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Abstract: This paper presents an analysis of nonlinear extensions to Partial
Least Squares (PLS) using error-based minimization techniques. The analysis
revealed that such algorithms are maximizing the accuracy with which the response
variables are predicted. Therefore, such algorithms are nonlinear reduced rank
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1. INTRODUCTION

A number of extensions to conventional PLS have
been proposed for identifying nonlinear relation-
ship between two variable sets, which are usually
referred to as the predictor set that is predictive
and the response set that is predicted. For these
extensions, the iterative nature of PLS is taken
advantage of in terms of reducing the modelling
task to the identification of score models in the
latent variable space.

The score models rely on projecting recorded ob-
servations of the predictor and response variables
on respective one-dimensional subspaces, defined
by weight vectors. The projections of the re-
sponse variables, further referred to as u-scores,
are then predicted by nonlinear functions of the
projections of the predictor variable, denoted as
t-scores. (Wold et al., 1989) suggested to identify
the score models using second order polynomials.
More flexible nonlinear models were proposed by
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(Frank, 1990) and (Wold, 1992). Whilst the for-
mer work included the use of a smoothing proce-
dure, the technique by (Wold, 1992) incorporated
spline functions.

(Qin and McAvoy, 1992; Holcomb and Morari,
1992; Wilson et al., 1997) used artificial neural
networks and more recently, (Patwardhan and
Lakshminarayan, 1998) exploited the use of Ham-
merstein and Wiener models, (Hiden et al., 1998)
employed Genetic Programming and (Li et al.,
2001) utilized the Box-Tidwell transformation.
However, (Berglund and Wold, 1997) argued that
artificial neural networks and spline functions (i)
inherent a considerable degree of flexibility and
(ii) may lead to overfitting. A revision of the work
by (Wold et al., 1989), incorporating low order
polynomials, was given by (Baffi et al., 1999a),
where a number of modifications were introduced
to produce a simpler algorithm.

In this article, the work by (Wold et al., 1989)
and the modifications that (Baffi et al., 1999a)
introduced are investigated. This analysis revealed
the following contributions, summarized in the



presented work. Firstly, if a linear structure for
each score model is considered, the technique by
(Baffi et al., 1999a) is equivalent to reduced rank
regression (RRR). Therefore, each score model
maximally reduces the variation of the response
variables. Secondly, if nonlinear score models are
identified, the algorithm by (Baffi et al., 1999a)
is consequently a nonlinear RRR (NLRRR) tech-
nique. Thus, it should not be considered as a
nonlinear PLS technique, since minimizing the
variation of the prediction error of the response
variables does not guarantee maximum variance
between pairs of score variables. A maximum co-
variance, however, is the criterion with which a
conventional PLS model is identified. Thirdly, us-
ing NLRRR, the direction on which the response
variables are projected is constrained to be equiv-
alent to the direction for predicting the response
variables by the predicted u-scores.

2. PARTIAL LEAST SQUARES
PRELIMINARIES

PLS is designed to analyze the relationships be-
tween the predictor and the response variables.
The observations of each variable are stored in
matrices, i.e. the predictor matrix X ∈ RK×N and
response matrix Y ∈ RK×M . Each column refers
to a particular predictor or response variable and
each row refers to a particular observation, K
represents the number of observations, N is the
number of predictor variables and M is the num-
ber of response variables. Typically, X and Y are
mean centered and appropriately scaled prior to
the applications of PLS. It is assumed throughout
this article that K À N,M and that the rank of
X and Y isN andM , respectively. Note, however,
that these assumptions are for the convenience of
the presentation rather than imposing restrictions
onto the presented methods.

2.1 PLS Algorithms

PLS determines the kth pair of weight vectors,
vk and wk, and score vectors, tk and uk, i.e. the
vectors in which the t- and u-scores are stored, by

maximizing J
(v,w)
k :

J
(v,w)
k = tT

k uk = wT
k XT

k Ykvk, (1)

which is subject to the constraints G
(v)
k and G

(w)
k

(Höskuldsson, 1988):

G
(v)
k = ‖vk‖

2
2 − 1 = 0 G

(w)
k = ‖wk‖

2
2 − 1 = 0,

(2)

with ‖◦‖22 being the squared norm of a vector. For
determining subsequent weight and score vectors,
PLS uses a deflation procedure, which involves the
contribution of the kth pair of score vectors to

be subtracted or deflated from the predictor and
response matrices, (Geladi and Kowalski, 1986):

Xk+1 = Xk − tkp
T
k Yk+1 = Yk − tkq

T
k , (3)

where Xk, Yk and Xk+1, Yk+1 are the predictor
and response matrices after k + 1 and k deflation
steps, respectively, and pk and qk are regression
or loading vectors that represent the contribution
of the t-score vector to the predictor and response
matrices, respectively. The loading vectors are
determined as follows:

pk =
XT

k tk

tT
k tk

qk =
YT

k tk

tT
k tk

. (4)

After computing n pairs of weight, score and
loading vectors, often denoted as latent variables

(LVs), a parametric regression matrix, B
(n)
PLS , can

be calculated:

B
(n)
PLS = Wn

[
PT

nWn

]−1
QT

n , (5)

where Wn, Pn and Qn are matrices in which the
n w-weight and p- and q-loading vectors are stored
as column vectors in successive order.

The following properties of PLS are of importance
in subsequent sections.

Remark 1. The vectors vk, qk and pk are func-
tions of wk

Remark 2. The vectors vk and qk point to the
same direction in the response space, i.e. vk ∝ qk

Remark 3. The elements of each pair of score vec-
tors, tk and uk, are determined to have maximum
covariance.

It follows from Remark 1 that the w-weight vector
completely characterizes PLS, i.e. using wk, the
score, loading and the v-weight vector can be
computed.

3. NONLINEAR PARTIAL LEAST SQUARES

Various nonlinear extensions of PLS have been
proposed that rely on a nonlinear mapping, where
the u-scores are predicted using a nonlinear func-
tion of the t-scores:

uk = f (tk) + ek, (6)

where ek is the residual vector of uk. The following
functions, f (◦), were introduced: second order
polynomials (Wold et al., 1989; Baffi et al., 1999a),
smoothing procedures (Frank, 1990), spline func-
tions (Wold, 1992), artificial neural networks (Qin
and McAvoy, 1992; Holcomb and Morari, 1992;
Wilson et al., 1997; Baffi et al., 1999b) and Box-
Tidwell transformations (Li et al., 2001).

It follows from Remark 1 that the algorithms by
(Wold et al., 1989; Baffi et al., 1999a; Baffi et



al., 1999b) exhibit a close relation to PLS. More
precisely, tk, vk, uk, pk, qk are linear or nonlinear
functions of wk. The update procedure of the ith

iteration step for the w-weight vector, wi,k, is
given by (Baffi et al., 1999a):

∆wi+1,k =
[
ZT

i,kZi,k

]†
ZT

i,kei,k

wi+1,k =
wi,k +∆wi+1,k

‖wi,k +∆wi+1,k‖2
, (7)

where † represents the generalized inverse of a
matrix and Zi,k is a matrix in which the non-
linear function of the kth t-scores are stored. For
example, the jth row of this matrix has the fol-
lowing elements for a second order polynomial,
ui,jk = ai,1 + ai,2 · ti,jk + ai,3 · t

2
i,jk + ei,jk,

zT
i,jk =

(
ai,2 · x

T
jk 2 · ai,3 · x

T
jk

)
, where ai,1, ai,2

and ai,3 are coefficients that are determined using
a standards least squares procedure for instance
and xT

jk is the jth row vector of Xk.

The algorithm by (Baffi et al., 1999a) is based
on the work by (Wold et al., 1989). More pre-
cisely, (Baffi et al., 1999a) introduced some sim-
plifications to enhance the algorithm by (Wold
et al., 1989). The simplified algorithm was later
extended to include the application of neural net-
works (Baffi et al., 1999b). The error-based algo-
rithm by (Baffi et al., 1999a; Baffi et al., 1999b) is
analyzed in the next sections.

4. ANALYSIS OF ERROR-BASED
NONLINEAR PLS

Since updating wi+1,k =
wi,k+∆wi+1,k

‖wi,k+∆wi+1,k‖2

is based

on minimizing the residuals of the kth score model,
ei,k, it is not guaranteed that the elements in
each pair of score vectors are determined to have
maximum covariance after converged. This can be
seen by analyzing the cost function with which the
w-weight vector is determined:

J
(w)
k =min

wk

‖ek‖
2
2 = min

wk

‖uk − f (tk)‖
2
2

=min
wk

‖Ykvk − f (Xkwk)‖
2
2 , (8)

which is subject to the following constraints:

G
(v)
k = vk −

YT
k f (Xkwk)∥∥YT
k f (Xkwk)

∥∥
2

= 0

G
(w)
k = ‖wk‖

2
2 − 1 = 0. (9)

To simplify the analysis of the above error-based
algorithm, the function f (tk) is assumed to be
linear. This allows a strict comparison between
conventional PLS and “linear” error-based PLS.

Using a linear function gives rise to the following
Theorem, proven in Appendix A.

Theorem 1. If a linear function of the t-scores is
used to predict the u-scores, i.e. uk = aktk + ek

with ak being a regression coefficient, the weight
vector wk is the most dominant eigenvector of the

matrix expression
[
XT

k Xk

]†
XT

k YkY
T
k Xk.

The solution for obtaining wk, however, is equiv-
alent to the solution of the RRR cost function,
which gives rise to the following Conclusion.

Conclusion 1. If a linear relationship between the
score variables is considered, the error-based iter-
ation procedure by (Baffi et al., 1999a; Baffi et
al., 1999b) produces, in fact, a RRR solution.

For completeness, the cost function of RRR and
its solution are provided in Appendix B. Conclu-
sion 1 can be reformulated as follows.

Conclusion 2. Since the error-based iteration pro-
cedure converges to produce a RRR solution, it is
not guaranteed that the elements in the score vec-
tors, tk and uk describe a maximum covariance.

An examples to support Conclusion 2 is given
in Section 6. The equivalence between a linear
version of error-based PLS and RRR follows from
the v-weight vector being a function of the w-
weight vector.

Theorem 2. By incorporating the constraint G
(v)
k =

vk −
Ykûk

‖Ykûk‖
2

= vk −
Yktk

‖Yktk‖2

= 0, the error-

based cost function minimizes the residuals of
the response variables instead of minimizing the
residuals of the kth score variables.

The proof of Theorem 1 can also be applied to
prove Theorem 2. Note that the error-based pro-
cedure complies with Bellman’s principle of opti-
mality (Bellman, 1957) for predicting the response
variables.

By applying a nonlinear mapping between the
score variables, as shown in Equation (6), the
kth u-score variable is predicted more accurately
in case the underlying process exhibits nonlinear
relationships between the predictor and response
variables. On the basis of Theorem 2, this in-
creased accuracy translates into an increased ac-
curacy for predicting the response variables. This
is, again, a result of the constraint applied to the
v-weight vector, which gives rise to the following
conclusion.

Conclusion 3. For nonlinear score models, the
error-based iteration procedure converges to min-
imize the residual variance of the response vari-
ables.



Conclusion 3 can be argued on the basis of the
following Lemmas.

Lemma 1. The constraint of the v-weight vector,
used to calculated the u-score vector, is deter-
mined to maximize the contribution of the pre-
dicted u-score vector to the response matrix.

Lemma 2. After the iteration procedure has con-
verged, the q-loading vector is obtained to max-
imize the contribution of the predicted u-score
vector to the response variables and points in the
same direction as the v-weight vector.

Lemma 3. The error-based iteration procedure
converges to minimize the variance of the score
model prediction and after conversion under the
constraint of the v-weight vector being a function
of the w-weight vector.

Lemma 1 and 2 are proven in Appendix C and
Lemma 3 follows from Equation (9). With respect
to PLS, Conclusions 2 and 3 give rise to postulate
the following conclusion.

Conclusion 4. The error-based iteration proce-
dure by (Baffi et al., 1999a; Baffi et al., 1999b)
is a nonlinear extension to RRR rather than a
nonlinear extension to conventional PLS.

The iterative error-based procedure is, in fact, a
gradient descent approach for minimizing Equa-
tion (8) by incorporating the constraints of Equa-
tion (9). It should therefore be noted that the
solution that is computed may be suboptimal, i.e.
the solution may present a local minimum rather
than a global minima. This might be circumvented
by applying a Genetic Algorithm. Although com-
putationally expensive this technique showed to
provide more accurate NLRRR models, as shown
by (Sharma et al., 2003).

Another problem is that the series of iteration
steps may not converge for each set of LVs. This,
however, has not yet been reported and the ap-
plications of NLRRR in Section 6 also showed
convergence. In contrast, the “linear” error-based
iteration procedure converges to compute the
most dominant eigenvector of a matrix expression.
This, in turn, implies that (i) the results are op-
timal and (ii) convergence problems will usually
not arise (Golub and van Loan, 1996).

5. APPLICATION STUDIES

In this section, the NLRRR algorithm is applied to
a simulation study to illustrate the above findings.
In addition, the covariance of the elements of each

pair of t- and u-scores are determined for PLS and
NLRRR.

The simulated process contained 4 predictor vari-
ables, denoted as x1, x2, x3 and x4, and 3 output
variables, referred to as y1, y2 and y3. The predic-
tor variables were generated as follows:

x1 = 0.821 · t1 + 0.444 · t2

x2 = 0.615 · t1 + 0.744 · t2

x3 = 0.921 · t1 + 0.738 · t2

x4 = 0.176 · t1 + 0.405 · t2, (10)

where t1 and t2 were normally distributed se-
quences of zero mean and unit variance, i.e.
t1, t2 ∈ N {0, 1}. Using the 4 predictor variables,
the response variables were then computed to be:

y1 = exp (2 · x1 · sin (π · x4)) + sin (x2 · x3)

y2 = x21 + sin (π · x2 · x3) + x44

y3 = exp (x2 · cos (π · x4)) + x1 · x4. (11)

A data set of 1000 samples was obtained as de-
scribed above and an identically and indepen-
dently distributed sequence of zero mean and vari-
ance 0.01, was superimposed on each variable to
represent measurement noise. A division of the
recorded data set was then carried out as follows.
The first 800 samples were used as reference data
to identify a NLRRRmodel and the remaining 200
samples were used to test the identified model.

Prior to the identification of the NLRRR model,
the variables of the reference data set were nor-
malized, i.e. mean centered and scaled to unit
variance. The nonlinear function was selected to
be second order polynomials. To highlight that
the NLRRR algorithm may not calculate pairs of
t- and u-scores that have a maximum covariance,
each pair of score vectors was evaluated for PLS
and NLRRR. The results of this comparison are
summarized in Table (1).

Table 1. Variance captured by score
models for PLS and NLRRR

#LV PLS Model NLRRR Model

1 2.1083 0.1614

2 0.2180 0.0319
3 0.0003 0.0002

4 0.0000 0.0000

It could clearly be seen from Table (1), that the
PLS model determined pairs of t- and u-scores
that described a significantly larger covariance
than those computed by the NLRRR model. The
model performance of the NLRRR model was
evaluated on the reference data using the percent-
age contribution of each set of LVs and their cu-
mulative percentage contribution captured in the
predictor and response matrices. Furthermore, the



mean squared prediction error (MSPE) were also
analyzed. Table (2) summarize the performance of
the identified NLRRR model.

Table 2. Performance of NLRRR model

#LV
Contr

to X

Tot

Contr
to X

Contr

to Y

Tot

Contr
to Y

MSPE

1 88.38 88.38 42.86 42.86 1.7121

2 11.50 99.88 8.09 50.95 1.4698
3 0.07 99.95 0.17 51.12 1.4648

4 0.05 100.00 0.08 51.20 1.4626

Given the construction of the predictor variables,
the predictor matrix without the introduction of
measurement noise has rank 2. Thus, only two sets
of LVs were required to represent the structure
between the predictor and response variables.
This could also be revealed by the NLRRR models
as their variance contribution of the 3rd and 4th

set of LVs was insignificant for (i) predicting
the response matrix and (ii) reconstructing the
predictor matrix. Hence, only two score models
were required to represented the variation of the
predictor and response variables, respectively.

6. CONCLUSIONS

In this paper, nonlinear extensions of PLS, in-
troduced by (Wold et al., 1989) and (Baffi et
al., 1999a), were analyzed. This analysis revealed,
firstly, that these algorithms, in fact, determine
a linear RRR model if the nonlinear functions,
incorporated in the score models, are replaced
by linear functions. Secondly, these algorithms
should therefore be seen as nonlinear extensions
of RRR, instead of nonlinear extensions to PLS.
Thirdly, the weight and loading vectors of the
response variables point in the same direction.

The analysis yielded further that the algorithm
by (Baffi et al., 1999a) are based on a gradient
descent technique and may therefore produce a
sub-optimal solution. In addition, the series of
iteration steps may not converge for each set of
LVs. Convergence problems, however, have not yet
been reported and were also not experienced in
this work. To alleviate the determination of an
optimal solution for the associated cost functions
and their constraints, (Sharma et al., 2003) in-
troduced the application of a Genetic Algorithm
strategies.

The above findings were demonstrated using an
application studies to a synthetic example.

Appendix A. LINEAR ERROR-BASED
PARTIAL LEAST SQUARES

For simplicity, the subscripts on matrices and
vectors, that indicate which LV is currently being

determined, are omitted. For the ith iteration
step, the dependency of the weight vector vi, the
regression coefficient bi and the residual vector ei

upon the weight vector wi is as follows:

vi =
YT Xwi

‖YT Xwi‖2
(A.1)

bi =
wT

i XT YYT Xwi

wT
i XT Xwi ‖YT Xwi‖2

ei =
YYT Xwi

‖YT Xwi‖2
−Xwi

wT
i XT YYT Xwi

wT
i XT Xwi ‖YT Xwi‖2

,

which implies that the update of the weight vector
wi is given by:

∆wi+1 =
[
XT X

]† XT YYT Xwi ‖Xwi‖
2
2

‖YT Xwi‖
2
2

−wi.

(A.2)
Consequently, the w-weight vector for the (i+1)th

iteration step is calculated as:

wi+1 =

[
XT X

]†
XT YYT Xwi∥∥∥[XT X]

†
XT YYT Xwi

∥∥∥
2

. (A.3)

The above iteration is equivalent to the Power
method (Golub and van Loan, 1996) for determin-
ing the most dominant eigenvector of the positive

definite or semi-definite matrix
[
XT X

]†
XT YYT X.

On convergence, the most dominant eigenvalue is

equal to wT
[
XT X

]†
XT YYT Xw.

Appendix B. COST FUNCTION AND
SOLUTION FOR REDUCED RANK

REGRESSION

The residuals of the response matrix are given by:

E = Y − ttT Y, (B.1)

which is based on the following constraints:

G(t) = t−Xw = 0 G(w) = wT XT Xw−1 = 0
(B.2)

Using the above equations, the RRR cost function
for w is:

J (w) =min
w

trace
{
ET E

}
(B.3)

=min
w

trace
{
YT Y

}
− trace

{
YT ttT Y

}
.

The solution of the above cost function can be
obtained as follows:

∂J (w)

∂t

∂t

∂w
− λ

∂G(w)

∂w
= 0 (B.4)

and is given by:

2wT XT YYT X− λ2wT XT X = 0

λw =
[
XT X

]†
XT YYT Xw. (B.5)

Consequently, w is the eigenvector associated

with the largest eigenvalue of
[
XT X

]†
XT YYT X.



Appendix C. DETERMINATION OF THE
V-WEIGHT AND Q-LOADING VECTOR

The response matrix can be predicted using the
prediction of the u-score vector, f (t), and the
loading vector q:

Y = f (t)qT + E, (C.1)

where E is a residual matrix. Given the case that
f (t) is predetermined, qT can be regarded as an
independent vector and the minimum variance of
E is given by:

qT =
(
f (t)

T
f (t)

)−1
f (t)

T
Y, (C.2)

which is equal to:

q =
YT f (t)

f (t)
T
f (t)

∝ YT f (t) , (C.3)

as f (t)
T
f (t) is a scalar.The v-weight vector is

also proportional to YT f (t), which implies that
(i) the v-weight and the q-loading vector lie in
the same direction and (ii) both are obtained to
minimize the variance of the residual matrix E.
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