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Abstract:  This paper provides a novel machine vision solution based on 
multiresolutional multivariate image analysis (MR-MIA) for monitoring of flotation 
processes. The approach based on MR-MIA is superior to the contemporary 
machine vision approaches in terms of efficient analysis of morphological and color 
information and robustness to lighting conditions. The results show that the MR-
MIA based approach provides enough morphological and color information of froth 
needed to describe different froth status. A PCA model built from the information 
provided by MR-MIA can provide multivariate control charts, from which the 
transition as well as steady-state process status can be monitored in real time. 
Copyright © 2004 IFAC 
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1. INTRODUCTION 

 
The flotation process is one of the important and 
standard techniques in the mineral processing 
industries to separate valuable metals from ore 
(Mckee, 1991). However, it impossible to monitor 
and control flotation process through fundamental 
modeling approaches due to the chaotic nature of the 
underlying microscopic phenomena based on surface 
chemistry and surface physics. In addition, state-of-
the-art instrumentation technologies are not able to 
provide reliable on-line sensors or analyzers, 
measurements of which are essential for automatic 
monitoring and control. 

 
It is widely known that color and morphology of the 
froth are closely related to mineral concentrations 
and process status, respectively. As a consequence, 
many operations are made by operators based on 
visual appearance of the froth together with their 
experience about process trends. For these reasons, 
over the past decade image analysis has been 
considered as a potentially key component to the 
solution to this problem. 

 

The purpose of this paper is to provide a novel 
solution to the characterization and monitoring of the 
flotation froth based on multiresolutional 
multivariate image analysis (MR-MIA) (Liu and 
MacGregor, 2003). By combining multiresolution 
analysis (MRA) and multivariate image analysis 
(MIA), it is possible to analyze the spatial and 
spectral correlation of images within a single 
framework (Liu and MacGregor, 2003). The 
approach based on MR-MIA is totally different from 
the contemporary research in the sense that it handles 
morphological and color information of froth images 
systematically and efficiently. In addition, this 
approach is inherently robust to image quality or 
lighting conditions, contrary to most contemporary 
image analysis approaches. 

 
 

2. VISUAL FEATURES OF FROTH AND 
EXTRACTION METHODS 

 
Color and structure of flotation froth are very 
important visual features in the operation of flotation 
process. Color is strongly related with the mineral 
concentration carried by the froth (Bonifazi et al., 



 2

1999). The structure of the froth, that is its texture or 
morphology (bubble’s size, distribution and, shape, 
etc.) is known to indicate various froth characteristics 
such as degree of mineralization (froth load), 
stability, and so on (Moolman et al., 1996). 
Operators usually determine the suitable amount of 
chemical reagents (i.e., control inputs or manipulated 
variables) based on those visual features of the froth.  

 
Image analysis based on traditional image processing 
techniques has been applied to flotation processes in 
order to monitor the process or to infer mineral 
concentrations. For estimating mineral concentration, 
statistical features such as descriptive statistics are 
calculated from each RGB color channel and 
multiple linear regression or Partial Least Squares 
(PLS) are used to construct an inferential model 
(Bonifazi et al., 1998). HSI (Hue, Saturation, 
Intensity) or HSV (Hue, Saturation, Value) color 
models other than RGB model were used in some 
cases in order to overcome high collinearity among R, 
G, and B values (Bonifazi et al., 1999). In addition, 
bubble collapse rate, bubble mobility (speed), and 
various morphological features (froth bubble size, 
shape, etc.) were extracted via traditional image 
analysis methods and used in regression, but the 
correlation of mineral concentration with 
morphological features was lower than that obtained 
with color features (Bonifazi et al., 1999).  

 
The analysis of froth structure has frequently been 
carried out using segmentation methods, texture 
analysis methods, and Fourier transform (FT) power 
spectrum. Morphological features such as bubble 
diameter, aspect ratio, etc. were calculated for each 
bubble after segmentation of the froth images into 
bubbles and then used in estimating mineral 
concentration (Bonifazi et al., 1999). Many other 
image-processing techniques were used to enhance 
the quality of image prior to segmentation. Statistical 
texture analysis methods such as gray-level co-
occurrence matrix (GLCM) and its variations were 
used to classify the status of different froths based on 
froth texture in order to monitor flotation processes 
(Moolman et al., 1995). Power spectrum from 1-D or 
2-D Fourier transform (FT) was also used to extract 
textural feature of the froth (Niemi et al., 1999). 

 
It is clear from the literature that the correlation 
structure among the color in the RGB images has not 
been considered in most cases. Although HSI and 
HSV models have sometimes been used in some 
cases, they are rather basic approaches to handling 
the collinearity. Lighting condition is also crucial in 
analyzing color features but efforts made for 
removing the effect of different lighting or 
illumination have been so heuristic or ad-hoc that 
they could not be easily generalized. In this respect, 
MIA based on Principal Component Analysis (PCA) 
provides a better approach than others that have been 
used in the literature since PCA can easily handle the 
collinearity (Geladi and Grahn, 1996). Furthermore, 
it was experimentally verified that some features 
(e.g., energy and entropy) calculated after applying 
PCA were illumination-invariant as long as intensity 
saturation did not occur (Tan and Kittler, 1994). 

 
Wavelet texture analysis (WTA) has been considered 
as the state of the art in texture analysis for many 
reasons (Liu and MacGregor, 2003). It outperforms 
other methods such as GLCM-based methods or FT-
based methods (Bharati et al., 2003) and is much 
more computationally efficient and robust to lighting 
conditions than segmentation-based methods 
(Bonifazi et al., 1999). Therefore, MR-MIA would 
appear to offer an excellent alternative to 
contemporary image analysis approaches for 
monitoring and control of flotation process. MR-
MIA combines advantages of MIA and MRA (Liu 
and MacGregor, 2003); it can handle high colinearity 
in RGB froth images more efficiently than HSI and 
HSV models and can extract structural feature of 
froth in a faster and more robust manner than 
segmentation-based or GLCM-based approaches. An 
overview of MR-MIA methods for extracting color 
and structural information from froths is discussed in 
the next section. 

 
 

3. VISUAL FEATURE EXTRACTION USING 
MR-MIA 

 
From the literature, it seems that color information 
and structural information in the froth are not highly 
correlated to each other and therefore, MR-MIA II is 
more preferable than MR-MIA I in this situation 
since spatial information and spectral information are 
extracted and processed separately (Liu and 
MacGregor, 2003); Color features will be extracted 
in the PCA stage of MR-MIA II and then 
morphological features will be calculated from WTA 
of the first score image, which it is almost equivalent 
to the grayscale version of a RGB image in most 
cases. 

 
The purpose of image analysis in flotation froth is to 
extract features, which can indicate status of the 
process and thus can be used for process monitoring 
and control. Some of the features may be common to 
other flotation processes but others are not. This is 
because each plant can show its unique 
characteristics depending on the flotation cell used, 
the mineralogy of the ore used, etc. Furthermore, 
visual features are clearly subjective, and even 
operators in the same plant may have different 
criteria when interpreting the images. Therefore, we 
based our work on interviews about froth visual 
features with operators and engineers at the plant 
(Agnico-Eagle’s Laronde plant in Quebec, Canada) 
where the froth image collection was performed. 

 
 

3.1 CLEAR WINDOWS AND BLACK HOLES 
 

A clear window is a watery portion of the froth, 
found on the top of the bubbles, that has almost no 
mineral content (see Figure 1). Therefore, froths with 
many clear windows usually have big bubbles, and 
are usually an indication that the degree of 
mineralization in the froth is very low. The color of 
the clear windows is much darker and blacker than 
other regions such as the tops and valleys of the froth. 
It is one of three major visual features of froth that 
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operators at Laronde plant use to determine the state 
of their operations. On the other hand, one can find 
black holes when froths are excessively loaded with 
minerals (see Figure 1). A Black hole is a portion of 
froth surface, which is so close to the pulp that the 
pulp can be seen through it. Black holes usually 
appear when bubbles are extremely small and often 
provide a warning that the entire froth may collapse. 

 
However, these features have never used for 
monitoring of flotation processes in the literature. 
Extracting clear windows and black holes can be 
easily done using masking in MIA since it extracts 
spectral (i.e., color) features independent of their 
spatial location. The total areas (i.e., a number pixels) 
of clear windows and black holes are then easily 
extracted. The only difficulty is that clear windows 
and black holes are spectrally similar (i.e., similar 
colors), and hence difficult to distinguish by MIA 
alone. 

 

 
Figure 1 A composite image containing clear 

windows (left half) and black holes (right half) 
 

Calculating Area of Clear Windows and Black Holes 
using MIA Masks. A density score plot is one of 
major analysis tools of MIA; Pixels having very 
similar spectral features lie close to one another in 
the score plots, regardless of their positions in the 
image space and such score plots can be thought as 
two-dimensional histograms if segmented into a 
number of bins. An example of a scatter score plot is 
shown in Figure 2 for the image in Figure 1 where 
the brightness of each point indicates the number of 
pixels falling within a bin in the score plot. We can 
detect different features in the original image space 
using a density score plot by defining a mask or a 
feature boundary for each feature as determined from 
a training image, because the coordinate of each 
pixel in the score plot is uniquely determined by its 
variable correlations (Bharati and MacGregor, 1998). 
The number of pixels within the feature boundaries 
represents the area of these features in the image 
space. A feature boundary is usually found by 
interactive inspection between such score plots and 
the original image. The feature boundary of clear 
windows and black holes for the composite image is 
shown in Figure 2 and pixels falling inside the 
boundary are highlighted in Figure 2. 
 
 
3.2 FROTH BUBBLE SIZE 

 
Bubble Size in the froth is one of the most commonly 
used morphological features throughout the literature 
and it is another major feature used by operators at 
the Laronde plant for characterizing process status. 
In fact, the measurement of froth size has been of 
great interest in the mining process industry as well 
as in the literature since it has been extensively 

reported that the performance of flotation process is 
strongly related to the size of froth (Moolman et al., 
1996). 

 
We can find a size of a bubble, count the number of 
bubbles, and calculate a histogram of bubble size 
from them after segmenting each bubble. The biggest 
problem in using segmentation techniques in practice 
however is that segmentation is too sensitive to 
lighting conditions and segmentation techniques used 
(Bonifazi et al., 1999) and in addition it is 
computationally demanding compared to other 
alternatives.  

 
On the other hand, it has been also reported that the 
froth texture is a strong indicator of process 
performance (Moolman et al., 1995, 1996). For this 
reason, statistical texture analysis techniques such as 
gray-level co-occurrence matrix (GLCM) and its 
variants have been used to classify froth images into 
predefined classes that correspond to different 
process status. Also, fractal analysis has been used in 
the same context (Hargrave and Hall, 1997). These 
approaches seem robust to lighting conditions due to 
the inherent robustness of statistical texture analysis 
techniques. However, it is difficult to characterize 
actual froth structure or morphology by using 
textural features calculated in these methods since 
textural features and corresponding visual features 
are not directly related to froth structure such as 
bubble size (Moolman et al., 1995).  

 

  
Figure 2 A t1-t2 score plot of the composite image 

with the mask for clear windows and black holes 
(left) and the composite image where clear 
windows and black holes found by the boundary 
are highlighted in white (right) 

 
Calculating Histogram of Froth Bubble Size using 
Wavelet Size Signature. A basic idea of wavelet 
texture analysis (WTA) is to extract a textural feature 
from wavelet coefficients at each resolution and 
assume that each texture has its unique distribution 
of features over all the resolutions. Therefore, 
different textures will have different features if the 
frequency spectrum is decomposed appropriately. 
Typical textural features in WTA are energy, entropy, 
or averaged l1-norm. However, these WTA features 
have the same problem; they have no morphological 
meaning. For this reason, we develop a new feature 
called wavelet size signature, which can provide a 
histogram of froth bubble size. 

 
Space-Frequency Representations and Uncertainty 
Principle. The coefficients of 1-D discrete wavelet 
transform (DWT) of f(x) can be computed as 

 

][],[][ ,)( kkfla ljj φ=  and ][],[][  ,)( kkfld ljj ψ= , (1) 
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where the a(j)’s are expansion coefficients of the 
scaling function or approximation coefficients, the 
d(j)’s are the wavelet coefficients or detail 
coefficients, and with some suitable sequence h[k],  

 

]2[2][ 2/
, lkhk jj
lj −=φ and ]2[2][ 2/

, lkgk jj
lj −=ψ  (2) 

 
where g[k] = (-1)kh[1-k]. We can easily achieve 2-D 
DWT by using separable scaling functions and 
wavelets (Vetterli. and Kova�evi�, 1995). The 
resulting coefficients are often called subimages (the 
wavelet coefficients are also 2-D) and at each 
decomposition level j, two-dimensional wavelet 
transform yields one approximation subimage a(j) and 
three (horizontal h, vertical v, and diagonal d) detail 
subimages k

jd )(
 (k = h, v, d). 

 
If we define the durations of signal f(x) in space x 
and frequency ω by 

      

�
∞

∞−=∆ dxxfxx

222 )(  and ωωωω dF
222 )(�

∞

∞−=∆ , (3) 
 

respectively then one can define so called a tile in the 
space-frequency plane. This space-frequency tile tells 
us the resolutions of wavelet bases in space and 
frequency domains. Due to the scaling, wavelets used 
in the decomposition have varying space and 
frequency resolutions; the frequency duration goes 
up by 2j and the spatial duration goes down by 2j and 
vice versa. This suggests that the product of space 
and frequency durations of a signal, i.e., the area of a 
tile in the space-frequency plane of wavelet 
transform is a stable quantity and the Uncertainty 
Principle makes these statements precise, and gives a 
lower bound for the product. 

 
Wavelet Size Signature. The constant tiling area in 
the space-frequency tiling of wavelet transform 
makes it ideally suited for analyzing natural signals. 
For identifying different size of froth using wavelet 
analysis froth bubbles with larger sizes will be 
identified by wider and lower-frequency wavelets 
and appear in subimages with lower frequency. Froth 
bubbles with smaller sizes will be identified by 
narrow and high-frequency wavelets and appear in 
subimages with higher frequency. At each subimage 
froth whose (vertical or horizontal) diameters fall 
within the corresponding width of a tile in the spatial 
domain will appear. Therefore, the width of a tile in 
spatial domain can be interpreted as a range of 
(vertical or horizontal) diameters of bubbles 
appearing at the corresponding subimage. 

 
If we threshold a subimage then the area of the 
remaining parts can be thought as the total area of 
bubbles with sizes corresponding to the subimage. 
The area can be calculated simply as the fractional 
the number of thresholded signals (i.e., pixels) at a 
subimage. Let AS’s be total area of froth at a 
subimage S calculated from the thresholded 
subimages and AT be the area of the entire scene 
depicted in the original image. Wavelet size 
signature consists of the fractional areas FS, which is 
by its definition 

 

TSS AAF =     (4) 
 

The average area of a single bubble at a subimage S 

can be calculated as 
SVSH DD ,,4

π  where DH,S and DV,S 

are horizontal and vertical average diameters of a 
froth calculated from the range of diameters 
satisfying the space-frequency tiling of DWT and 
Uncertainty Principle. NS, the total number of 
bubbles in the froth with size of DH,S and DV,S in a 
subimage S can be calculated from wavelet size 
signature FS as 

 

SVSH

ST
S

DD

FA
N

,,4
π=    (5) 

 
Therefore, we can calculate a histogram of bubble 
size from wavelet size signature without requiring 
actual measurement of froth morphology because AT 
is constant for all images. The examples of bubble 
size histogram calculated from wavelet size signature 
are shown in Figure 3 Three froth images with 
different morphological features in Figure 3(b) can 
easily be discriminated by comparing their 
histograms in Figure 3(a) as shown in the figure. 
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(b) 
Figure 3 Illustration of (a) bubble size histograms 

calculated from wavelet size signature of (b) three 
different images. 

 
 

4. DESCRIPTION OF THE FLOTATION 
PROCESS AND DATA ACQUISITION 

 
The flotation unit in Agnico-Eagle’s Laronde plant 
consists of 3 tank cells used for conditioning and a 
flotation column.  The fresh feed from the grinding 
circuit enters the first conditioning cell, where lime 
and activator are added.  Lime is used to adjust and 
control pH.  The collector is added in the second 
conditioning cell.  The last conditioning cell is used 
for mixing only.  Air is finally added just before the 
pulp enters the flotation column. The pulp fresh feed 
rate was kept nearly constant during all the tests. 

  
The camera was installed on top of the flotation 
column. It samples 24-bit, 720×480 color images at 
every minute. We collected images during two plant 
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tests carried out in two different days. The duration 
of the step input signals was long enough to ensure 
the process reached new steady states. 

 
 

5. FROTH FEATURE EXTRACTION USING 
MR-MIA II 

 
An MIA model (i.e., loading vectors and a mask for 
clear windows and black holes) is developed from 
the composite image used in Figure 2, and used as a 
global model for the sequence of all images.  

 
As mentioned earlier, clear windows and black holes 
are spectrally similar although they represent two 
independent process events. From prior knowledge 
about the process, the two features are correlated 
with very different froth morphological features and 
never really occur together. Therefore it is assumed 
that in any image, if pixels fall under the mask in 
Figure 2, they will be exclusively clear windows or 
black holes. To decide which class they represent, a 
classical two-class classification problem is 
formulated with wavelet size signature employed as 
feature inputs and it is solved using Fisher linear 
discriminant analysis (Duda et al., 2000). 

 
After calculating the first score image, WTA is 
applied to the first score image of each image in 
order to extract wavelet size signature. The 
decomposition level is chosen to be 6 and symlet 
wavelets with order 4 are used for all images. A 
fractional area is calculated only from an 
approximation subimage at each decomposition level 
and wavelet size signature is calculated from the 
difference in fractional areas between every two 
adjacent levels. By using only approximation 
subimages, the wavelet size signature of an image is 
a (5×1) vector. The example of the wavelet size 
signature is already shown in Figure 3. 

 

 
(a) 

   
19 245 413 

   
511 630 840 

(b) 
Figure 4 (a) A t1-t2 score plot from PCA analysis of 
MR-MIA II feature variables of selected steady-state 
images and (b) sample images from 6 steady states. 

 

 
6. DEVELOPMENT OF PROCESS 

MONITORING CHARTS 
 

After each (7×1) feature vector (clear windows (1×1), 
black holes (1×1) and a bubble size histogram (5×1)) 
is extracted from all images using MR-MIA II, 
steady state data are selected and a PCA model is 
built from feature vectors of the selected data. There 
are 6 steady states  (denoted as SS1 ~ SS6 in the 
legend of figure) corresponding to plant step tests in 
the data and these steady states form 5 distinct 
clusters in a t1-t2 score plot as shown in Figure 4(a). 
SS4 and SS5 form one cluster and other steady states 
form one cluster each and this can be verified by 
comparing two sample images of SS4 and SS5 in 
Figure 4(b); they are similar to each other but 
completely different from 19, 245, 413, and 840 in 
terms of size of bubbles and area of clear windows. 
Starting from the fourth quadrant, froth status 
gradually changes counter clockwise in Figure 4(a). 
The sample image of SS3 has many small bubbles 
and some black holes, and the size of bubbles is 
getting bigger and bigger as one moves counter 
clockwise. In SS6 in the third quadrant, big bubbles 
and clear windows are dominant compared to the 
other 4 clusters. Compared to SS4 and SS5, SS6 has 
several bigger bubbles and larger area of clear 
windows. These behaviors in a score plot are verified 
by a corresponding p1-p2 loading plot.  
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273 293 318 

   
323 338 348 

(b) 
Figure 5 (a) Process transition (from SS2 to SS3) 
captured by the score plot in Figure 4(a) and (b) 
selected images during the transition 

 
The process status during the transient states can 
easily be captured by the same PCA model. Predicted 
t1 and t2 score values of transient data from SS2 to 
SS3 are plotted over the score plot in Figure 4(a) and 
shown in Figure 5(a). Six selected images during the 
transition are shown in Figure 5(b). Starting from the 
SS2 region, process passes the third quadrant (273 
has several clear windows) and comes back to the 
SS2 region (compare 293 and 245 in Figure 4(b). 
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They are almost identical.). Then the process moves 
from SS2 to SS1, passes through the SS1 region, and 
finally reaches to SS3. These movements can be 
verified by comparing 6 images in Figure 5(b) and 6 
images in Figure 4(b). A process monitoring chart 
can be easily developed from this score plot. Usually 
pre-labeled classes are used in the flotation literature 
on monitoring and control of flotation process but 
those classes are not independent and discrete events 
as in typical classification tasks such as character 
recognition. In process industries, there is always 
continuous progression from one class to another 
class and flotation process is one example showing 
this continuous progression. Therefore, the score plot 
developed in this work is more suitable for 
monitoring the froth status in a flotation process. The 
score space shown in Figure 4(a) can be used as a 
monitoring chart when it is divided into several 
meaningful sub-regions based on operators 
experience and flotation principles. Also a residual 
plot can be drawn from new data and their prediction 
by the model in order to detect whether new data (i.e., 
images in this case) show abnormal behaviors. A 
residual plot, which corresponds to the t1-t2 score plot 
in Figure 5(a), is shown in Figure 6. 
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Figure 6. A residual plot corresponding to the t1-t2 
score plot in Figure 5(a). Upper control limit is 
from the model built in Figure 4(a). 

 
 

7. CONCLUSIONS 
 

From the literature on image analysis of flotation 
process discussed in Sections 2 and 3, we infer that a 
good image analysis solution should (1) be able to 
provide rich description of froth morphology, (2) be 
able to handle correlation in RGB colors, (3) be 
robust to lighting conditions, and (4) be 
computationally inexpensive. The proposed approach 
in this article can satisfy all four requirements 
whereas contemporary approaches cannot; it can 
provide rich description of froth morphology 
compared to approaches based on statistical texture 
analysis, it is robust to lighting conditions and 
computationally inexpensive compared to 
approaches based on segmentation and statistical 
texture analysis, and it can handle RGB correlation 
better than approaches based on RGB or HSI/HSV 
color models.  

 
Monitoring charts developed in this article can 
provide current froth status no matter whether the 
process is in a transient or steady state. Estimation of 
mineral concentration using MIA (Duchesne et al., 
2003) can also be done within the same framework 
of MR-MIA II 
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