
PREFERENTIAL ESTIMATION VIA TUNING

OF THE KALMAN FILTER

L. Bodizs, B. Srinivasan and D. Bonvin

Laboratoire d’Automatique
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Abstract: Estimation problems have been traditionally formulated so as to min-
imize the estimation error of the full state vector. However, in applications that
involve the tracking of only a few unmeasured variables, it is sufficient to limit the
attention along certain directions in state space. This way, it is hoped that better
accuracy can be obtained along the desired directions, possibly at the cost of poorer
estimates along the other directions. This problem, termed preferential estimation,
is formally formulated in this paper as a least-squares minimization problem.
Using calibration measurements of the preferred variables, the above mentioned
problem is solved numerically via tuning of the Kalman filter. The approach is
illustrated in simulation on the optimization of a penicillin fermentation process,
where preferential estimation is used successfully to reduce the error in tracking a
single unmeasured variable, the substrate concentration.
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1. INTRODUCTION

State estimation is an important topic within
the theory of dynamic systems (Maybeck, 1979;
Brown and Hwang, 1992). State estimation is a
necessary component of sophisticated monitoring
and control techniques since they typically re-
quire information that is too expensive or impos-
sible to obtain from direct measurements. Esti-
mation attempts to reconstruct the needed in-
formation from the available measurements and
prior knowledge in the form of a dynamic model
(Dochain, 2003; Doyle, 1998).

Traditional estimation techniques estimate the
full state vector, and the main issues are how
good these estimates are in terms of bias and
variance (Chui and Chen, 1987). The reason for
estimating all the states is due to the close link
between the estimation theory and the full-state
feedback literature. However, information on all
the states is not always needed, especially when

the objective is to track only a few unmeasured
variables.

For cases where only some of the state variables
have to be estimated, reduced-order estimators
have been proposed in the literature. The order
of such estimators typically corresponds to the
difference between the system order and the num-
ber of measurements (Luenberger, 1979). These
techniques have been applied succesfully to chem-
ical reactors (Soroush, 1997) and utilized for in-
ferential control purposes (Doyle, 1998). The main
drawback is that the reduction in the number of
variables to estimate is generally not significant,
due to the small number of measured variables.

More important reduction in the order of the esti-
mator can be achieved through projection meth-
ods (Marquardt, 2001). These methods rely on the
fact that the most important characteristics (for
a specific purpose) of the dynamics of a complex
system can be described by the dominant sub-



space. Thus, the system can be described by a
dynamic model whose dimension is equal to that
of the dominant subspace. Significant reduction
has been reported for various applications (Hahn
and Edgar, 2002). However, the projection meth-
ods often need to be tailor made to an application,
and there are too few guidelines for selecting the
appropriate method for a particular application.

Hence, new alternatives for estimating accurately
a subset of the states are welcome, and this paper
aims at proposing such an alternative. The idea
of the proposed method is to focus attention only
along certain preferred directions, where a better
accuracy is required, at the cost of possibly poorer
estimation along the other directions. This prob-
lem, termed preferential estimation, is formulated
formally in this paper. Increasing the accuracy
along the preferred directions is done using one-
time calibration measurements. Thus, preferential
estimation draws a strong parallel with the cali-
bration approach, and many concepts therein can
be used (Martens and Naes, 1989).

The main question in preferential estimation is
whether such a thing is at all possible. Can the
error along certain preferred directions be reduced
by increasing the errors in other directions ? This
will be shown with a bioreactor example, where
the parameters of a Kalman filter used to recon-
struct a single state will be tuned via numerical
optimization. It turns out that preferential esti-
mation is indeed possible and can be used advan-
tageously for tracking a desired substrate profile.

The paper is organized as follows. In Section 2,
the standard full-state estimation problem and
the Kalman filter are briefly reviewed. Section 3
describes the concept of preferential estimation,
while Section 4 deals with the tuning of the es-
timator via numerical optimization. The applica-
tion of preferential estimation is illustrated on a
simulated batch fermentation process in Section
5. Section 6 discusses some features of preferential
estimation, and Section 7 concludes the paper.

2. STANDARD ESTIMATION

Consider the following discrete-time system:

xk+1 = G(xk, uk) + wk, x0 = xo (1)

yk = H(xk) + vk (2)

where u are the inputs, x the states, xo the ini-
tial values of states, w the process noise, y the
measurements, and v the measurement noise. G

are the nonlinear functions describing the sys-
tem dynamics, and H the nonlinear measurement
functions.

The standard estimation problem consists of de-
termining the best state estimates, x̂, given the
measurements y. One of the most successful full
state estimators used in practice is the Extended
Kalman Filter (EKF) (Kalman, 1960; Jazwin-
ski, 1970; Grewal and Andrews, 1993). It deter-
mines the Kalman gain matrix Kk that minimizes
the a posteriori estimation error covariance Pk:

min
Kk

Pk = E〈(xk − x̂k)(xk − x̂k)T 〉 (3)

s.t. x̂−

k = G(x̂k−1, uk−1), x̂0 = E〈xo〉 (4)

x̂k = x̂−

k + Kk(yk − H(x̂−

k )) (5)

where x̂−

k is the a priori estimate, and x̂k the a
posteriori estimate.

The solution of Problem (3)-(5) is:

P−

k = AkPk−1A
T
k + Q, P0 = E〈xox

T
o 〉

Pk = (I − KkCk)P−

k (6)

Kk = P−

k CT
k (CkP−

k CT
k + R)−1

where P−

k is the a priori estimation error covari-
ance, Q and R the process and measurement noise
covariances, Ak the Jacobian of G with respect to
x̂k, and Ck the Jacobian of H with respect to x̂−

k .

3. CONCEPT OF PREFERENTIAL
ESTIMATION

In many applications, the main interest is on esti-
mating rather accurately the values of z, a vector
of much smaller dimension than x. Consider the
following extension to System (1)-(2):

xk+1 = G(xk, uk) + wk, x0 = xo

yk = H(xk) + vk

zk = L(xk), dim(zk) � dim(xk) (7)

where zk are the quantities to be estimated, and
L a nonlinear function.

One way of obtaining an estimate of z is to
estimate x̂ with standard techniques and then use
the function L to get ẑk = L(x̂k). The drawback
of this approach is that the problem formulation
(3) concentrates on the accuracy of x̂ rather than
that of ẑ. In other words, the full state x̂ is
computed as accurately as possible and then used
to compute ẑ. Consequently, the resulting ẑ will
inherit the accuracy of x̂, though it could probably
be estimated more accurately if the attention were
placed exclusively on its estimation.

In contrast, the objective of this paper is not to
maximize the accuracy of x̂ (standard estimation,



SE), but to address directly the problem of maxi-
mizing the accuracy of ẑ (preferential estimation,
PE) regardless of the accuracy of x̂.

Thus, the objective of PE is to focus on estimat-
ing ẑ as accurately as possible. An optimization
problem can be formulated as follows:

min
Kk

Jk = E〈(zk − ẑk)T (zk − ẑk)〉 (8)

s.t. x̂−

k = G(x̂k−1, uk−1), x̂0 = E〈xo〉

x̂k = x̂−

k + Kk(yk − H(x̂−

k ))

ẑk = L(x̂k) (9)

where Jk is the mean-squared estimation error in
zk. There are two main differences between the
formulations (3) and (8):

• The former deals with the states x, while the
latter concerns only the preferred directions
z, whose dimension is much smaller than x

• The former minimizes a matrix that repre-
sents the estimation error covariance of x,
while the latter deals with a scalar that corre-
sponds to the mean-squared estimation error
in z.

The reason for choosing a scalar cost function in
(8) rather than a matrix as in (3) is that, except
for the special case of linear systems without
uncertainty, there exists no unique choice of the
decision variables that minimizes every element of
the matrix. Thus, a weighted sum of the various
elements of the matrix is necessary in order to
define a solution. The mean-squared estimation
error, E〈(zk − ẑk)T (zk − ẑk)〉, which is the trace
of the matrix E〈(zk − ẑk)(zk − ẑk)T 〉, represents
one possible weighting of the covariance matrix.

Since Problem (8) has no analytical solution, a
numerical approach is needed. However, this ap-
proach requires the knowledge of zk in order to
evaluate the objective function Jk. Thus, zk has
to be measured once, during the tuning process,
in order to obtain the preferential estimator. But
once the estimator is tuned, measurements of
zk are no longer needed. The computation of
the expectation in (8) requires numerous realiza-
tions (obtained via Monte-Carlo simulation) with
known output variables yk and desired variables
zk. Thus, a set of calibration measurements (yk,
zk) is necessary for preferential estimation.

Hence, a parallel to calibration can be drawn,
where the calibration model is tuned based on
experimental data and then used for prediction
(Martens and Naes, 1989). The main difference
between calibration and preferential estimation
are: (i) Traditional calibration methods are static,
while preferential estimation deals with dynamic
systems, (ii) Dynamic calibration methods such
as dynamic PLS (Lakshminarayanan et al., 1997),

work with black-box dynamic prediction models
built just on the available calibration data. On the
contrary, preferential estimation a mechanistic,
first-principles or other system models (built for
other purposes from a different information) along
with the available calibration measurements.

The numerical solution is computationally ex-
pensive since it has to test each choice of the
estimator parameters Kk over numerous realiza-
tions. Though many ideas (such as analytically
computing an approximation of the cost function
without taking an expectation using Monte-Carlo
realizations) can be used to ease this numerical
burden, a brute-force approach will be used in this
paper for tuning an extended Kalman filter.

4. PREFERENTIAL ESTIMATION VIA
TUNING OF EXTENDED KALMAN FILTER

In the ideal case, i.e. linear process model and
white noise of known covariances (Q and R are
chosen equal to the true process and noise covari-
ances that are assumed to be known), the Kalman
filter is the best unbiased estimator. In this case,
the Pk obtained upon convergence reflects the true
estimation error covariance, and the expectation
with infinitely many realizations is the true value,
i.e. E〈x̂k〉 = xk.

However, this correspondence is lost in other cases
(nonlinearities and/or model mismatch and/or
non-white noise), and the Q and R matrices
are simply used as tuning parameters, for which
tuning rules are available (Grewal and Andrews,
1993; Chui and Chen, 1987). The objective here
is typically to minimize the estimation error of x̂

(standard estimation). However, Q and R could
also be tuned so as to minimize the estimation
error of ẑ (preferential estimation).

Thus, in the context of the extended Kalman
filter with Q and R being considered as tuning
parameters, SE and PE can be formulated as the
following optimization problems involving Q and
R as decision variables:

• SE - minimizes the estimation error J̄k =
E〈(xk − x̂k)T (xk − x̂k)〉 = tr(Pk)

min
Q,R

J̄k = E〈(xk − x̂k)T (xk − x̂k)〉 (10)

s.t. (4) − (6)

• PE - minimizes the estimation error Jk =
E〈(zk − ẑk)T (zk − ẑk)

min
Q,R

Jk = E〈(zk − ẑk)T (zk − ẑk)〉 (11)

s.t. (4) − (6), (9)

The data points xk and zk are obtained from
a simulated reality. Problems (10) and (11) can



be solved using numerical optimization where the
expectation is computed via Monte-Carlo simu-
lations. An additional difficulty is that these op-
timization problems exhibit many local minima
and, thus, a search for the global minimum is
necessary.

In this paper, the two-step numerical optimization
method proposed in (Nagy et al., 2001) is used:

(1) A global search method (Genetic Algorithm,
GA (Houck et al., 1995)) is used as pre-
optimization to find the neighborhood of the
global minimum, and

(2) A gradient-based local search algorithm (‘fmin-
con’ from Matlab) is used to find the global
minimum.

This combined method is computationally very
expensive, especially in combination with Monte-
Carlo simulations. However, all these efforts are
off-line and so, for the moment, the speed of
solving (10) and (11) has not been given much
importance.

5. PENICILLIN FERMENTATION -
IMPLEMENTATION OF PREFERENTIAL

ESTIMATION

The proposed estimation techniques are tested
on the fed-batch penicillin fermentation process
(Srinivasan et al., 2003). The reactions taking
place are:

S → X, S
X
→ P

where S, X and P are the substrate, biomass
and product, respectively. The specific rate of
the first reaction is described by a Haldane type
expression, while that of the second reaction is
constant. The third-order dynamic model of the
system reads:

ċX = µ(cS)cX −
F

V
cX , cX(0) = cXo

ċS = −
µ(cS)cX

YX

−
νcX

YP

+
F

V
(cSin − cS), cS(0) = cSo

V̇ = F, V (0) = Vo (12)

cP =
cPoVo

V
+ cSin(V − Vo)

YP

V
− (cSV −

−cSoVo)
Yp

V
− (cXV − cXoVo)

YP

YXV

µ(cS) =
µmcS

Km + cS +
c2

S

Ki

where cS , cX and cP are the substrate, biomass
and product concentrations, respectively, V the
volume, F the feed flow rate, cSin the inlet sub-
strate concentration, ν, µm, Km and Ki kinetic

parameters. The numerical values are given in
Table 1.

Table 1. Model parameters, initial con-
ditions and operating bounds

µm 0.53 L/h
Km 1.2 g/L
Ki 22 g/L
YX 0.4
YP 1
ν 0.5 L/h
cSin 20 g/L
cXo 1 g/L
cSo 5.138 g/L
cPo 0 g/L
Vo 2 L
Fmin 0 L/h
Fmax 1 L/h
cXmax 3 g/L
tf 8 h

Consider the problem of maximizing the amount
of product at the given final time tf by adjusting
the feed flow rate:

max
F (t)

cP (tf ) (13)

s.t. (12)

cX(t) ≤ cXmax, Fmin ≤ F (t) ≤ Fmax

The solution of (13) corresponds to maximizing
the rate of the first reaction µ(cS) (Srinivasan et

al., 2003). This can be achieved by maintaining
cS at c∗S =

√

(KmKi) = 5.131 g/L, the maximum
of the Haldane-type expression. Therefore, the
capability of tracking c∗S accurately is vital for
optimal process operation.

On-line measurement of cS is typically not avail-
able or is too expensive, while that of cP is
mostly available. So, the problem of state estima-
tion arises. Also, since optimal process operation
requires the tracking of a single state, it is of
interest to formulate the estimation problem as
that of minimizing the estimation error in cS .
Thus, using the notations of the earlier sections,
xk = [cXk, cSk, Vk]T ; uk = Fk; yk = cPk; zk =
cSk; G - the discretized version of (12) using the
sampling time ∆t = 0.01s. This model is used as
the simulated reality, and zero-mean measurement
noise (vk) with 5% variance is considered.

The model used for estimation has the same
structure as G, but with errors in the parameters
and initial conditions: µm = 0.5 L/h; Km = 1
g/L; Ki = 20 g/L; cXo = 0.6 g/L; cSo = 5.4 g/L.

The estimation problem is solved in both the
standard and the preferential contexts by solving
numerically Problems (10) and (11). The perfor-
mance criterion, the bias, and the standard devi-
ation are presented in Table 2. The error distri-
bution plots are given in Figure 1, while the time
evolution of one realization is shown in Figure 2.



Table 2. Comparison of SE and PE over
100 realizations (J̄ - estimation error for
x; J - estimation error for z; E〈x− x̂〉 -

bias; σx - standard deviation)

SE PE

J̄ 3.7171 4.7727
J 0.7850 0.3378

E〈x − x̂〉

[

0.0120
0.0135

−0.0343

] [

0.0040
0.0010

−0.0463

]

σx

[

0.0077
0.0081
0.0022

] [

0.0092
0.0084
0.0066

]
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Fig. 1. Error distribution plots of [eX , eS , eV ]T =
xk − x̂k for 1h ≤ t ≤ 4h over 100 realizations
(+ (dark gray) - SE; o (light gray) - PE).

The estimation error of ẑ = ĉS is reduced consid-
erably in PE by reducing the bias in ĉS (Table 2,
Figure 2). This is also visible on the distribution
plots (Figure 1), where eS is centered around 0 in
PE. The price to pay, however, is a greater bias
in V and an increased variance in all three states,
which is seen both in Table 2 and Figure 1.

Due to the reduced bias in ĉS , the tracking of
c∗S based on PE is more accurate, as illustrated
on the time evolution of one realization in Figure
3. Hence, a slightly higher amount of product at
final time can be obtained: cP (tf )PE = 2.428 g/L
> cP (tf )SE = 2.419 g/L.
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Fig. 2. Estimation of cS using SE and PE (dashed
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0 0.5 1 1.5 2 2.5 3 3.5 4
4.9

5

5.1

5.2

5.3

5.4

time (h)

cS
 (

g/
L)

SE

0 0.5 1 1.5 2 2.5 3 3.5 4
4.9

5

5.1

5.2

5.3

5.4

time (h)

cS
 (

g/
L)

PE

Fig. 3. Tracking of c∗S using a P controller and ĉS

based on SE and PE (dashed-dot - c∗S ; dashed
- ĉS ; continuous - cS)

6. DISCUSSION

The previous section has shown that it is possi-
ble to reduce the mean-squared estimation error
in z, the preferred direction. The mean-squared
estimation error has two parts:

tr E〈ezke
T
zk〉= tr E〈ēzk ē

T
zk〉 +

tr E〈(ezk − ēzk)(ezk − ēzk)
T〉 (14)

where ezk
= zk − ẑk, and ēzk

is its mean over var-
ious time instants and realizations. tr E〈ēzk

ēT
zk
〉

is the bias and E〈(ezk
− ēzk

)(ezk
− ēzk

)T 〉 is the
covariance.

It is possible to reduce the mean-squared esti-
mation error by a tradeoff between the bias and
variance parts of (14). In the bioreactor example,
the bias part of ẑ was reduced and the variance
slightly increased to achieve the desired goal. In
some sense, PE uses the bias-variance tradeoff
that is well-known in statistical literature (Hoerl



and Kennard, 1970). Note that the tradeoff used
here is the opposite of that used in partial least-
squares techniques, where the bias is increased to
reduce the variance (Martens and Naes, 1989).

In addition, tradeoffs between the different direc-
tions can be observed. For example, the bias along
V is increased in order to reduce the bias along
cS . Thus, in the context of PE, bias-bias tradeoffs
between different directions can also exist.

In the ideal case (linear model, no model mis-
match and zero-mean gaussian white noise), the
bias is zero. In this case, the Kalman filter is the
best unbiased estimator (Section 4), and all the
elements of E〈(xk − x̂k)(xk − x̂k)T 〉 are minimal.
However, it should be noted that, in certain cases,
a biased estimator may result in a smaller mean-
squared estimation error. This issue has been ex-
tensively studied in the context of static systems
and calibration (principle component regression,
partial least squares, etc.), while there has been
little study on biased estimation techniques for
dynamic systems. This is one of the issues prefer-
ential estimation addresses, but it clearly calls for
a different estimator structure, i.e. simply tuning
the parameters of a Kalman filter will not do it.

In other cases (nonlinear model and/or model mis-
match and/or non-white noise), the bias is non-
zero. This provides much more potential for pref-
erential estimation as was seen in the bioreactor
example, and various tradeoffs can be exploited
in this context. In minimizing the mean-squared
estimation error, the tradeoff between the bias and
the variance of a given variable (direction) natu-
rally arises. Either the variance can be reduced
by increasing the bias (as in usual bias-variance
tradeoff) or the bias can be reduced by increasing
the variance (as in the example of Section 5).
Which option to choose depends upon the rela-
tive magnitudes of the bias and variance. In the
example considered in this paper, the bias was
more important (modeling error, errors in initial
conditions) and, consequently, the bias in ĉS was
reduced and its variance increased.

7. CONCLUSION

This paper has formulated the problem of pref-
erential estimation, where the issue is more accu-
rate estimation along a few preferred directions in
state space. PE was implemented on a penicillin
fermentation example by tuning a Kalman filter
via numerical optimization. It was shown that PE
exploits the bias-variance and bias-bias tradeoffs.
Searching for a systematic way of influencing these
tradeoffs, instead of the numerical optimization
method used in this paper, constitutes a promising
future research direction.
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