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Abstract: Using PCA based Bayesian Classification to monitor the real plant with 
different operated conditions is proposed.  Since the process condition s are time-variant,
as the PCA subspace cannot explain the data of new events, the PCA should be re-
performed.  In this work the method of updating Bayesian model is developed.  Only the 
data of new events are trained in the newer subspace.  The ability of PCA based Bayesian 
classification for monitoring different operat ing conditions is demonstrated using the real 
data from high-pressure polyethylene plant. Copyright © 2004 IFAC
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1. INTRODUCTION

 
A modern plant is well equipped with automation
control system.  Large amounts of operation data are 
generated and recorded.  In plant history, the data of 
different operating conditions, normal and abnormal, 
are included.  Data mining from historical data and 
finding out some of useful informat ion provide to 
operators for decision-making, especially in
abnormal situation t hat will effectively reduce plant 
accidents.  Feature extraction from amounts of
historical data is the first step of data mining.  In 
complex chemical process, the measured variables
are highly correlated with each other.  Principal 
component analysis is one of popular approaches  to 
compress highly dimensional variables to fewer
principal components (Jackson , 1991).  It is more 
efficient using extracted features for fault detection
and isolation.  Such as, Teppola et al. (1999)
monitored the waste-water treatment plant in paper 
mill using PCA and fuzzy c-means clustering.  Choi 
et al. (2003) predicted SOx and NOx from a power 
plant of steel mill through partial least square and 
credibilistic fuzzy c-means method.

Bayesian classification (Theodoridis and
Koutroumbas, 1999) is a popular method of cluster 
analysis.  Wang and McGreavy (1998)  isolated the 
different operat ing conditions of a refinery fluid 
catalytic cracking process using automatic
classification.  Chen and Liu (1999) used mixture 
PCA to detect the abnormalities in different
operating conditions.  Generally, for clustering data,
the expectation maximization (EM) algorithm is used 
for fitting the parameters of mixture model.
However, EM algorithm suffers three significant 
difficulties.  (1) Due to EM is a local maximum 
seeker; the different initial values will cause the 
different convergences.  (2) The outliers easily affect 
the searching path that results in the lack of

robustness of mixture model.  (3) Predefined the 
number of clusters is required. T ypically it needs
multiple runs with various numbers of clusters for 
cluster validity.  Ueda and Nakano (1998) proposed 
deterministic annealing EM (DAEM) algorithm in 
order to overcome the local maximum problem.
They analogised the concept of maximum entropy of 
statistical mechanics, iteratively maximized entropy 
using a “temperature” parameter to achieve a stable 
solution.  Medasani and Krishnapuram (2001)
proposed robust mixture decomposition (RMD)
algorithm retain “good” data for fitting parameters, 
reduced the effect of outliers.  There are a lot of 
criteria for cluster validation, like Akaike’s
information criterion (AIC), Bayesian information 
criterion (BIC), normalized entropy criterion (NEC) 
and so no.  McLachlan and Peel (2000)  have
compared the differences of these criteria.  In this 
work, the BIC is used to determine the number of 
clusters.

This paper is organized as followed.  The basic 
theory of PCA and Bayesian classification related 
algorithm is presented in section 2.  Section 3 shows 
the method of PCA based Bayesian classification for 
process monitoring.  Besides, the updating procedure 
of mixture model is proposed.  Applied proposed 
process monitoring method to real plant data from 
high-pressure polyethylene plant is demonstrated in 
section 4.  Finally the conclusions are given in
section 5.
 
 

2. BASIC THEORY
 
2.1 Principal Component Analysis
 
The concept of PCA is linear combination of
variables to perform a subspace. The dataset can be 
represented by less principal components or latent 



variables. Therefore,  numbers of variables are
reduced, and meanwhile data are explained properly.

Considered the data matrix ×m nR∈Y  with m  rows 
(observations) and n columns (variables), and each 
column are normalized to zero mean and unit 
variance.

( ) 1−= −X Y Y S (1)

where Y  is a mean vector and S  is a diagonal matrix 
of standard deviations.  The eigenvectors of
covariance matrix and t he score vectors are
performed as followed.
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where iλ  are the eigenvalues associated with

eigenvectors ip  and arranged in descending order.
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The data matrix X is  divided into two parts, systemic 

part X̂  and residual part E.  As the first K  terms of 
components can explain data matrix properly, i.e. 

ˆ≈X X .  The numbers of dimensions of data matrix 
are reduced from n to K.

There are amount of researches using PCA for fault 
detection (Russell et al. , 2001).  The main concept is 
building PCA subspace via normal operating data 
from plant.  In the on-line monitoring stage, the 
residuals of the new data x can be calculated from Eq. 
3.  The statistic Q is defined:

$( ) $( ) ( )T
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The loading vectors ×m K
K R∈P  are the first K  terms 

of eigenvectors of covariance matrix.  Statistic Q  is a 
measure of the approximated error.  The confidence 
limit of Q is defined as followed:
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The percentile α  is the probability of Type I error in 
hypothesis testing and cα  is the normal deviate 
cutting off an area of the α  upper tail of normal 

distribution.  Another measuring difference between 
new data and the subspace of PCA is statistic T2.

2 1 T T
K KT −= xP ? P x (6)

The diagonal matrix ?  is K terms of eigenvalues.
The confidence limit is defined:
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where K,m-1,F α  is the F distribution with degrees of 

freedom K and m-1. In this paper, statistic Q and T2

are used to verify the score vector can represent the 
new data or not.  If not, using score vector for 
classifying will possibly result in misclassification.

2.2 Bayesian Classification

Given a classification task of c classes, the priori 
probabilities are 1jP , j ...c= .  The joint probabilities 

density functions of x i and class j are ( )ip , jx .  Then, 

the conditional probability density functions of x i in 
class j are:

( ) ( )i i jp j; p , j P=x ? x (8)

where ?  are the parameter vectors of conditional 
probability density functions.  According to total 
probability theorem, the probability density functions 

of xi are ( ) ( )
1

c
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probabilities can be gotten from Bayes rule.
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Here P  are vector of priori probabilities, not the 
loading vector of PCA.  If the parameters of
conditional probability density functions and priori 
probabilities are known, the posteriori probabilities 
can be obtained from Eq. 9.

Expectation-Maximization Algorithm . T he
expectation maximization algorithm maximizes the 
expectation of loglikelihood function.  The two steps 
of EM algorithm are:
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where ( )tT  are the parameters at the tth step of 

iteration.  The posteriori probabilities ( )( )iP j ; tx T

can be obtained from Bayes rule.

M-Step:
Comput e the next estimat ing parameters through
maximizing the expectation of loglikelihood function.
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Take a multivariate Gaussian probability density 
function as an illustrated example:
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where jµ , jS  are the mean vector and covariance 

matrix of the jth class.  Using Lagrange multipliers 
the iterative steps can be derived:
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The fitting vector of parameters T  can be obtained 
by repeating E and M steps until

( ) ( )t 1 t+ − ≤ εT T , ε  is  the properly convergence 

criterion.

Deterministic Annealing EM Algorithm  In general, 
the initial values of parameters ( )0T  are randomly 

selected, the posteriors  are not reliable in early stage 
of the iteration.  Relatively mislead the direction of 
seeking solution.  However, the fitting parameters 
will be easily trapped into local maximum.  Ueda and 
Nakano  (1998) proposed deterministic annealing EM 
algorithm to resolve this problem.  They introduced 

another posterior ( )( )iF j ; tx T :
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In a special case 0β = , the posterior is a uniform 

distribution unaffected by initial value of parameters.
In another case 1β = , the posterior reduces to the 

original posterior.  The β  increases from 0 to 1, that 

means the posterior changes from a uniform
distribution to original posterior.  This procedure 
analogises to simulated annealing, 1 β  is like the 

“temperature” of annealing.  They add a β -loop on 

the EM -steps and replace posterior by Eq. 16.

The DAEM algorithm can be derived.
1. Setting initial value of β , 0β ≈ .

2. The best solution of βT  can be obtained by 

iterating EM -steps until convergence.
3. If 1β < , increasing β  and setting initial value of 

parameters through βT  of step 2.  Repeat from 

step 2 until 1β = .

Robust Mixture Decomposition Algorithm Although
the DAEM can overcome the local maximum
problem, the outliers still affect the solution of
DAEM.  Unfortunately, outliers are unavoidable in 
real plant data. To resolve this difficulty, Medasani
and Krishnapuram (2001) proposed the robust
mixture decomposition (RMD) algorithm.  They 

argued that the value of ( )ip x ?  of the outlier ix

would have a low value when ?  is correctly
estimated. Therefore, they trimmed a fraction of the 
data by sorting probability functions for each ix , i.e.

( ) ( ) ( )1 2 mp p p≥ ≥ ≥x ? x ? x ?L before each EM iteration,

retain the first r terms of data for fitting parameters.
That will effectively reduce the influence of outliers.
The retention ratio (r/m ) can be estimated from the 
data quality, or be included as one of the parameters 
to be optimised.  The  smaller retention ratio may 
underestimate the covariances, but can stabilize the 
solution for fitting parameters.

Bayesian Information Criterion Using the fitting
parameters T  approximate the expectation of
loglikelihood.  T he BIC is defined as:

( ) ( )2c cBIC Q ln m= − × + νT (17)

where cν  is number of fitting parameters.  However, 
maximized the expectation of loglikelihood is to
minimize BIC. Using multiple runs with various 
numbers of parameters can decide the number of 
cluster from the minimizing BIC.
 
 

3. PCA B ASED  BAYESIAN CLASSIFICATION

The PCA based Bayesian classification is to find out 
the clusters of different operat ing conditions using 
score vectors.  Firstly, the subspace of PCA can be 
constructed from plant data.  The highly dimensional 



variables can be effectively reduced t hat will
simplify the Bayesian model and depress the
computing time of fitting parameters. In order to 
obtain the reasonable clusters, the score vectors of 
historical data are clustered through combination of 
DAEM and RMD algorithms in this work.  However,
the operating conditions of real plant  are time-variant.
As new data cannot be explained by existed subspace,
the subspace should be reconstructed from all of data. 
It is more consistent  using one PCA subspace
describes the whole dataset than multiple PCA
subspaces.  Besides, since the new data don’t belong 
to the existed subspace that must be independent
with existed classes.  Therefore, only t he data of new 
events are cluster ed on the newer subspace, the 
trained dataset don’t need to be performed clustering
again. The method of updating Bayesian model is 
proposed; the Bayesian model of the previous
subspace can be updated to the newer subspace.

3.1. Fault Isolation

The statistic Q and T2 of on-line data can be
conducted from Eq. 4 and Eq. 6.  As Q Qα>  or 

2 2T Tα> , indicate the new event has occurred,

existed PCA cannot explain the new data properly.
The subspace of PCA should be rebuilt.  On the other 
hand, Q Qα<  and 2 2T Tα< , the score vectors of on-

line data are used for calculating the posteriors 
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=
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used to identify the on-line data belonging to which 
operated condition has happened. If t he posteriors 
are evaluated using score vectors without verify  the 
on-line date can be explained by existed subspace,
that could result in misclassifying the operat ing
condition, since the new data might  not belong to the 
existed subspace. 

3.2. Scheme of Updating Bayesian Model

Adding the data of new events to the original data 
matrix, the total number of data is added from m  to 

m*.  The data matrix ×* m * nR∈Y , *T T T
new

 =  Y Y Y ,

is normalized to ( )** * * 1−= −X Y Y S .  The mean 

vector and diagonal matrix of standard deviation are 
*

Y  and *S .  The first K* ( *K K≥ , the original 

number of PCs) terms of loading vectors *P  and 
correspondingly score vectors *T  can be determined 
by 0* ≈E .  Since the original dataset can be
explained by both of subspaces.

*T * *T *≈ + ≈ +Y Y tP S Y t P S (18)

Besides, the values of conditional probability density 
functions should be equalized on both subspaces .

For example, the conditional probability density
functions of score vectors in the jth class is:
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On both of subspaces, the exponential part s have to 
be equalized.

( ) ( ) ( ) ( )T T1 1* * * * *
j j j j j j

− −− − = − −t µ S t µ t µ S t µ (19)

The new parameters of conditional probability
density functions can be obtained.

( )1*
j

− += − ∆µ µ yS P A (20)

T*
j j

+ +=S A S A (21)
*T * 1−=A P S S P (22)

where defines
*

∆ ≡ −y y y , +A  is the pseudo inverse 

of A, and updated priors are * *
j jP m P m= × .

Through Eq. 20 to Eq. 22, the previous Bayesian 
model can be updated to the newer subspace.

4. EXAMPLE

This polyethylene plant is in Taiwan, there are five 
different operation lines; produce HDPE, LDPE,
linear LDPE and so on.  In this work the high-
pressure process is studied, the operating conditions 
are more than 20 different grades in this process.
The high purity ethylene (FI -001 in Figure 1) mixed 
with recycled gas before entering primary
compressor, the amount of different modifiers (FIC-
003 and FIC-004) will be added via the recipe.  The 
pressure through secondary compressor (FI-002) is
around 1500~2000 kg/cm 2-g.  There are several 
reacted zones in reactor; the initiators maintain the 
temperature profile.  The positions of temperature 
controllers (TIC-001, TIC-002 and TIC-003) are
located closely on the top, middle and bottom of the 
reactor.  The most important product quality is melt 
index (MI) that is significantly affected by
temperature profile and pressure in reactor.  The 
pressure is regulated by PIC-001 through the under 
flow of reactor.  The mixture of polyethylene and 
unreacted gas will be flashed in two stages.  Firstly, 
the higher-pressure gas is recycled to the entrance of 
secondary compressor from the top of high -pressure
separator. Almost all of polymer and rest  of
unreacted gas will flow to extrusion hopper.  PE w ill
be pumped to extruder from bottom of extrusion 
hopper; the lower-pressure gas is recycled to the 
entrance of primary compressor from top of
extrusion hopper.  The reaction conversion is only 
around 10~15%, the most of unreacted gas
continuously recycle in this process.  The byproducts 
will be accumulated until the product quality is out of 
control limit and operator will be notified to purge 
recycled gas from FIC-006 by operator experience.



Fig. 1: Process flow diagram of high-pressure
polyethylene plant

In this work, the reactor condition monitoring is 
focused.  Not only the melt index is influenced by 
the reacted condition, but also this exothermic
reaction is easily run away  with slightly unstable
temperature control .  Besides, the pressure of reactor 
is higher than 1500 kg/cm2-g, that is a most
important issue to monitor the operat ing condition of 
reactor in this plant.  The plant data have been 
collected every 5 minutes for a month.  The data of 
shutdown has been trimmed, the training set contain 
8928 data for fitting the parameters of Bayesian 
model.  Thirteen process variables are collected,
including three temperatures, respectively flow rates 
of initiators and the pressure in the reactor.  Besides, 
the flow rates of two different modifiers, the top flow 
rate of extruder hopper and the other flow rates 
including purge, fresh ethylene, and secondary
compressor.  There exist seven different production 
grades in training dataset.  The temperature profile 
and pressure for each grade are shown in Figure 2,
the production grades are labelled from grade #1 to 
#7.  For confidential concerned the process values 
are hidden, noteworthily the temperature difference
can be greater than 70 degree C between different 
grades, such as grade #1 and #6.  The variation of 
operating condition will  be taken into account for 
production scheduling; in order to avoid the run 
away reaction will be caused as the transition of 
grades.
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Fig. 2: Reactor temperatures and pressure for 
different grades.

Defined the subspace of PCA from plant data, the 
four principal components explain 90% of total
variances.  Due to the outliers of raw data, the 

retention ratio of RMD is set 0.8.  In this example, 
the initial value of β  in DAEM is  set to 0.2 and the 

iterative procedure with new old1 5.β = ×β  until 1β = .

The 9 clusters are determined with the minimizing
BIC.  The clustering result projected to the first two 
PCs is shown in Figure 3.  Since the operat ing
conditions of grade #1 and #2 are similar, those data 
share with the cluster C1&2.  The data of grade #3 
and #5 look like overlapped, but in the second and 
third PCs those data can be well separated.  In the 
grade #4, there nearly exist two clusters C4_1 and 
C4_2.  Consult with the expert of the plant; it is due 
to the different sources of ethylene feed.  The purity 
of ethylene is slightly varied from different upstream 
vendors. That will cause the byproducts are easily 
accumulated as a little of impurity in feed ethylene.
The operator w ill maintain the purity of recycled gas 
through purging the recycled gas.  That is the reason 
of the different operated conditions in the same grade.
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Fig. 3: First and second score vectors of trained data, 
and 9 clusters.
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Fig. 4: The statistic Q and T2 of the new data.

The new data are collected after training dataset  the 
period is also one month.  The dataset includes 
lasting data of grade #7, a new grade labelled #8, and
grade #1, #4 have appeared in the training dataset.
Before using the score vectors of PCA for
classification, the statistic Q and T2 of the new data 
have to be verified.  In Figure 4, the statistic Q and T2

of the new data for grade #7, #4 and part of #1 are 
within control limits.  The data of grade #8 and 
leading part of grade #1 cannot be explained by 
existed subspace. Since grade #8 is a new event, it is 



reasonable for PCA cannot explain these data.  The 
melt index of grade #8 is much lower than grade #1; 
the ratio of two melt indexes is around 0.01.  For the
lower MI the impurity of recycled gas must be as less 
as possible. Therefore, the higher MI can suffer 
more impurity. Since that  operator will not purge 
recycled gas in the transition from the lower MI to 
higher MI until the impurity reach the tolerable limit.
It is the reason that the data of leading part of grade 
#1 cannot be explained by existed subspace.

Project the data can be explained by PCA to the 
subspace, the first two of score vectors are shown in 
Figure 5.  That conform the previous result of the 
cluster. In order to include the new events, the 
training data set is added the data of new events.  The 
subspace of PCA is reconstructed; the first 5 PCs 
explain 94% of total variances.  Only the data of new
events need to be clustered in the new er subspace.
The clusters C8 and C1_2 can be gotten through 
DAEM and RMD algorithms.  The previous
clustering result  can be updated to the new subspace 
using the proposed method described in section 3.2.
In Figure 6, the clustering result  in the new subspace 
is shown.
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Fig. 5: On-line isolating the new data belonging to 
existed subspace.
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Fig. 6: Updating classified model and new clusters, 

C8 and C1_2.

5. CONCLUSIONS

The proposed method is successfully applied to the 
high-pressure polyethylene process monitoring.
There exist several operating conditions for different 
grades in this process. Before using score vectors of 
PCA for on-line monitoring, the statistic Q  and T2

must be verified by hypothetically testing. As the 
data of new events cannot be explained  by existed 
subspace, the newer subspace will be reconstructed 
by all of data for covering all of events.  In the newer 
subspace, only the data of new events are clustered 
with DAEM and RMD algorithms.  The number of 
clusters is determined through minimizing BIC.  The 
previous clustering result can be directly updated to 
newer subspace with proposed method.  Besides, the 
physical meaning of each cluster should be identified.
Consult with the expert of plant or find out through 
operator log will be helpful to recognize the root 
causes.
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