), d =

kd/R2
0, and t = R2

0t
′. For i > 3, analytical

solutions become intractable, although it should
be noted that a single trivial steady state (ri =
1, pi = 0) exists ∀i for every combination of
model parameter values. This state represents
total extinction in the system. The feed flow
rates and interconnection flow rates are treated as
manipulated variables. Constraints on the reactor
flow rates ensure that material is conserved.
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Fig. 2. Bifurcation diagram of r vs f for a 4-
CSTR bidirectional network with k = 25,
d = 0.1, and g = 0.002. Unstable steady
states are indicated with a light line and
stable steady states are indicated with a dark
line. Inset: stable steady state detail. The �
symbol represents a Hopf bifurcation point.

3. STEADY STATE BIFURCATION
STRUCTURE

The nonlinear solver KINSOL (Hindmarsh and
Taylor, 1998) is used to map the bifurcation
structure of reactor networks. The steady state
solutions are found by sweeping the bifurcation
parameter through the region of interest and using
a large number of randomized initial guesses in a
manner similar to that of Ourique et al. (2002).
Although this method is more computationally
demanding than traditional numerical bifurcation
techniques, it removes the constraint of a priori
knowledge of the steady state branches. Tradi-
tional bifurcation analysis will miss isolated so-
lution branches, unless their location is known
beforehand. Stability information is obtained by
examining the eigenvalues of the Jacobian matrix.

The steady state bifurcation diagram of r versus
f for a single species in 4-CSTR bidirectional ring
network is shown in Figure 2. The bifurcation
diagram is constructed for all possible steady state
values, thus the omission of the reactor number
subscript, i. The resource concentration steady
states in the bifurcation diagram represent those
values that can occur in an individual reactor, but
not the spatial arrangement of the steady states in
the network. The 4-CSTR bidirectional network
has two combinations of stable steady states at
low feed flow rates in addition to the steady state
of the single CSTR. The first combination (SS1)
displays three distinct steady states. The spatial
pattern consists of one high resource reactor sur-
rounded by two identical lower resource reactors,
followed by the lowest resource reactor. Reducing
the feed flow rate from SS1 results in the system
moving to a periodic regime via a Hopf bifurca-

tion. When the feed flow rate is increased from
the SS1, the network displays quasi-periodicity
and chaos. Increasing the feed flow rate further
causes the network to move to the single CSTR
periodic regime in which all reactors synchronize
to single CSTR limit cycle. A further increase in
the feed flow rate results in the nontrivial single
CSTR stable steady state (SS0).

The second reactor configuration (SS2) in the 4-
CSTR bidirectional network mimics a 2-CSTR
setup through locking neighboring CSTRs in
pairs. Note that, though two stable steady states
are possible in four reactors, the configuration is
always a pair of pairs, as opposed to alternating
high and low concentrations. Reducing the feed
flow rate from SS2 causes the system to pass
through a Hopf bifurcation point and move into a
periodic regime. If the feed flow rate is increased
from SS2, the system collapses to the nontriv-
ial single CSTR stable steady state because the
stability region of the single CSTR SS0 begins
just as the stability region of 4-CSTR network
terminates. Note that, while for the previous spa-
tial pattern of states in the 4-CSTR network, the
system could be moved to an oscillatory regime by
increasing the flow rate, in this case, the ending
and starting points of the stability region meet,
and this does not allow periodic behavior to occur.

4. CONTROL SYSTEM ARCHITECTURE

From a control perspective, reactor networks pose
a tough challenge because several different control
strategies are necessary to achieve the desired
operational goal. Intelligent supervisory control
systems (Kendra et al., 1994) adapt to changing
process operating conditions, thereby facilitating
the control of such processes. Furthermore, the
operation of highly nonlinear systems like auto-
catalytic replicator networks benefit from evo-
lutionary control because the optimal operating
regime may not be known a priori. Agent-based
control systems (Jennings and Bussmann, 2003)
provide the capability for localized and global con-
trol strategies that are both reactive in controlling
disturbances and proactive in searching for more
better operational solutions.

Software agents are an extension of object ori-
ented programming in that both agents and ob-
jects encapsulate information. The difference be-
tween agents and software objects is that agents
are semi-autonomous units that employ a form
of reasoning to negotiate with other agents -
either for self interest or that of the collec-
tive (Jennings, 2000). Multi-agent systems have
several properties that make them particularly
attractive for use with large, complex systems
(Lesser, 1999). The first, and usually most impor-



arbitration

observation

decision

reactor i reactor i+1

Fig. 3. Control agent architecture.

tant in critical systems, is a high level of reliability.
Modularity and scalability also play an important
role in multi-agent systems. Software agents often
produce different solutions to the same problem.
Solution multiplicity arises when several agents,
using completely independent methods, arrive at
different conclusions based on the presented data.
Negotiation between agents is therefore required
to resolve the situation.

The agent-based control system architecture con-
sists of several sub-systems, each of which are
highly modularized (Figure 3). At the process
level, network elements such as reactors and valves
interface with the higher level agents via low level
agents. Each reactor is monitored by an observa-
tion agent that is responsible for sampling data
requested by other agents as well as storing the
data in a history for some specified time. Data
collection occurs asynchronously with data re-
quests from other agents. Upon instantiation, the
frequency at which an observation agent samples
data from the process is set by a superior agent.
The observation agent maintains the process his-
tory and provides data to superior agents when
queried. The interconnection flow rates are ma-
nipulated by actuation agents (not shown) that
receive commands from superior control agents.

The next layer in the control hierarchy is the local
decision layer. Local decision agents are respon-
sible for monitoring control functions and proac-
tively improving the overall performance of the
network based on the control objectives of the
individual agents and the network as a whole.
Due to the number of control responsibilities of
decision agents, each agent may use sub-agents.
For example, the local control decision agent re-
quires information regarding the state of the pro-
cess. A sub-agent is therefore tasked with checking
whether the system is at steady state, on a limit
cycle, or a quasi-periodic regime.

During network operation, local decision agents
attempt to satisfy their individual control objec-
tives. An objective may be to maximize a specific
species concentration for example. However, in
most cases, a decision agent can never fully reach

it’s desired objective due to conflicts with other
agent’s control objectives. If an agent desires to
modify the interconnection flow rate between a
reactor and its neighbor in order to meet a control
objective, the adjacent reactor will be affected
as well. Naturally, disputes will arise as to the
value of the interconnection flow rates between
neighboring reactors.

Arbitration agents serve both as a communica-
tion channel between decision agents as well as
a means to resolve disputes between agents. The
arbitration agents receive requested operational
procedures from the local decision agents and
then presents a solution to them. For example,
a decision agent must maximize the species con-
centration in a reactor and attempts to do so by
manipulating the interconnection flow rate. The
decision agent sends a set of acceptable values for
the manipulated variables to the arbitration agent
which then tries to match the desired operational
values for neighboring decision agents. If the ar-
bitration agent cannot find an acceptable solution
to the control requests from two or more decision
agents, then the control move is not permitted.
Finally, supervision agents function as the top-
most layer in the control system hierarchy. This
layer is responsible for setting the desired global
operating conditions for the entire network.

Considering the nonlinearity of reactor networks,
it is difficult to predict how the bifurcation struc-
ture of the system changes when the system
parameters are manipulated. Consequently, one
cannot easily predict how to change operating
conditions of the network by manipulating the
flow rates. Decision agents are given the task of
increasing the concentration of the autocatalytic
species in their reactor by manipulating the inter-
connection flow rates between neighboring reac-
tors. Various methods may be used to guide the
decision agents in planning their control strate-
gies including dynamic exploration of the param-
eter space, rule-based heuristic models, or first-
principles based models.

Decision agents may exploit a model of the reactor
network, say by knowing the precise location of
stable branches and oscillatory regimes. For ex-
ample, the complete bifurcation structure shown
in Figure 2 would be quite valuable to the decision
agents in formulating a control strategy. However,
since the number of steady states increases expo-
nentially with the size of the system, this method
is not scalable to larger systems. An effective so-
lution is provided via rule-based heuristic models
coupled with dynamic exploration techniques.

A heuristic model of the reactor networks con-
sists of rules that describe how the manipulated
variables effect the system behavior. For example,
in the four reactor network bifurcation diagram
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Fig. 4. Non-cooperative agent control strategy

shown in Figure 2, the stable steady states oc-
cupy only certain portions of the diagram. This
information is provided to the decision agents in
the form of rules to guide their control actions.
Furthermore, the decision agents are allowed to
”probe” the system by making small, temporary
changes to the manipulated variables and observ-
ing the resulting system behavior. This dynamic
exploration provides additional flexibility to the
decision agents when the generalized heuristic
model cannot explain system behavior.

The software agents have been developed in G2
(Gensym, 2003), which is a graphical knowledge
base development environment for creating in-
telligent real-time applications. G2 provides an
excellent platform for the development of agent-
based monitoring and control systems. The ordi-
nary differential equations that describe the au-
tocatalytic reactions in each CSTR are solved
numerically using the CVODE solver (Cohen and
Hindmarsh, 1994). The solver code is written in
C and linked to the G2 agent-based system via
a custom software bridge. The reactor class def-
inition in G2 is designed such that the reactor
objects have the same attributes as defined in the
ODE model. For example, the feed rate to any
particular CSTR object is mapped to the specific
array location in the ODE solver. When the simu-
lator is initialized, the user may specify the size of
the reactor network, initial conditions and inputs.
The appropriate number of reactor objects are
automatically created by the agent-based system
and the reactor objects are modified to include
the initial conditions. The CVODE solver simply
requires the initial states and parameters to de-
scribe the system. The solver then dynamically
creates the appropriate equations internally and
returns the output to G2, where the states are
then mapped back to the reactor objects.

5. EFFECTS OF CONTROL STRATEGY

The performance of two different control strate-
gies is examined in case studies of agent interac-
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Fig. 5. Cooperative control strategy performance

tions between neighboring reactors. The reactor
network is operated initially on a stable steady
state. The control objective for the two neigh-
boring decision agents is to maximize the concen-
tration of autocatalytic species in their respective
reactors. A competitive strategy is defined by al-
lowing the decision agents to make selfish control
moves without regard for its neighbor. In contrast,
a cooperative strategy permits the neighboring
agents to coordinate their control decisions by
allowing a temporary degradation in performance
in return for a long-term performance gain.

The result of using a purely competitive strategy
on neighboring reactor concentrations is shown in
the time series charts of Figure 4. Initially the
network is located on steady state SS2 (Figure
2). The competitive control strategy used by the
local decision agents allows each to agree on a
new operating regime only if both agents see a
improvement in their reactor. As shown in Figure
4, the agents are able to improve the operating
conditions (increase in species concentration) only
slightly before the performance begins to degener-
ate once again. The control strategy gets stuck in
the parameter space and will oscillate indefinitely
unless halted by the supervision agents.

A more robust approach to this problem is to
permit the local decision agents to suffer some
performance loss, but only for a small number of
control moves. Figure 5 shows the concentrations
of neighboring reactors when the decision agents
are designed to cooperatively optimize the net-
work performance. The rules governing the arbi-
tration agent permit a decision agent to make a
control move that is detrimental to its neighbor
for only one iteration, otherwise it must return to
its previous state. This strategy proves to be very
effective at improving the network performance.
Although the performance of CSTR 2 occasionally
suffers while the performance of CSTR 1 improves
continuously, this loss is only relative to the pre-
vious move and ultimately results in a net gain in
performance for the whole network.



6. CONCLUSIONS

Interconnected networks of CSTRs with an au-
tocatalytic reaction mechanism produces highly
complex static and dynamic behavior. The extent
of the complexities in the bifurcation structure
of the system cannot be understood simply by
examining a few regions of the parameter space
and network configurations. These uncertainties
naturally result in complications in controlling the
system, either in disturbance rejection or changing
the operational regimes of the system.

The concept of agent-based control has been suc-
cessfully applied to a reactor network to improve
the overall performance of the system. The multi-
agent control system is able to explore the pa-
rameter space of the network and intelligently
manipulate the network flow rates such that the
specified goal is achieved.

Furthermore, it was shown that cooperative rela-
tionships between the decision agents provide a
more effective paradigm for improving the net-
work performance than selfish relationships. The
overall network performance is improved, despite
the fact that individual reactors may see a tem-
porary decrease in performance.
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