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Abstract: Maintaining the glucose concentration in normoglycemic range in Type I 
diabetic patients is challenging. In this study, the Enhanced Internal Model Controller 
(EIMC) is developed for a diabetic, due to its simple structure, better disturbance 
attenuation and uncertainty reduction capabilities. A first order plus time delay (FOTD) 
model approximation of nominal patient model is used for developing the EIMC. The 
controller performance is assessed based on its ability to track normoglycemic set point 
(81.1 mg/dl) in response to a 50 g meal disturbance. In the nominal case, the controller 
maintains the glucose concentration within  6.5 mg/dl of set point. The robustness of the 
controller is studied by application to a fairly "diverse" group of "patients", and compared 
with that of IMC controller. Copyright © 2004 IFAC. 
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1. INTRODUCTION 

Diabetes mellitus is a major chronic disease affecting 
millions of people worldwide, Type I or insulin-
dependent diabetes mellitus (IDDM) is characterized by 
the insufficient secretion of insulin from the -cells of 
pancreas, resulting in glucose concentrations elevated 
beyond the normoglycemic range (70-100 mg/dl) 
(Ashcroft and Ashcroft, 1992). The prevalence of 
sustained hyperglycaemia (arterial glucose 
concentration > 120 mg/dl) is the reason for long-term 
complications associated with diabetes such as 
nephropathy and retinopathy. The current treatment 
methods of insulin therapy are largely “open loop” in 
nature. Intuitively, it can be said that “closed loop” 
control approaches can result in good glycaemia control 
over extended periods of time. Such a strategy would 
involve three major components – a mechanical pump, 
in-vivo glucose sensor and a mathematical algorithm to 
regulate the pump and set appropriate insulin dosage 
based on a sensor measurement. These aspects have 
been active areas of research in the diabetes literature. 
Present work focuses on the automatic control aspects 
of blood glucose regulation. 

Early modelling studies of the diabetic condition (Bolie, 
1961; Ackerman et al., 1965) established a precedent 
for mathematical analysis of insulin-glucose 
interactions. Later studies utilized the more complicated 
nonlinear models such as Bergman’s “Minimal Model” 
(Bergman et al., 1981) and incorporated physiological 
system knowledge in the model structure (Cobelli and 
Mari, 1983; Sorensen, 1985). Various model based 
optimal control algorithms have been developed 
utilizing these models in either an explicit or implicit 
fashion (Sorensen, 1985; Ollerton, 1989; Fischer 1991; 
Parker et al., 1999). In the synthesis of these controllers, 

however, the inherent uncertainty in the model has not 
been properly addressed. Such control strategies could 
lead to significant performance degradation, in the 
presence of inevitable patient-model mismatch.  

Significant inter- and intra-patient variability has been 
documented in literature (Bremer and Gough, 1999; 
Pucket and Lightfoot, 1995; Simon et al., 1987; Steil et 
al., 1994), resulting in the controller to be retuned for 
each patient. The control algorithm employed in the 
insulin delivery device must be able to compensate for 
the uncertainty that exists between the internal model 
and the actual patient. This clearly motivates the 
synthesis of a controller that can handle the model-
patient mismatch. Parker et al. (2000) used the H
framework to explicitly treat the model uncertainty. 
They employed a detailed and fairly complex
physiological patient model (19 state nonlinear dynamic 
model) because it allows uncertainty characterization 
on particular tissues or effects that are responsible for
the insulin or glucose variability. This detailed model is 
used in this study too but the focus is on an Enhanced 
Internal Model Controller (EIMC) scheme of Zhu et al. 
(1995). owing to its simple structure and better 
uncertainty and disturbance attenuation. Despite these 
attractive features, EIMC has not been applied for blood 
glucose control so far. Its robustness to typical inter- 
and intra-patient variability will be demonstrated. 

2. THE MATHEMATICAL MODEL  

A nonlinear pharmacokinetic/pharmacodynamic 
compartmental model of the diabetic patient has been 
constructed previously (Guyton et al., 1978; Sorensen, 
1985; Parker, 1999), and is detailed in Parker et al. 
(2000). A few typographical errors in the differential 



equations provided there are corrected and listed in the 
appendix of this article. The meal disturbance model of 
Lehmann and Deutsch (1992) was included in the 
model of Parker et al. (2000). The specific operating 
conditions for the diabetic patient model used in testing 
the robust controller algorithms are described in Parker 
(1999). The diabetic patient model had two inputs and 
one measured output. Insulin delivery rate, represented 
as deviation from its 22.3 mU/min nominal delivery 
rate, was the manipulated variable (represented as u ).
The meal disturbance had a nominal value of 0 mg/min 
(absorption into the blood stream), and its signal was 
denoted as dm . The measured variable Y  represented 
the deviation in blood glucose concentration from the 
nominal value of 81.1 mg/dl. All these three variables 
were scaled as mentioned in Parker et al. (2000).
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Here, the disturbance scaling was determined by its 
maximum value, and the output scaling by maximum 
allowable deviation in glucose concentration. Note that 
the measured value, Y is (blood) plasma glucose 
concentration, obtained by multiplying the arterial 
glucose concentration (3rd state in the model of Parker 
et al., 2000) by a correcting factor of 0.925. 

The EIMC controller synthesis requires a linear model 
of the system to be controlled. A 19th order linear model 
was obtained by linearizing the nonlinear model of the 
diabetic around the nominal plasma glucose 
concentration of 81.1 mg/dl. Subsequently, the 19th

order model was reduced to a 3rd order model using 
“balanced realization” technique. The patient model
was also subjected to ±5% step change in the 
manipulated variable (i.e. insulin) and the resulting step 
response was used to identify a first order plus time 
delay (FOTD) model using the method of Sundaresan 
and Krishnaswamy (1977). From the step responses of 
the above-mentioned models (Fig 1), it appears that a
better fit of the patient dynamics is obtained with the 
FOTD model. 

3. UNCERTAINTY DESCRIPTION 

Uncertainty due to the differences between an actual 
patient and the patient model could be translated to 
variations in the model parameters. The glucose and 
insulin dynamics were found to be most sensitive to 
variations in the metabolic parameters (Parker et al., 
1998). In the patient model, glucose metabolism is 
mathematically described by threshold functions with 
the following structure 

e = E {A –B tanh[C (xi+D )] (2) 

The subscript i in equation (2) is the state vector 
element involved in the metabolic effect and the e
subscript denotes specific effects within the model: the 
effect of glucose on hepatic glucose production 
(EGHGP), the effect of glucose on hepatic glucose 
uptake (EGHGU) or the effect of insulin on peripheral 

Fig. 1. Response of nonlinear (dot), 19th order linear 
(cross), 3rd order linear (dash-dot), first order with 
time delay (dotted) models to ±5% step changes in 
insulin from the nominal 22.3 mU/min. 

glucose uptake (EIPGU). Inter- or intra-patient 
uncertainty could be classified physiologically as either 
receptor (D parameter) or post-receptor (E parameter) 
defect, and this was modelled mathematically by 
adjusting the inflection point of the hyperbolic tangent 
function or the maximum value of e respectively. 
Differences in insulin clearance (metabolism) between 
patients also exist, and could be modelled as deviations 
in the fraction of clearance from a given compartment 
such as the fraction of hepatic clearance (FHIC) or the 
fraction of peripheral insulin clearance (FPIC). This 
uncertainty formulation essentially focused on the liver 
(variability in five parameters) and the peripheral 
(muscle/fat) tissues (variability in three parameters) as 
these were considered to be more relevant to the control 
study (Parker et al., 2000).  

In the absence of physical data from which to identify 
ranges for parametric variations, Parker et al. (2000) 
assumed ±40% parametric variability in each parameter 
represented a broad range of potential patients. The 
exception was FHIC, which was limited to ±20% to 
guarantee non-negative glucose concentrations. From 
these eight parameters, sets of three parameters were 
chosen. Each of these three parameters were tested at
three levels (nominal, low and high) yielding a total of 
8C3 × 33 = 1512 “patients”. Patients with similar values 
for all the eight parameters were removed and this 
resulted in a set of 577 unique patients. These patients 
are assumed to capture all the inter- and intra-patient 
variability among Type I diabetics. Each of these 
patients was subjected to a 50 g meal disturbance at t = 
0 under closed-loop to test the robustness and 
disturbance attenuating capabilities of the controller 
designed.  

Bounds on open-loop responses of patient models to 
step change in insulin (from the value required to 
maintain the output at 81.1 mg/dl) to 0 mU/min, are 
shown in Fig 2. These responses are very similar to
those reported in Parker (1999), confirming the validity 
of patient models employed in this study. They also 
show the broad range of patient dynamics. Note that the 
glucose profiles  shown in Fig. 2 are for ±50% variation 
in parameters where as only ±40% variation in 
parameters is considered to test controller robustness. 



Fig. 2. Response of some patient models to the step
change in insulin to 0 mU/min: solid - nominal
patient model; dashed - response bounds for ± 50%
variations in EGHGP-E ; dash-dot - response
bounds for the simultaneous ± 50% variations in
EGHGP-E and EIPGU-D .

4. SYNTHESIS OF THE EIMC

The conventional IMC structure is shown in Fig 3, 
where Gp is the plant to be controlled, Gm is a model of
the plant, and C is the IMC controller, R is the reference
input to the control system, Y is the system output and
D is the equivalent external disturbance. The IMC
controller design involves two steps

Step1: The process model Gm(s) is factorized as

Gm(s) = Gm
+(s) Gm

-(s) (3)

where Gm
+ (s) contains any time delays and right-half

plane zeros. It is specified so that its steady-state gain is 
1. And, Gm

-(s) contains the remaining invertible
dynamics of Gm(s).

Step 2: The IMC controller is specified as
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1)s(C
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where f (s) is a low-pass filter with steady-state gain of 
1. This filter typically has the form

r1s
1)s(f  (5)

Fig. 3. Conventional IMC system

where  is the tuning parameter to be selected by the
control engineer so as to meet the robustness and
performance requirements of the control system. The 
parameter ‘r’ is a positive integer that is selected so that
either C(s) is a proper transfer function or the order of
its numerator exceeds the order of the denominator by
1, if ideal derivative action is allowed.

From Fig 3, the closed loop servo transfer function GR

and the closed loop disturbance transfer function GD of 
the conventional IMC system can be derived as follows.
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The EIMC structure (Zhu et al., 1995) is shown in Fig
4. It can be seen that an additional path is appended to
the IMC system within the plant-model parallel
structure. Here, in addition to the IMC controller, C1
(same as C in Fig. 3), C2 is the ‘complementary’ IMC
compensator and K is pure gain. By inserting this
additional path into the original IMC system, a
complementary control signal generated from the plant-
model error is injected into the output of the original
IMC controller. This leads to the EIMC structure whose
performance was shown to be superior to IMC in the
presence of modelling errors (Zhu et al., 1995).

From Fig 4, the closed loop servo transfer function
(G1

R) and the closed loop disturbance transfer function
(G1

D) of the EIMC structure can be derived as follows.

 (8)
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The disturbance attenuating capability of the EIMC is
improved with large K and a smaller 2 as the 
denominator in the equation (9) becomes high. The
values of both r1 and r2 are 1 in the present study.

Fig. 4. Enhanced IMC structure



5. RESULTS AND DISCUSSION

Internal Model Controller (IMC) was developed for
regulating the glucose level in diabetics. The filter 
constant,  of 25 was initially chosen based on robust
performance and stability analysis. Then, the IMC
performance with various values of  was tested by
subjecting the nominal patient to 50 g meal disturbance
(see the results in Fig. 5 for K = 0 and  = 25). 
Disturbance rejection of the IMC improved with
decrease in . Robustness of the IMC was then tested 
on all 577 patients and the results are summarized in 
Table 1. Number of patients whose blood glucose
concentration was maintained by IMC within
normoglycemic range (70-100 mg/dl), is given in the
second column. Glucose concentration below 60 mg/dl
is the dangerous hypoglycaemic region. Hence, number
of patients whose glucose concentration was maintained
by the IMC within 60-100 mg/dl, is also presented in 
Table 1. Also, average IAE and standard deviation of 
IAE based on all 577 patients are reported in this table.
Results in Table 1 show that decreasing  has increased
number of patients whose glucose concentration is
maintained between 70-100 mg/dl and 60-100 mg/dl
while rejecting 50 g meal disturbance, and also the
average IAE and standard deviation of IAE decreased.
These and transient responses (not shown here) indicate
that decreasing has improved the performance of
IMC. But the IMC even with  =2 is not able to 
maintain the glucose concentration within
normoglycemic range in 46% of the patients. This led
us to investigate if the EIMC strategy can deliver better
disturbance rejection even in the presence of model
uncertainty as compared to the conventional IMC.

For EIMC, conservative values of 1 = 25 and 2 = 20 
were selected. The performance of the EIMC for
various values of K, in rejecting 50 g meal disturbance
acting on the nominal patient at t = 0, is shown in Fig. 5
Overshoot, undershoot and IAE of the closed-loop
response are summarized in Table 2. As expected from 
equation (9), the disturbance attenuating capability of
the EIMC improves with increasing K; however,
oscillations in the glucose concentration also increase
with K. Table 2 shows that increase of K from 0 to 8
reduces overshoot, undershoot and IAE, and increasing
K further to 12 increases overshoot, undershoot and
IAE indicating possible stability problems at higher K.

Table 1: Performance of IMC with various values of
filter constant, for all 577 patients subjected to 50 g
meal disturbance at time t = 0. 

No. of Patients with
Glucose Conc. (mg/dl)

70-100 60-100

Average
IAE for
all 577
patients

Standard
Deviation

of IAE

25 113 198 318.9 185.9
15 163 294 262.5 170.4
5 250 412 193.5 145.5
2 310 451 169.4 134.7

Note: In this and subsequent tables, IAE values for a
simulation time of 800 min for each patient. 

Fig. 5. Disturbance rejection of the EIMC with 1 = 25 
and 2 = 20 for various values of K: nominal
patient model subjected to 50 g meal disturbance.

Table 2. Effect of K on rejecting the 50 g meal
disturbance by the EIMC: nominal patient model.

K Overshoot
(mg/dl)

Undershoot
(mg/dl) IAE

0 22.77 18.38 272.6
2 9.99 9.63 111.5
4 6.33 6.49 69.4
8 3.54 3.85 42.4

12 3.99 4.90 94.6

From the results in Fig. 5 and Table 2, K = 4 is
considered to be most suitable in the EIMC in order to
obtain good performance and robustness, and will be
used in the subsequent simulations. The effect of 1 and 

2 on the performance of the EIMC was tested while 
keeping K = 4. As before, 577 patients were subjected
to 50 g meal disturbance and the results are summarized
in  Table 3. Reducing 1 and 2 does not provide much
improvement in performance, and the marginal increase
in the average IAE and standard deviation of IAE is due
to oscillations in the response at lower 1 and 2. The
parameters K = 4, 1 = 20 and 2 = 20 will be used in
the EIMC for subsequent simulations. For these
parameter values, only 75 patients (13%) have entered
the dangerous hypoglycaemic region (i.e., glucose
concentration < 60 mg/dl). In all these 75 patients, one
parameter, namely, FPIC is at 0.21 (a +40% variation
from nominal). This number is comparable to 72
patients mentioned by Parker et al. (2000) when H
controller was employed.

Table 3: Effect of 1 and 2 on EIMC (with K = 4)
performance for all 577 patients, when each of
them is subjected to a 50 g meal disturbance.

No. of Patients
with Glucose
Conc. (mg/dl)1 2

70-100 60-100

Average
IAE for
all 577
patients

Std.
Dev.

of IAE

25 20 461 502 102 95.6
20 20 462 502 93.2 89.2
20 15 473 505 95.3 119



Fig. 6. Transient response of the EIMC for two
perturbed patients (giving the lowest and highest
IAE) and the nominal case, in attenuating 50 g 
meal disturbance at time t = 0. 

Performance of the EIMC on two perturbed patients
and nominal patient are depicted in Fig 6. The two
perturbed patients considered are those having the
lowest and highest IAE value among the 502 patients
whose glucose concentration was controlled within 60-
100 mg/dl. The parameters of the patient with the
lowest IAE are EGHGU-D =-0.88; FHIC=0.32; FPIC
=0.09, while those of the patient with the highest IAE 
are EIPGU-E = 1.4; EGHGU-E =1.4; FPIC=0.21. Rest
of the parameters are at their nominal values for both
cases. Responses of about 250 perturbed patients with
parameters different from those of the nominal patient,
when subjected to 50 g meal disturbance, are similar,
and one of these responses is shown in Fig 7. The
transients in Figs. 6 and 7 have just a few oscillations
and are acceptable.

Next, the EIMC controller is tested on a patient whose
parameters are different from the 577 patients
considered in this study. This case is specified as the
worst-case performance of the continuous-time H
controller, including uncertainty weighting and
parametric uncertainty in Parker et al., (2000).
Disturbance rejection by the H  controller for this case 
was shown in Figure 9 of Parker et al. (2000). The
response by the EIMC for this patient model, illustrated
in Fig 8, is better than that by the H  controller.

Fig. 7. Performance of EIMC on a perturbed patient
model with parameters EGHGP-E = 1.4, EIPGU-
D  = -8.15, EGHGP-D  = -0.6957. The remaining
five parameters are at their nominal values. 

Fig. 8. Performance of EIMC on a perturbed patient
model with parameters: EIPGU-D  = -8.15,
EGHGU-D = -2.072, FHIC = 0.36. The remaining
five parameters are at their nominal values. 

6. CONCLUSIONS

The EIMC structure utilizes a simple FOTD model and
is shown to provide a very good regulation of blood
glucose concentration of diabetics. It is able to maintain
the glucose concentration above the dangerous
hypoglycaemic range (< 60 mg/dl) in 87% of 577 
patient models tested. For these patients, average IAE
and standard deviation of IAE are reduced by nearly
half  by the EIMC scheme compared to the IMC
structure. Further, the performance of the former is
comparable to that of H  controller. Thus, the EIMC is 
very attractive for glycaemia control owing to its simple
structure and design as well as good robustness.

REFERENCES

Ackerman, E., L.C. Gatewood., J.W. Rosevear, and 
G.D. Molnar, (1965), Model Studies of Blood-
Glucose Regulation, The Bulletin Of Mathematical
Biophysics, 27(Suppl.), 21.

Ashcroft, F.M. and S.J.H. Ashcroft, (1992), Insulin:
Molecular Biology to Pathology, Oxford
University Press, New York. 

Bergman, R.N., L.S. Phillips and C. Cobelli, (1981),
Physiologic Evaluation of Factors Controlling
Glucose Tolerance in Man, Journal of clinical
investigation, 68, 1456. 

Bolie, V.W. (1961), Coefficients of Normal Blood
Glucose Regulation, Journal of Applied
Physiology, 16, 783.

Bremer, T. and D.A. Gough, (1999), Is Blood Glucose
Predictable From Previous Values? A solicitation
of Data, Diabetes, 48, 445.

Cobelli, C. and A. Mari, (1983), Validation of
Mathematical Models of Complex Endocrine-
Metabolic Systems. A Case Study on a Model of
Glucose Regulation, Medical & biological
engineering & computing, 21, 390.

Fischer, M.E. (1991), A semiclosed-loop Algorithm for 
the Control of Blood Glucose Levels in Diabetics,
IEEE Transactions on Biomedical Engineering, 38,
57.



Guyton, J.R., R.O. Foster, J.S. Soeldner, M.H. Tan,
C.B. Kahn, L. Koncz, and R.E. Gleason, (1978), A
model of Glucose-Insulin Home-ostasis in Man 
that Incorporates the Heterogeneous Fast Pool
Theory of Pancreatic Insulin Release, Diabetes, 27,
1027.

Lehmann, E.D. and T. Deutsch, (1992), A Physiological
Model of Glucose-Insulin Interaction in Type 1
diabetes Mellitus, Journal of Biomedical
Engineering, 14, 235.

Ollerton, R.L. (1989), Application of Optimal Control
Theory to Diabetes Mellitus, International Journal
of Control, 50, 2503.

Parker, R.S. (1999), Model-Based Analysis and Control
for Biosystems, PhD thesis, Dept. of Chemical
Engineering, University of Delaware. 

Parker, R.S. (2002), Personal correspondence.
Parker, R.S., F.J. Doyle III, and N. A. Peppas, (1999),

A Model-Based algorithm for Blood Glucose
Control in Type I Diabetic Patients, IEEE
Transactions on Biomedical Engineering, 46, 148.

Parker, R.S., F.J. Doyle III., J.H. Ward and Nicholas A.
Peppas, (2000), Robust H  Glucose control in
Diabetes Using a Physiological Model, AIChE J, 
46, 2537-2549.

Puckett, W.R. and E.N. Lightfoot, (1995), A Model for
Multiple Subcutaneous Insulin Injections
Developed from Individual Diabetic Patient Data,
American Journal of Physiology, 269
(Endocrinology metabolism 32), E1115.

Simon, G., G. Brandenberger and M. Follenius, (1987),
Ultradian Oscillations of Plasma Glucose, Insulin,
and C-Peptide in Man During continuous Enteral
Nutrition, Journal of Clinical Endocrinology and
Metabolism, 64, 669.

Sorensen, J.T. (1985), A physiologic Model of Glucose
Metabolism in Man and its use to Design and
Assess Improved Insulin Therapies for Diabetes,
PhD Thesis, Dept. of Chemical Engineering, MIT.

Steil, G.M., J. Murray, R.N. Bergman and T.A. 
Buchanan, (1994), Repeatability of Insulin
Sensitivity and Glucose Effectiveness from the
Minimal Model – Implications for Study Design,
Diabetes, 43, 1365.

Sundaresan, K.R. and P.R. Krishnaswamy, (1977),
Estimation of time delay, time constant parameters
in time, frequency, and Laplace domains,
Canadian Journal of Chemical Engineering, 56,
257.

Zhu, H.A., C.L. Teo., A.N. Poo and G.S. Hong, (1995),
An Enhanced Internal Model Structure, Control
Theory and Advanced Technology, Vol 10, No 4,
Part 2, pp. 1115-1127.

APPENDIX

Equations A13, A20, A25 and A29 in Parker et al.
(2000), corrected for typographical errors, are listed 
below. The parameter FKC = 0.3 is missing in Table A1
of Parker et al. (2000). All these were confirmed by
Parker (2002).
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