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Abstract: This paper proposes the use of a generalized distribution, namely the
Generalized T (GT) distribution in the joint estimation of process states and model
parameters. The desirable properties of the GT-based estimator are its robustness,
simplicity, flexibility and efficiency for the wide range of commonly encountered
distributions (including Box-Tiao and t-distributions) which belong to the GT distribution
family. To achieve the efficiency, the parameters of the GT distribution are adapted from 
the data through preliminary estimation. The strategy is applied to the virtual version of a 
practical chemical engineering plant. Copyright © 2003 IFAC
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1. INTRODUCTION
 
Data reconciliation (DR) and parameter estimation
(PE) are important components in process modelling,
control, optimization and other applications that
require reliable process data and accurate process
model. Due to measurement errors, measurements of 
variables are usually equilibriated according to some
conservation equations prior to their use in parameter 
estimation. In obtaining the model parameter
estimates, however, the measurement data are further
adjusted such that the model parameters and the
adjusted data satisfy the process model equations.
The inefficiency of the two-step DR and PE is hence 
noted. A remedy will be to couple the two
procedures, thereby subjecting the parameter
estimates and the measurement data to both the
conservation equations and the process model,
yielding estimates that are consistent to both sets of 

equations. Such estimates are expected to be more
accurate. This is confirmed by the findings of
MacDonald and Howat (1988), who examined both 
the sequential and coupled DR and PE and concluded 
that more reliable estimates are obtained using the
coupled method.

The coupled DR and PE (DRPE) can also be
viewed as the error-in-all-variables-measured (EVM)
strategy, although DRPE is a more general
formulation due to the inclusion of DR constraints
that do not include unknown parameters.
Mathematically speaking, the two strategies are
similar in terms of issues that might arise in
obtaining reliable estimates. Several aspects that
have been discussed in the literature are: the general
algorithm for the solution strategy (Valko and Vadja,
1987), the optimization strategy (Kim et al, 1990;
Tjoa and Biegler, 1991) and the robustness of the
estimation (Albuquerque and Biegler, 1996; Arora



and Biegler, 2001). Our proposed strategy will
mainly deal with the robustness of the estimation.

The most prevalent form of estimator is the
weighted least squares (WLS) formulation, where
estimates minimizing the squared error in the
measurements, normalized by the measurement
covariance, are sought. Then again, it is also well
known that the optimality of the weighted least
squares is conditional upon the normality of the error 
distribution. Departure from normality, which could
stem from the presence of gross errors and the
empirical character of the error, often renders the
weighted least square estimates unreliable. Attempts
to treat these deviations include the a priori
assignment of distributions with thicker tails, such as 
the bivariate Gaussian distribution (Tjoa and Biegler,
1991), or other particular forms of estimators to the 
same effect, i.e. ones that down-weight
measurements with large residuals (e.g. the Fair
Function by Albuquerque and Biegler, 1996; the
redescending estimator in Arora and Biegler, 2001).
An argument against pre-determined distributions is
that the efficiency of the estimates may not be
optimal, as the actual error distribution may not be
close to the one assigned. If the parameters of these 
pre-determined forms of estimator are estimated
posteriori, partially adaptive estimator results, and
efficiency may be improved, although it will still be 
limited by the forms spanned by the possible values 
of the tuned parameters. A more flexible alternative
is the non-parametric approach, where the estimator
does not assume any fixed form and can fully adapt 
to the error distribution. The drawback of this
approach is the relatively large number of unknown
tuning parameters, and the possibility that it might 
not perform well for sample sizes frequently
encountered in practice (Butler et al, 1990).

Our proposed approach is the robust DRPE
strategy using a generalized distribution function, i.e.
the Generalized T (GT) distribution. We will
estimate the distribution parameters, and as the GT 
covers a wide range of commonly encountered
distributions, it is expected to be more efficient than 
other partially adaptive estimators mentioned above.
It is also simpler than the fully adaptive approach, as 
there are only a few tuning parameters. The GT-
based estimator has been applied to parameter
estimation (Butler et al, 1990) and data reconciliation 
(Wang and Romagnoli, 2003). In this paper, we
extend the application to the more general and
efficient DRPE strategy. The organization of the
paper is as follows. The next section discusses about 
the robustness of M-estimators. Our proposed GT-
based estimator is introduced here and its robustness
properties discussed, along with that of two other
estimators that we use for comparison in the case
study, namely the weighted least square and the
bivariate normal estimator. Next, Section 3 discusses
the partial adaptiveness and the efficiency of the
proposed strategy. In Section 4, the strategy is
applied to an application case study and the results
presented and discussed. Finally, Section 5 concludes
the paper.

2. THE M-ESTIMATOR AND ITS ROBUSTNESS

Our proposed GT-based estimator falls under the
category of M-estimator, which is the generalization
of the maximum likelihood estimation and can be
expressed as:

sconstraints.t.
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where u = y-x, y=measurements, x=variables
estimate, z=[x, p], p=model parameters to be
estimated, f(u) is the probability density function
(PDF) of u and log)( (f(u))-u =ρ . It is of paramount 

importance, then, that the measurement error
distribution indeed follows the PDF f(u), otherwise it 
will be forced to yield estimates that maximize f(u)
when actually it does not resemble f(u), leading to
inaccurate estimates.

The weighted least squares (WLS) is the most 
widely used estimator. Within the context of M-
estimation, it corresponds to f(u) being the normal
distribution, i.e. the error is assumed to be normally 
distributed.

To overcome the shortcomings of the WLS
estimator in the event of gross errors, various robust 
estimators have been developed. Huber (1981) and
Hampel et al (1986) provide a unified theoretical
framework for statistical robustness, by means of
which the various robust estimators can be analysed
and compared. The analysis based on Hampel et al’s 
Influence Function (IF) will be adopted in our
analysis. To simplify presentation, the derivation of
formulae will be omitted here; the interested reader
could refer to Hampel et al (1986) for details. The IF 
aims to describe the behaviour of an estimator in the 
neighbourhood of the parametric distribution
assumed. If the residual u is drawn from a PDF f(u) 
and if T[f(u)] is the unbiased estimate corresponding
to u, then the IF of a residual u0 is given by:
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where )u-(u 0δ is the delta function centred about u0.

Thus, the IF quantifies the amount of influence that a 
residual u0 has on the estimation. For M-estimators,
the influence function IF is proportional to the
derivative of )(uρ , i.e.:

uufu?(u) ∂∂=∂∂∝= /))(ln(/IF ρ . (3)

In order for the estimator to be robust, the IF should 
be bounded such that a single large residual cannot
dominate and distort the estimation. Additional
desirable properties for the IF would be for it to be 
descending to very small values  as the residual gets
large, and to be continuous such that the estimator is 
well-behaved.

We will now use IF to analyse the robustness of 
a few estimators, starting from the weighted least

squares (WLS). For WLS, uuu -1T)( Φ=ρ , where



Φ is the covariance matrix of the measurements and
represents the weight. The IF of the WLS is then 

uuuuu T )ln()(ln)( 1 ∝Φ== −ρψ (4)

which is a straight line and clearly unbounded for
large values of residuals u (Figure 1). The amount of 
influence is proportional to the residual magnitude,
allowing large residues to distort the estimation. 

A robust alternative proposed by Tjoa and
Biegler (1991) combines the normal PDF with
another normal PDF with much larger variance to
account for outliers. This results in the bivariate
normal distribution with PDF:
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The PDF has two parameters: p is the probability of 
the gross error occurrence, and b is the ratio of the
standard deviation of the larger normal PDF to that 
of the smaller one. The IF of this estimator is shown 
in Figure 1. The improvement in robustness can be
observed: the IF behaves like a WLS for small
residuals, but starts to descend after a certain point 
where the residuals are considered too large.

Our proposed GT distribution has the following
mathematical form:
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It is symmetric about zero and unimodal. It is
characterised by the distribution parameters },,{ σqp :

p and q determine the shape of the distribution,
whileσ determine the scale of the distribution. The
GT defines a very general family of density function 
and combines two general forms that include as
special cases most of the stochastic specifications
encountered in practice. Some of the more
commonly known special cases, along with the
particular values of },,{ σqp for each case, are

depicted in Figure 2. 
The IF of the GT-based estimator can be

obtained as:
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Figure 3 shows the IF with several different sets of 
values of },,{ σqp . It shows that generally the IF is 

bounded and actually descending when the residuals
get large. However, we also observe that as p
increases, the IF for large residuals increases and as q 
increases, the IF becomes less bounded. In fact, we
notice that one special case where ∞→q ,

with 2,2 ασ ==p  (α is the standard deviation) is

none other than the normal distribution. To ensure
that the GT-based estimator is insensitive to large
residuals, therefore, bounds must be imposed on the

values that p and q can take. In our
work, 505.0,51 ≤≤≤≤ qp .
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Figure 1. Plots of Influence Function for Weighted
Least Square Estimator (dashed line) and the
Robust Estimat or based on Bivariate Normal
Distribution (solid line)

Figure 2. GT Distribution Family Tree, Depicting the 
Relationships among Some Special Cases of the
GT Distribution
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Figure 3. Plots of Influence Function for GT-based
Estimator with different parameter settings
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We will estimate the distributional parameters
},,{ σqp  using residuals obtained by performing a

preliminary estimation on historical data. These
residuals should have the same characteristics as the
actual error, provided that the preliminary estimation
is robust enough. As such, using the estimated

},,{ σqp  will ensure that the estimator characterises
the error better, and in turn, yields more efficient
estimates. The efficiency of this partially adaptive
estimator will be further discussed in the next
section.

3. PARTIALLY ADAPTIVE ESTIMATION
AND EFFICIENCY

The motivation for partially adaptive estimation is to 
include the information about the error
characteristics into the estimation. This inclusion of
prior information corresponds to the formulation of
posterior density which is a Bayes estimation. For
our GT-based estimator, the distribution parameters

},,{ σqp are estimated from the residuals of

preliminary estimates. The residuals should be
descriptive of the underlying error distribution, hence
ensuring that the estimates of },,{ σqp result in the

GT shape that best characterizes the error. It is
therefore important for the preliminary estimator to
be sufficiently robust so that the preliminary
estimates are unbiased. In addition, the amount of
historical data must also be sufficient to represent
most of the data that are likely to be obtained.
However, since there are only three distributional
parameters to be tuned, the tuning is comparably
simpler than that of non-parametric estimators. 

For the GT-based approach, the distributional
parameters },,{ σqp can be estimated using the

maximum likelihood estimator (McDonald and
Newey, 1988):

}),,{;(logmaxarg},,{ 0 σσ qpufqp GT∑= (8)

where u0 is the residual from the preliminary
estimates. The values of },,{ σqp are then obtained
as the parameters of a GT member from which the 
data are most likely sampled. The GT estimator
using such estimated values of },,{ σqp has been

shown to be asymptotically efficient among all
estimators, when the error distribution is within the
GT family. Rigorous mathematical proof can be
found in McDonald and Newey (1988). Nothing can
be said about the efficiency in the case of non-GT
distributed errors, and some loss of efficiency is
possible. However, since the GT family includes a
wide range of commonly encountered distributions,
the fact that it is asymptotically efficient for thes e
distributions make its application very appealing.

In our approach, we use the maximum
likelihood estimator in (8) to estimate },,{ σqp . To

obtain the residuals u0 in (8), we take the median of 
the data set as the estimated values. Taking the
median as the estimate corresponds to the use of
robust L-estimator (Albuquerque and Biegler, 1996;

Hampel et al., 1986). It is feasible in our case as we 
assume steady state measurements, i.e. the actual
values are assumed to be constant over the time
horizon considered. This method of estimating the
distribution parameters is simple, robust and
computationally more convenient, as compared to
performing a full preliminary DRPE. Since the
asymptotic distribution of the estimates depend only 
on the limit of the distribution parameters, and not on 
the particular way by which they are estimated
(McDonald and Newey, 1988), our approach is
justifiable. In cases where the measurements are not 
constant over the time horizon considered, we can
assign fixed values of },,{ σqp that result in

sufficiently robust GT estimator. In this case, the
asymptotic efficiency is not guaranteed, but it is still 
robust and it is straightforward to apply.

4. APPLICATION CASE STUDY

The proposed GT-based DRPE strategy is applied to 
a case study of the pilot-scale setting of a general
purpose plant containing two CSTRs, a mixer and a 
number of heat exchangers (Figure 4). Material feed
from the feed tank is heated before being fed to the 
first reactor and the mixer. The effluent from first 
reactor is then mixed with the material feed in the
mixer, and then fed to the second reactor. The
effluent from the second reactor is, in turn, fed back 
to the feed tank and the cycle continues. 

Steady-state analysis of the system structure
results in three redundant equations involving seven
redundant variables. The model parameters estimated
are the product of the heat transfer coefficient with
the effective heat transfer area of the cooling coil of
the first reactor. For paramet er estimation, two more 
model equations with five non-redundant variables
are included. 

Associated with the pilot-scale plant, a virtual
environment that mimics the actual plant behaviour
has been developed within the Matlab/Simulink
framework and will be used in this paper while the 
plant is being commissioned. Simulation data are
generated with several different distributions:
Normal, Laplacian and t distribution. The different
distributions are considered as outliers. A data set
having Normal distribution and with large random
shifts as gross error is also generated. 

Figure 4. Flow Diagram of General Purpose Plant for 
Application Case Study



The different noise distributions are considered
as outliers. From optimisation point of view, when an 
outlier is detected by the estimator, the variable is
regarded as unmeasured. Consequently, depending
on the structure of the constraint equations, there are 
certain variables that when regarded as unmeasured,
become indeterminable. There is also a certain
maximum number for outliers in a dataset, which if
exceeded, will cause some variables to be
indeterminable. Such issues will cause difficulty in
the optimisation, and we are careful to avoid them in 
generating the outliers. 

Five DRPE methods are compared, i.e. (i)
weighted least squares (WLS); (ii) bivariate normal
with distribution parameters fixed at p = 0.05, b = 10, 
and σ = standard deviation of the normal noise; this 
configuration is suggested in Tjoa and Biegler (1991)
if the number of outliers are not known apriori,
which is the condition we assume here; (iii) GT 
method with distribution parameters fixed at p = 1.5, 
q = 5, and σ  = standard deviation of the normal
noise multiplied by square root of two; this
configuration is assigned based on our analysis on
the influence function with different sets of
parameter values, where the analysis shows that the
current configuration will be sufficiently robust; (iv)
partially adaptive bivariate normal with distribution
parameters p, b and σ estimated from preliminary 
residuals; we obtain the preliminary residuals and
estimate the distribution parameters in a similar way 
as we do for the partially adaptive GT method (as
described in Section 3); and (v) partially adaptive GT 
method, with distribution parameters p, q and σ
estimated from preliminary residuals.

Two measures are used to quantify the
efficiency of the DRPE methods, i.e. the mean
square error (MSE) and the percentage of model
parameter estimation accuracy (%-discrepancy). The
MSE is calculated as: 
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where m is the number of measured variables and K 
is the number of data sets used for the DRPE (m=12, 
K=24 in this study). jix ,

)
 and jix , are the estimates of 

the reconciled data and the actual value of the
variable, respectively, while iσ  is the standard

deviation of the Gaussian noise on sensor i. The %-
accuracy is calculated as:

 valueactual
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Figure 5 and 6 chart the MSE and %-discrepancy,
respectively. The partially adaptive GT method with 
performs most efficiently for all types of outliers
considered, i.e. it has the smallest overall estimation
errors for both parameter and states. The advantage
of partially adaptive scheme is apparent by the lower 
estimation errors achieved by GT and bivariate
methods with distribution parameters estimated from 

the data, as compared to their counterparts with
distribution parameters assigned and fixed at certain
values. However, although the partially adaptive
bivariate normal method performs very well, it is
seen that the partially adaptive GT method is still
more efficient for Laplacian and t noise, which are
within the GT family of distributions.

Comparing the non-partially adaptive GT and
bivariate normal methods, it is seen that in this
particular case study, GT generally performs better.
However, the choice of distribution parameters
greatly influences the estimation results, and since
we have only one instance of all possible settings of 
distribution parameters, the results here cannot be
generalized to the conclusion that all non-partially
adaptive GT estimators perform better than all non-
partially adaptive bivariate methods.

The results of the preliminary estimation for the
GT distribution parameters for some variables when
the error follows Cauchy and t distributions are listed 
in Table 2. Referring back to the distribution tree in 
Figure 2, we can see that the values of the estimated
p and q are close to the ideal p and q for the
respective distributions. For example, for Laplacian
noise, where the ideal p=1 and ∞→q , the estimated 
p are close to one, while q are large or close to the 
upper bound, i.e. q=50. 
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Table 2. GT Distribution Parameter Estimates
Laplacian

(p=1,q! inf)
t with 2 dof 
(p=2,q=1)Variable

p q p q

Feed Flow to 
Reactor 1

1.32 50.00 1.53 2.67

Feed Flow to 
Reactor 2 1.01 46.75 3.52 0.50

Cooling Water 
Flow of Reactor 1

1.15 47.71 3.13 0.62

To visualise how well the estimators
characterize the data, the probability density
functions of the distributions assumed by each
estimator are plotted in Figure 6 (for the variable
feed flow to reactor 1 in Table 2, in the case of t 
noise), along with the relative frequency histogram
of the noise. The histogram represents the actual
empirical error distribution. The PDF are plotted
based on the distribution parameter values assumed

by the estimators, i.e. normal N(0, 2σ ), where
σ =standard deviation of the measurement (in this
case = 0.5) for WLS; partially adaptive bivariate
normal with parameters p=0.0546, b=5.0000, and
σ =1.3240 for the bivariate estimator; and GT with 

},,{ σqp = {1.5343, 2.6729, 1.4498} for the GT-

based estimator. It is seen that the both GT and
bivariate estimator characterizes the data very well.
However, the GT shape resembles the data more, as 
it can assume the different shapes of distribution
within the GT family, while the bivariate shape is
limited to the shape of two normal PDFs combined. 

5. CONCLUSION

The DRPE strategy based on GT distribution strikes 
a balance between the simplicity of strict parametric
approaches where a certain distribution is assumed
and the flexibility of non-parametric approaches
which involves many unknown parameter
approaches and may not perform well for common
sample sizes in practice. The GT-based estimator is 
robust for a range of its distribution parameter
values, by adapting these distribution parameter to
the data, it is efficient particularly when the
underlying error distribution is within the GT family. 
Within the range of its robust distribution parameter
values, the GT family encompasses a wide variety of 
important statistical distributions, and thus it is a
worthy candidate for DRPE as it can handle a wide 
range of error distributions with simple adaptations
of its distribution parameters. 
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