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Abstract: In this article the benefits of process monitoring are discussed. The different 
aspects of data-based monitoring methods and their combinations are reviewed. The role 
of process indicators is discussed, and the concept of combining a monitoring method 
library with the process indicators is presented. Finally, the benefits of process indicators 
and monitoring method hybrids are demonstrated with five industrial process monitoring 
applications created by the Laboratory of Process Control and Automation, Helsinki 
University of Technology. 
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1. INTRODUCTION 
 
 
Increasing international competition in the process 
industries is emphasizing the importance of product 
quality management; the quality of production is 
increased by better monitoring and control of the 
processes. According to several studies, inadequate 
management of abnormal situations causes annual 
losses of 20 billion dollars for the petrochemical 
industry in the USA. This, together with many other 
similar estimates, has led to extension of the field of 
diagnostic methods during the last decade. Since then, 
hundreds of successful applications of different 
monitoring methods have been reported. Diagnostic 
methods have proved to be useful and effective in 
industrial use, for instance in the chemical, mineral 
and metal, pulp and paper industries. Online process 
monitoring with fault detection can provide stability 
and efficiency for a wide range of processes. The 
current challenge is the automation of abnormal event 
management using intelligent systems, thereby 
providing operators with assistance in the most 
pressing area of need. This has also been viewed as 
the next major milestone in control systems research 
by the people working in the process industries. 
(Lennox and Sandoz 2002) 
The diagnostic methods can be divided into model-
based and data history-based methods. In the model-
based approaches a priori knowledge about the 
process is needed, whereas in process history-based 
methods only the availability of a large amount of 
historical process data is the limiting factor. 
 

 
 
 
The problem in model-based monitoring methods is 
that it is not always possible to construct dynamical 
process models that describe the process to an 
adequate degree of precision. Therefore most of the 
industrial applications are process history-based 
methods. The process history-based approach often 
lacks the ability to capture the process features and, in 
order to achieve good results, complex methods are 
required when using direct process measurements. 
There are two ways to complement the weaknesses of 
the data-based monitoring methods. First, different 
monitoring methods possessing the desired properties 
can be combined, and secondly, the data-based and 
model-based approaches can be combined using 
process indicators as the variables of the monitoring 
applications.  
In the following chapters the different monitoring 
methods and process indicators are discussed. A 
concept in which these two approaches are combined 
in advance in order to develop an operator support 
system is then presented, and finally some industrial 
cases using this concept are briefly reviewed. 
 
 
 
2. COMBINING MONITORING METHODS 
 
 
According to Dash and Venkatasubramanian (2000), 
diagnostic methods can be divided into model-based 
and process history-based methods, as shown in 
Figure 1. A fundamental understanding of the 
functionality of the studied process is necessary for 
model development in model-based methods. The 

     



process history-based approach, which is especially 
suitable for process monitoring purposes, requires a 
large amount of data in order to capture and model 
the features of the process. The history-based models 
can be subdivided into qualitative and quantitative 
models. The basis of qualitative models consists of 
rule-based and trend modeling methodologies, 
whereas the quantitative methods are divided into 
statistical and non-statistical, neural networks based 
on pattern recognition models (Venkatasubramanian 
et al. 2003). 
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Fig. 1. Categories of the diagnostic methods. (Dash 
and Vankatasubramanian 2000) 
 
Common features of the statistical methods used are 
their ability to reduce correlations between variables, 
compress data, and reduce the dimensionality of the 
data. These characteristics enable efficient extraction 
of the relevant information and analysis of the data. 
The most important statistical monitoring methods are 
based on principal component analysis (PCA) and 
partial least squares regression (PLS) (Wold et. al. 
2001). Dynamic methods of PCA and PLS consider 
the dynamic nature of the monitored process and 
analyze both cross-correlation and auto-correlation. 
The dynamic methods are especially suitable for 
continuous processes with long time delays and 
varying throughputs on process variables (Ku et al. 
1995, Chen et. al. 1998). Recursive methods for PCA 
and PLS have been proposed by Li et al. (2000) and 
Qin (1998). The recursive methods are especially 
suitable for time-dependent processes with slow 
changes. Multi-scale principal component analysis 
(MSPCA), a combination of PCA and wavelet 
analysis, removes the autocorrelations of variables by 
means of wavelet analysis, and eliminates cross-
correlations between variables with PCA (Misra et al. 
2002). The method is suitable for processes with auto-
correlated measurements and time-varying 
characteristics. Nonlinear principal component 
analysis (NLPCA) is a combination of neural 
networks and PCA. Dong and McAvoy (1996) 
proposed an NLPCA method, which integrates a 
principal curve algorithm and neural networks. The 
idea of this method is to fit curves instead of lines to 
the data with the help of a feedforward network.  

Neural network architectures are usually divided into 
three categories: feedforward, feedback and self-
organizing networks. Neural networks are the most 
applicable to classification and regression problems, 
which do not need perfect precision. The availability 
of large amounts of data is especially important. 
The self-organizing map, introduced by Kohonen 
(2001), is an unsupervised neural network that has 
been compared to NLPCA, because it adapts to the 
structure of the data, and the weight of the neurons 
tends to set the densest regions of the data and form 
an approximation of a curve fitted to the data. A 
neural net based on adaptive resonance theory differs 
fundamentally from a self-organizing map in the fact 
that the size and shape of the map are not determined 
beforehand. The ART map has many modifications, 
including combinations of ART maps, like ART3 and 
ARTnet, and hybrids of ART maps and fuzzy logic in 
fuzzyARTMAP (Wienke et al. 1996, Rallo et al. 
2002). Radial basis function networks, introduced by 
Leonard and Kramer (1991), fit input data to radial 
basis functions, whereas traditional feed forward 
networks usually compare input signals to data 
vectors. RBFN is suitable for fault diagnosis. 
Wavenets are combination of wavelets and neural 
networks with hierarchical multiresolution learning 
(Bakshi and Stephanopoulos 1993). This type of 
neural network is especially suitable for low-
dimension dynamic fault diagnostic problems. (Zhao 
et. a. 1998) 
Since no single method has all the desirable features, 
combinations of the methods have become more 
common in monitoring applications. The wealth of 
different monitoring methods is stunning, and 
selecting suitable methods for industrial problems 
requires plenty of time and considerable resources. 
These facts have lead to a situation in which the 
industrial applications far too often rely on mature 
methods instead of more sophisticated new 
approaches. Therefore, a systematic approach for the 
method choosing process would be necessary. In 
Table 1 some of the statistical, neural network and 
hybrid methods are compiled and their theoretical and 
practical aspects are compared. Compiling an open 
source extended table of monitoring methods might 
increase the applications of new monitoring methods 
in the industry. The theoretical aspects listed are fault 
detection and diagnostic abilities, robustness to 
missing measurements etc., immunity to signal noise, 
accuracy of the results, small amount of modeling 
data required, capability to handle multivariable data, 
amount of pre-processing required, and the dynamic, 
trend separation, nonlinear and adaptive properties, 
and finally an ability to detect novel states. The 
practical aspects of usability in industrial applications 
are: ease of implementation, ease of maintenance, 
visuality and simplicity of computation. 
 
 
 

 
 
 

     



Table1: The qualities of different monitoring methods. 
Theorethical aspects Usability
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STATISTICAL METHODS
PCA principal component analysis x - x x x x x x - - - - - x x x x
PLS partial least squares x - x x x x x x - - - - - - x x x
DPCA/PLS dynamic x - x x x x x x x - - - - - - - x
RPCA/PLS recursive x - x x x x x x - x - x x x x x x
NEURAL NETWORK METHODS
SOM self-organizing map - x x x - - - x - - x - - x - x -
RBFN radial basis function - x x x - - - x - x - - x x x x
Wavenet wavelet+neural network - x - x x - - x x x x - - - x -
ART-NN adaptive resonance theory - x - x - - - x - - x x x x x x x
HYBRID METHODS
NLPCA/PLS nonlinear x - x x x - - x - - x - - - - x -
MSPCA/PLS multi-scale (wavelet) x - - x x - - x x x x - x - - x -
DNNPCA/PLS dynamic, nonlinear x - x x x - - x x - x - - - - - -
FuzzyARTMAP fuzzy logic + ART - x x x - - - x - - x x x - x x -  
 
 
 
3. COMBINING PROCESS INDICATORS WITH 
MONITORING METHOD LIBRARY 
 
3.1. Process indicators 
Model-based approaches are more suitable for 
capturing the basic characteristics of industrial 
processes than pure data-based methods using direct 
process measurements. Since it is often impossible to 
construct dynamical or mathematical models to the 
desired precision, data-based (process history based) 
methods are usually used. The nonlinearities and 
dynamical properties of the processes lead to the 
development of methods of ever-increasing 
complexity, while a combination of model-based and 
data-based methods would result in simpler 
computing and better understanding of the method. 
Relatively little research is being carried out on how 
to identify the right variables for process history-
based methods and how to capture the essence of 
process knowledge. 
The approach used here is based on process 
indicators, which are modeling process 
characteristics. The process characteristics can be 
captured by means of model-based computed 
variables that approximate, for example, enthalpy or 
the mass balance, and variable relations such as 
differences between temperatures or flow 
measurement ratios. The use of variables that are 
suitable combinations of measurements are better able 
to capture process non-linearities than complex 
monitoring methods. This ability obviously improves 
the identification capabilities of most data-based 
monitoring methods. 
 
 

 
 
 
 
 
 
These process indicators have to be designed 
separately for every process, but the idea is 
universally applicable. Modeling the process 
nonlinearities with simple relationships and 
combining these with production goal specific 
indexes provides better understanding of the overall 
process. 
 
3.2. The combination concept 
The idea is to construct a general scheme of a 
combination of the monitoring method library and the 
process indicators, and to use these modules when 
constructing a monitoring application for a specific 
process, as shown in Fig. 2. 
The monitoring method library module consists of the 
data-based monitoring methods and the table of 
theoretical and practical aspects of the methods. The 
process indicators module consists of higher level 
modeling rules for developing process characteristic 
indicators. 
For the target process, the suitable monitoring 
methods and their hybrids are first chosen on the 
basis of the table of method properties. Then, the 
process characteristics are specified and modeled. 
Finally, these are combined together in advance to 
develop a monitoring application that is a part of the 
advanced operator support system of the plant. 
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Fig. 2. Combination of process indicators and 
monitoring method library. 
 
 
 
4. INDUSTRIAL EXPERIENCES 
 
 
In this chapter the industrial applications, which have 
led to the development of the concept described 
above, are presented briefly. In the applications, 
monitoring methods with computed variables 
describing the process characteristics, have been used. 
The applications were done by the Laboratory of 
Process Control and Automation, Helsinki University 
of Technology in collaboration with industry. The 
application areas are refining, metals and minerals, 
and the pulp and paper industries. First, the online 
monitoring system developed for dearomatization 
process, is described and discussed in more detail. 
Then, the other applications are briefly described. 
 
4.1. An online monitoring system for dearomatization 
process 
Komulainen et. al. (2003) have described an online 
monitoring system for a dearomatization process. The 
aim of the monitoring system was first, to classify the 
process state, second, to detect whether the flash point 
and distillation curve analyzers were working 
correctly, and third, to provide a reliable prediction of 
the analyzer measurements. The application used 
dynamic PLS with the input combination of direct 
process measurements and process indicators. 
The purpose of the dearomatization process is to 
remove aromatic compounds from the feedstock by 
hydrogenating them in a continuous process. The 
process consists of two trickle-bed reactors with 
packed beds of catalyst, a distillation column, several 
heat exchangers and separation drums and other unit 
operations. 
Due to the complex, strongly nonlinear, nature of the 
process, a nine-stage systematic approach was 
introduced for the development of the online 
monitoring system. First, the direct process variables 
that affected the flash point and distillation curve of 
the product were determined, and the selected 
variables were then time-lagged. Next, process 
indicators were identified and the corresponding 
computed variables were created on the basis of the 
time-lagged, direct process variables. The 
combination of direct process variables and computed 
variables with the strongest influence on the flash 
point and distillation curve, was then selected. After 

the combination of variables had been created, the 
most suitable method for monitoring proved to be 
dynamic PLS. Different models for monitoring were 
developed and tested. The offline test was performed 
with the most suitable models. When the results of the 
offline tests were satisfactory, an online-monitoring 
system was developed and tested. Finally, the results 
of the online test were analyzed. 
The process variables affecting the analyzer variables 
were selected on the basis of process knowledge and 
correlation analysis. The selected variables included: 
temperature measurements from reactors and 
distillation column, direct and recycle flow 
measurements from several points of the process, 
pressures and their set points, level measurements, 
and temperature difference and enthalpy from the 
reboiler of the column. 
The process indicators were identified from the basic 
equations of the dearomatization process. The 
characteristics of the distillation especially were 
investigated, because distillation has a strong effect 
on the flash point and the initial point of the 
distillation curve. Based on the selected process 
indicators, the computed variables were constructed 
from 36 time-lagged process measurements as 
follows: 
- The heat generated in the reactors, and the 
heat divided by the flow of the fresh feedstock to the 
first reactor. 
- Several temperature differences in the 
reactors and the distillation column. 
 - Flow ratios were determined between feed to 
the process, feed to the distillation column, distillate, 
reflux, and product. 
- Variables describing enthalpy were 
represented by simple products of the flow rate and 
temperature. Instead of direct enthalpies, the enthalpy 
ratios, i.e. one enthalpy variable divided by another, 
were used. 
- The enthalpy ratios for the distillation 
column were computed between: feed, distillate, 
reflux and bottom product 
- The process measurement describing the 
enthalpy of the reboiler, divided by the flow of the 
feed to the column, was also calculated. 
A total of 23 computed variables were created. The 
combination of direct process measurements and 
computed variables was formed on the basis of the 
correlations between the variables and the analyzer 
variables. The final combination contained 21 direct, 
time-lagged, process measurements and 23 computed 
variables, which were constructed from the time-
lagged process measurements. 
Choosing the most suitable monitoring method the 
following requirements were specified; The method 
should be able to handle several dozen variables and 
the output of the method should give accurate 
predictions of the analyzer values. The method should 
be able to distinguish between process transitions at 
feedstock changes, and the process and analyzer 
faults. The method should also be able to distinguish 
between malfunctions of the analyzers and process 
faults as early as possible, and to give the operator an 

     



alarm. A method that could be applied online and 
based on process history was preferred. 
The need for precise prediction ruled out neural nets. 
The clear relationship between process and computed 
variables, and the quality variables of the product, led 
to the use of PLS-based methods. Owing to the 
dynamic nature of the process, dynamic partial least 
squares regression (DPLS) was selected. DPLS 
fulfilled all the requirements, and the relationship 
between the process variables and the analyzer 
variables made the structure of the method very 
simple. 
The time-lagged direct process variables and the 
computed variables formed the input block, and the 
output block consisted of the analyzer variables. The 
predictions of the analyzer variables were made using 
the input block. The residuals between the predicted 
and the real analyzer values indicated whether the 
analyzers were functioning correctly. A possible 
process fault was detected by measuring the Hotelling 
T2 value of the input block.  
The effectiveness of the computed variables was 
tested by constructing two DPLS models with the 
original 35 process variables and comparing the 
results of these models to the results of the DPLS 
model with computed variables. The teaching data set  
was the same for all the DPLS models. Testing data 
set included only data from normal process state. The 
DPLS model with computed variables had 5 latent 
variables, and the DPLS models without computed 
variables had 3 and 5 latent variables. The results 
with computed variables are excellent for all the 
analyzer variables where as the models without 
computed variables fail to classify the normal states 
correctly for distillation curve variables (Table 2).  
During normal process states, the DPLS model with 
computed variables was used to predict the quality of 
the final product. The results of the offline test were 
encouraging; 96 – 99 % of the normal states and 67 – 
97 % of the fault states of the analyzers were 
classified correctly. An online monitoring system was 
developed and tested in the Naantali Oil Refinery, 
Finland, for a time period of 144 hours. The 
monitoring system classified the two feed type 
changes correctly as normal states, and gave an alarm 
for an abnormal process state during the disturbance. 
 
Table 2: Comparison of the results with and without 

computed variables 
   
        With CVs Without CVs Without CVs 
Latent variables 5 5 3   
Captured variance 
Process var. 88.3 % 89.7 % 77.6% 
Analyzer var 99.7 % 99.8 % 98.0 %  
Correctly detected normal states 
Flash point 100 % 96 % 100 % 
Distillation 0% 99 % 0 % 1 % 
Distillation 5% 100 % 0 % 59 % 
Distillation 10%      100 %       3 %            95 %  
 
 
 

4.2. Other industrial applications 
Kämpjärvi et al. (2003) developed an online 
monitoring system, which used a combination of 
PCA, SOM and RBFN to detect and identify faults. 
The inputs of the system consisted of direct process 
measurements and process indicators. The process 
indicators included relationships between the process 
variables and model-based computed variables. The 
main task of the system was to determine when the 
composition measurements of the online analyzers 
could be relied on for automatic control purposes. 
The system was successfully tested online at the 
Borealis ethylene plant in Porvoo, Finland. The 
system classified correctly 99,6 % normal states and 
77,0 % fault states. 
An application of SOM for monitoring the 
Outokumpu Harjavalta flash smelter was described by 
Jämsä-Jounela et al. (2003). The system detected 
equipment malfunctions and monitored process states 
using SOM in conjunction with heuristic rules. 
Model-based computed variables had a decisive 
influence on the success of the application. 
Laine et al. (2000) reported an operator support 
system for ore type identification in the Hitura Mine, 
Finland. The monitoring system used SOM for on-
line identification of the feed ore type and a 
knowledge database that contained information about 
how to handle a determined ore type. The key for the 
successful implementation was the right selection of 
variables for the ore type determination. The results 
of the project were remarkable, a commercial product 
and several industrial implementations. 
Rantala (1999) developed a supervisory process 
monitoring system for the electrolytic refining of 
copper. This process is characterized by exceptionally 
large time constants and strong correlations between 
the variables. The monitoring application was based 
on a combination of principal component analysis and 
a self-organizing map. The classification ability of the 
monitoring system was excellent. The conditions 
producing high and poor quality copper cathodes 
were clearly separated in the SOM. 
A combination of PLS and computed variables has 
also been applied successfully to pulp quality control. 
 
 
 

5. CONCLUSIONS 
 
 
Choosing the most suitable monitoring methods and 
the correct combination of direct process 
measurements and process indicators play an essential 
role in the successful development of an industrial 
process monitoring system. The challenge is to 
develop a comprehensive monitoring method library 
and a tool with the ability to choose the most suitable 
methods given the process description. Having the 
right method is, however, not enough; the process 
characteristics also have to be taken into account. 
There are already many applications that employ the 
approach of computed variables modeling the process 
characteristics, but the research in this field is 

     



minimal. The process indicators as a part of the 
supervisory process monitoring system is now under 
research in the Laboratory of Process Control and 
Automation, Helsinki University of Technology. 
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