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Abstract: Lithium-ion batteries are widely used in industry to supply different portable
applications. Their management is handled by Battery Management Systems (BMSs), which are
intended to ensure good performance (such as minimum charging time) while simultaneously
minimizing safety risks. The use of accurate mathematical models can help in achieving such
goals. The first-principles pseudo-two dimensional (P2D) model is one of the mostly used models
for simulation but rarely used in design of BMSs. This model, together with a description of
the capacity fade mechanisms occurring during battery operations, is used to design health-
aware BMS strategies. A Model Predictive Control (MPC) scheme based on a linearized version
of the P2D model is proposed in order to track a reference value of the State of Charge
(SOC), while taking into account the aging dynamics of the system as well as temperature
and voltage constraints. Simulations show the effectiveness of the approach: the tuning of the
control parameters allows controlled operation with different tradeoffs between charging time
and battery lifetime enhancement.

Keywords: Advanced Battery Management Systems, health-aware control of Li-ion batteries,
model predictive control

1. INTRODUCTION

In the past decades, the ever increasing usage of consumer
electronics, hybrid and electric vehicles, and energy storage
devices has resulted in a significant demand for reliable
and high-performance electrochemical accumulators. Dif-
ferent chemistries have been developed, including nickel-
cadmium batteries (NiCd), nickel-metal hydride batter-
ies (NiMh), lead-acid batteries, and Li-ion accumulators.
Among the different technologies, Li-ion batteries exhibit
the best tradeoff in terms of power capacity, energy den-
sity, high open-circuit voltage, and wide temperature op-
erations (for example, see Besenhard (2008) and Van den
Bossche et al. (2006)). The use of detailed mathematical
models allows the design of better batteries and improved
Battery Management Systems (BMSs). The two main
classes of models are used in literature for describing Li-ion
batteries are the Equivalent Circuit Models (ECMs), and
the Electrochemical Models (EMs) (for further details see
Ramadesigan et al. (2012) and references therein). ECMs
require less computational effort, whereas EMs are able to
represent the electrochemical phenomena more precisely.

This paper relies on the first-principles pseudo two-
dimensional (P2D) electrochemical model. Based on con-
centrated solution theory, the P2D model was developed

by Doyle et al. (1993) and allows the simulation of dif-
ferent chemistries and material compositions. Long-term
degradation effects occurring during battery operations
are also important when designing BMSs. The modeling
of these effects has been addressed by many authors in
the recent years (for example, see Sankarasubramanian
and Krishnamurthy (2012), Zhang and White (2008)).
Among them, a first-principles model able to accurately
describe the capacity fade mechanisms has been proposed
in Ramadass et al. (2003). This model is able to reproduce:
(i) the formation of the Solid-Electrolyte Interface (SEI)
layer, which results in an additional and variable resistance
between the electrolyte and active material (anode), and
(ii) the capacity fade effects which lead to a continuous
loss of capacity during the battery cycling.

The objective of this paper is to design an Advanced
Battery Management System (ABMS) for Li-ion batter-
ies using the P2D model in combination with a descrip-
tion of the capacity fade mechanisms. The inclusion of
the latter mechanisms allows the design of health-aware
charging strategies. The ABMS proposed in this work is
based on the Quadratic Dynamic Matrix Control (QDMC)
algorithm (Garcia and Morshedi (1986)). Since QDMC
requires the solution of a constrained optimization at each
time step, its online application can be prohibitive when
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high-order and nonlinear models are considered. For this
reason, the controller in this work is computed according
to a linearized input-output version of the P2D model.
The adoption of such a model significantly reduces the
computational burden without compromising the control
performance. Differently from our previous work (Torchio
et al. (2015)), the inclusion of the aging dynamics allows
the design of a health-aware charging protocol by adding
soft constraints on the battery capacity fade on top of the
already existing constraints on voltage and temperature.
In simulations, the proposed approach shows that differ-
ent tradeoffs between battery aging and minimum time
charging can be obtained by properly tuning the control
parameters.

2. LI-ION BATTERY MODEL

This section recalls the P2D model. To consider battery
aging, the model is augmented with dynamics describ-
ing the capacity fade effects and the formation of the
Solid-Electrolyte Interface layer at the electrolyte-anode
interface. A Li-ion cell is composed of five main sections:
the positive current collector (a), the cathode (p), the
separator (s), the anode (n), and the negative current
collector (v). The index z ∈ {a, p, s, n, v} is used to in-
dicate the different sections. The thickness of each battery
section is defined by Lz and L :=

∑
z Lz represents the

overall battery thickness. The electrodes and the porous
separator of the Li-ion cell are placed in contact with an
electrolyte solution, facilitating the flow of ions during
charging and discharging processes. During a charging
process, the ions deintercalate from the positive electrode
and, passing through the porous media of the separator,
intercalate into the negative electrode. The inverse process
occurs when discharging the cell. The diffusion of ions
within the electrodes is modeled by

∂

∂t
cavg
s (x, t) = − 3

Rs
j(x, t) (1)

c∗s(x, t)− cavg
s (x, t) = − Rs

5Ds
eff

j(x, t), (2)

where t ∈ R+ represents the time, x ∈ R is the one-
dimensional spatial variable, c∗s(x, t) and cavg

s (x, t) are
the surface and average concentration of solid particles
respectively, the function j(x, t) represents the ionic flux,
and Rs and Ds

eff account for the particle radius and
effective diffusion coefficients of the solid phases. The bulk
State of Charge (SOC) of the anode is defined as

SOC(t) :=
1

Ln c
max,n
s

∫ Ln

0

cavg
s (x, t) dx,

where cmax,n
s represents the maximum concentration of Li-

ions in the negative electrode. The flow of ions inside the
electrolyte solution is modeled by a diffusion equation,

ε
∂

∂t
ce(x, t) =

∂

∂x

[
Deff

∂ce(x, t)

∂x

]
+ a(1− t+)j(x, t), (3)

where ce(x, t) represents the electrolyte concentration of
ions, t+ defines the transference number, a is the particle
surface area to volume ratio, Deff accounts for the effective
diffusion coefficients in the electrolyte, and ε represents the
material porosity. According to Ohm’s law, the conserva-
tion of charge in the electrodes can be defined as

∂

∂x

[
σeff

∂

∂x
Φs(x, t)

]
= aFj(x, t), (4)

where Φs(x, t) is the solid potential, σeff is the electrodes
effective conductivity, and F is the Faraday’s constant.
The potential of the Li-ion cell is obtained as

Vout(t) := Φs(0, t)− Φs(L, t).

Similarly, a modified Ohm’s law is used to represent the
charge conservation within the electrolyte:

aFj(x, t) =− ∂

∂x

[
κeff

∂

∂x
Φe(x, t)

]
(5)

+
∂

∂x

[
2κeffRT (x, t)

F
(1− t+)

∂

∂x
ln ce(x, t)

]
,

where Φe(x, t) is the electrolyte potential, T (x, t) repre-
sents the temperature, R defines the universal gas con-
stant, and κeff is the effective conductivity of the liquid
phase. The temperature dynamics are modeled by an en-
ergy balance,

ρCp
∂

∂t
T (x, t) =

∂

∂x

[
λ
∂

∂x
T (x, t)

]
+Qohm(x, t) (6)

+Qrxn(x, t) +Qrev(x, t),

where ρ is the material density, Cp is the specific heat, λ
is the heat diffusion coefficient, and the terms Qohm(x, t),
Qrev(x, t), andQrxn(x, t) account for ohmic, reversible, and
reaction heat sources as shown in Kumaresan et al. (2008).

The above equations are coupled by means of the ionic
flux, which is defined as

j(x, t) = jint(x, t) + jside(x, t),

where jint(x, t) is used to model the electrode kinetics of
intercalation/deintercalation, and jside(x, t) accounts for
side reactions during the charging of the battery. Given
that the side reactions are considered to occur only at the
electrolyte-anode interface, the contribution of jside(x, t)
at the cathode side is null and no SEI resistance between
cathode and electrolyte is considered. As in Ramadass
et al. (2004), the side reaction flux is modeled using a
Tafel relation:

jside(x, t) = − i0,side(t)

F
exp

(
0.5F

RT (x, t)
ηside

)
, (7)

where i0,side(t) is the side reaction exchange current and
ηside is the side reaction overpotential defined as

ηside := Φs(x, t)− Φe(x, t)− USEI − Fj(x, t)Rf (t),

where the term USEI represents the side reaction Open
Circuit Voltage (OCV) and Fj(x, t)Rf (t) accounts for an
extra voltage drop due to the presence of the SEI resistance
Rf (t). The growth of the SEI layer is modeled as

∂

∂t
δ(x, t) = −Mw

ρ
jside(x, t), (8)

where Mw is the molar weight of the electrode and δ(x, t)
represents the film thickness. The overall film resistance is
given by

Rf (t) = RSEI +
δ̄(t)

ν
,

where RSEI is the initial SEI layer resistance, δ̄(t) is the
spatial mean of δ(x, t) and ν is the admittance of the film.

The side reaction exchange current i0,side(t) depends on
the battery applied current density Iapp(t) (Rashid and
Gupta (2014)). No experimental data are available for the
identification of such relation, and the empirical equation
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i0,side(t) = i0,base

(
Iapp(t)

I1C

)w
(9)

is adopted. At the anode side, due to the presence of
the SEI layer, the diffusion process of Li-ions within
the electrode (1),(2) is driven from j(x, t) = jint(x, t).
The intercalation flux is governed by the Butler-Volmer
equation

jint(x, t) =2
i0,int

F
sinh

[
0.5F

RT (x, t)
ηint

]
, (10)

where the exchange current density is given by

i0,int =Fkeff

√
ce(x, t)(cmax

s − c∗s(x, t))c∗s(x, t).

The overpotential at the anode side is defined as

ηint := Φs(x, t)− Φe(x, t)− Un − Fj(x, t)Rf (t),

while at the cathode side as

ηint := Φs(x, t)− Φe(x, t)− Up

where the terms Up and Un represent the cathode and
anode OCV respectively, and keff represents the effective
kinetic reaction rate. The intercalation flux jint(x, t) is zero
inside the separator.

The overall set of nonlinear and tightly coupled Partial
Differential Algebraic Equations (PDAEs) is used to rep-
resent all the electrochemical phenomena occurring in the
Li-ion cell. A more detailed description of the model with
the complete set of equations, boundary conditions (BCs)
and parameters used in this work can be found in Northrop
et al. (2011). The resulting set of PDAEs together with
the BCs is reformulated as a set of Differential Algebraic
Equations (DAEs). The spatial domain is discretized ac-
cording to the Finite Volume Method (FVM), whereas the
time domain is left continuous, according to the Method
of Lines (MOL) method as discussed in Schiesser (1991).

2.1 Capacity fade effects

In this work, degradation effects are considered to occur
only during charging processes of the cell, as discussed
in Ramadass et al. (2004). The dynamics describing the
capacity fade effects can be represented by the ODE

∂Qs

∂t
= anF

∫ Ln

0

jside(x, t)dx,

where Qs(t) accounts for the capacity fading as a function
of the side reaction flux. At the end of each charge cycle
Nc, an estimate of the overall lost capacity is computed as

QNc
s = Qs(tf )

where tf represents the duration of the charging cycle.
Before starting the next discharging cycle, the initial
concentration of the anode is updated by

cavg,init
s

∣∣
Nc+1

= cavg,init
s

∣∣
Nc
− QNc

s

FεnLn
.

According to this scheme, the long-term degradation ef-
fects considered in this work produce a reduction of the
cell capacity after each charging cycle.

3. MODEL IDENTIFICATION FOR ONLINE
CONTROL

Predictive control algorithms require the solution, at each
time step, of a constrained optimization. Solving these

problems, online and quickly, becomes intractable when
high-order nonlinear systems are considered. To overcome
this limitation, input-output models can be used to dra-
matically reduce the computational burden while still pro-
viding good performance. This work employs a particular
family of input-output models known as Finite Step Re-
sponse (FSR) models.

3.1 Finite Step Response (FSR) models

Linear models can be represented by means of different
formulations such as state-space, finite impulse response,
and autoregressive exogenous models. Among the models,
the family of linear input-output Finite Step Response
(FSR) models is widely used in industrial applications.
According to this model, the output of a system at time
step k can be written in terms of FSR coefficients and
input variations as

ylk = ylss +

Nu−1∑
h=1

(
N−1∑
i=1

Gi
h,l∆u

h
k−i +GN

h,l(u
h
k−N − uhss)

)
(11)

where ylss and uhss represent, respectively, the lth com-
ponent of the steady output and hth component of the
steady input, ∆uk indicates the difference uk − uk−1, and
Gk

h,l represents the FSR coefficient at time step k relating
the hth input to the lth output. For asymptotically stable
systems GN

h,l ≈ GN+1
h,l ≈ · · · ≈ G∞h,l, where N represents

the settling time. Similarly, for integrating plants, the
output response becomes a pure ramp after N steps.

3.2 FSR model identification

When dealing with generic nonlinear plants, identification
techniques can be applied to find a suitable set of FSR
coefficients describing the plant dynamics. This work com-
putes the set of FSR coefficients using a least-squares (LS)
identification. Consider a nonlinear MIMO plant having a
set of manipulated variables M := {1, 2, · · · , Nu} and
measured variables O := {1, 2, · · · , Ny}, which is driven
to a steady output yss ∈ RNy by applying uss ∈ RNu .
For each input-output relationship (m, o) ∈ M × O, a
set of FSR coefficients has to be estimated. Assume the
application of um̄ to the m̄th input channel, such that
|um̄ − um̄ss| = jm̄, while leaving all the other channels
(m 6= m̄) at steady values. As a result, the data com-
ing from the ōth output channel is collected and nor-
malized with respect to jm̄. The normalized data are

then collected in the array Υjm̄

m̄,ō ∈ RN . The experi-
ment is then repeated s times, by considering different
input variations [jm̄1 , j

m̄
2 , · · · , jm̄s ], such that all the re-

sulting experiments are collected in the array Υō
m̄ :=[

(Υ
jm̄1
m̄,ō)T, (Υ

jm̄2
m̄,ō)T, · · · , (Υjm̄s

m̄,ō)T
]T
∈ RNs. The set of FSR

coefficients Gm̄,ō =
[
G1

m̄,ō G
2
m̄,ō G

3
m̄,ō · · · GN

m̄,ō

]T ∈ RN ,
relating the m̄th input to the ōth output, is determined by
minimizing

J(Gm̄,ō) = ||ΩGm̄,ō −Υō
m̄||

2
2

where Ω := [IN IN · · · IN ]
T ∈ RNs×N . The same proce-

dure is repeated for all input and output channels.
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4. HEALTH-AWARE PREDICTIVE CONTROL
ALGORITHM

This paper employs a predictive control approach to design
an optimal health-aware ABMS. In particular, a QDMC
algorithm is adopted (see Garca et al. (1989) for a complete
survey). Like all predictive control algorithms, QDMC
relies on a dynamic model of the regulated plant in order
to perform future predictions of the output, and optimizes
performance while accounting for physical constraints on
both inputs and outputs. Due to its capabilities to support
and improve the manufacturing process, this algorithm
has been implemented in a wide number of industrial
applications (e.g., see Mesbah et al. (2015) and Peterson
et al. (1992) and citations therein). For completeness,
below is a summary of the QDMC algorithm for SISO
systems and its extension to the MIMO case.

4.1 Output Predictions

The QDMC algorithm exploits a FSR model of the con-
trolled plant to perform future predictions of the output.
Starting from time instant k, by considering an input
variation ∆uk|k, the one step-ahead prediction of a SISO
system can be written as

ŷk+1|k = G1
1,1∆uk|k + fk+1|k, (12)

where the nomenclature xq|k represents the value of x
at time q starting from instant k, and fk+1|k is the free
response term. In general, fk+q|k represents the plant
output yk+q assuming that ∆uk+q = 0, ∀q ≥ 0, i.e.:

fk+q|k := yk+q in case of ∆uk+q = 0, ∀q ≥ 0.

Due to the presence of uncertainties, differences between
the predicted output and the measured output have to
be considered. A reasonable estimation of the unmeasured
disturbances is given by

dk|k = ymeas
k − fk|k,

where ymeas
k represents the measured output at time in-

stant k. This estimate can be incorporated into (12) to
improve the prediction accuracy.

Generalize this formulation by introducing the prediction
and control horizons, indicated by Hp ≥ 0 and Hu,
respectively, with Hu ≤ Hp. In this way, the input
variations are constrained to be zero after Hu time steps
(i.e., ∆uk+g|k = 0, ŷk+g|k = fk+g|k, ∀g ∈ (Hu +
1, · · · , Hp)). The disturbance-corrected predictions over
the future Hp steps are given by

ŷk = Ξfk︸︷︷︸
past inputs

+ G1,1∆uk︸ ︷︷ ︸
future actions

+ dk︸︷︷︸
correction terms

, (13)

where

ŷk :=
[
ŷk+1|k ŷk+2|k · · · ŷk+Hp|k

]T ∈ RHp ,

fk :=
[
fk|k fk+1|k · · · fk+N−1|k

]T ∈ RN ,

∆uk :=
[

∆uk|k ∆uk+1|k · · · ∆uk+Hu−1|k
]T ∈ RHu ,

dk := [dk+1|k dk+2|k · · · dk+Hp|k]T ∈ RHp .

The matrix Ξ ∈ RHp×N is used as a shifting mask for the
array fk, while the lower triangular matrix G1,1 contains
the FSR coefficients as

G1,1 =


G1

1,1 0 0 · · · 0

G2
1,1 G1

1,1 0 · · · 0

...
...

...
. . .

...

G
Hp

1,1 G
Hp−1
1,1 G

Hp−2
1,1 · · · GHp−Hu+1

1,1

∈ RHp×Hu .

Given that disturbance estimates are obtained at time step
k, it is assumed that dk|k = dk+1|k = · · · = dk+Hp|k.
Finally, at each time instant k, input variations are used
to update the free response array as

fk+1 := Υfk +G1,1∆uk|k,

where Υ ∈ RN×N is a suitable shifting matrix for fk. The
free response array starts from an initial value which is
represented by f0 := f init

0 ∈ RN .

4.2 Optimal Control Law

The QDMC algorithm provides a control law which is
obtained by finding an optimal input sequence ∆uk

∗ that
minimizes (or maximizes) a given cost function J(∆uk)
while enforcing input and output constraints. The high-
level optimization can be stated as

min
∆uk

(ŷk − yref )TQ(ŷk − yref ) + ∆uk
TR∆uk,

subject to ∆umin ≤∆uk ≤∆umax,

umin ≤ uk ≤ umax,

∆ymin ≤∆ŷk ≤∆ymax,

ymin ≤ ŷk ≤ ymax,

where the positive-semidefinite matrix Q ∈ RHp×Hp is
used to weigh the differences between the predicted out-
puts ŷk and reference trajectories yref , while the positive-
definite matrix R ∈ RHu×Hu is used as weighting factor
for the input variations. When dealing with output con-
straints, it is common to have feasibility problems due to
the presence of plant-model mismatches. For this reason,
the output constraints are softened to ensure recursive fea-
sibility at each time step. Exploiting (13), the optimization
is alternatively stated as a Quadratic Program (QP):

min
ζ

1

2
ζT Θ̃ ζ + Γ̃ ζ, (14)

subject to

A ζ ≤ b
where the optimization variable is

ζ :=

[
∆uk
χ

]
,

and χ is used to soften the output constraints. The
matrix A and array b are used to enforce input and
output constraints. For a thorough description of the QP
implementation process and constraints softening, refer to
Maciejowski (2002).

4.3 Receding Horizon approach

At each time instant k, the solution of the optimization
(14) leads to an optimal input sequence ∆u∗

k. To provide
the control action to the plant, according to the so-called
Receding Horizon (RH) approach, only the first input
variation is applied:

uk = uk−1 + ∆u∗k|k,
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where ∆u∗k|k is the first element of ∆u∗
k, while uk−1

represents the value of the input applied to the plant at
time instant k − 1.

5. SIMULATIONS

The effectiveness of the proposed health-aware control
algorithm is demonstrated in this section. The system
under control is a single-input multiple-output (SIMO)
plant having Iapp(t) as the only control variable, while
SOC(t), T (t), Vout(t) and Qs(t) as measured variables.
Only the SOC(t) represents the controlled variable. The
controller presented in Section 4 has been implemented
to track a reference value of the SOC while fulfilling input
and output constraints. As discussed in Section 4.2, output
constraints are softened by means of the variable χ. In
order to weight the constraint violations, extra factors are
adopted, with the term γ referring to the weighting factors
used to account for output violations. The FSR coefficients
in Fig. 1, used for online optimizations, were estimated
according to the approach outlined in Section 3.2.

All the proposed scenarios share the output constraints

2.5 V ≤ Vout(t) ≤ 4.2 V,

0.8% ≤ SOC(t) ≤ 95%,

270 K ≤ T (t) ≤ 320 K,

−10−9 C

m2s
≤ ∆Qs(t) ≤ 10−9 C

m2s
,

and the input constraints

0 ≤ Iapp(t) ≤ I1C
,

−1.5
A

m2s
≤ ∆Iapp(t) ≤ 1.5

A

m2s
,

where I1C
= 29.5 A/m2 for this particular chemistry. To

assess the effectiveness of the proposed control algorithm,
the simulations have been run considering different val-
ues of γ∆Qs .The parameters used for the side reaction
dynamics are the base-side reaction current i0,base = 8 ×
10−11 A/m2, the film conductivity ν = 3.79 × 10−7 S/m,
and w = 2. The molar weight is obtained from the cell
parameters as Mw = 73 × 10−3 kg/mol and the side
reaction OCV is set to Uside = 0.4 V. All the other battery
parameters used in this work can be found in Northrop
et al. (2011). All the scenarios run with the environmental
temperature of Tref = 298.15 K. The plant simulation is
performed using MATLAB with the IDA solver from the
SUNDIALS suite developed by Hindmarsh et al. (2005).
Due to computational costs, the sampling time of the
controller has been chosen equal to 10 s, which is suitable
according to the system bandwidth estimate. Prediction
and control horizon have been set to Hp = Hu = 200 steps.
In all the scenarios the QDMC controller has been set with
Q = 10 and R = 1. The resulting QP problem is solved
using the MATLAB quadprog solver. The simulations are
performed on a Windows 10 machine with 8 Gbytes of
RAM and a i5 vPro processor @2.5 GHz.

5.1 Results and Discussion

To assess the effectiveness of the proposed control algo-
rithm, in Fig. 2 different charging protocols are computed
by means of different weights of γ∆Qs

. As it is possible

Fig. 1. FSR models: identified coefficients (black lines) and data

(circles) obtained by application of the set of input variations

jIapp ∈ {5, 8, 11, 14, 17, 20, 23, 28, 31, 34, 37} A/m2, starting

from a rest condition, to the battery.

to see with γ∆Qs
= 0 (dashed purple line), the algorithm

provides a charging current density which is for most of
the time set to the maximum value of I1C

and starts to
drop when approaching the final charging stage at around
1300 s. The corresponding behavior of the output voltage
shows a fast increase of Vout(t) followed by a rest transient
which settles to 3.87 V. Finally, the temperature shows a
steeper increase which reaches 300 K at 1200 s and the
capacity fade effect which results in a total decrease of
the anode concentration of 0.35 mol/m3. By weighting the
aging dynamics in the optimization, QDMC provides more
conservative control actions. The applied current profiles
have different shapes according to the different weights:
γ∆Qs

= 1 (yellow line), γ∆Qs
= 5 (dotted orange line), and

γ∆Qs
= 10 (dot-dashed blue line). By increasing γ∆Qs

, the
control action provided by QDMC is less aggressive and
lasts longer. The voltage profiles show a more gentle rise
during the charging process and all of them settle at 3.87
V, while temperature never goes above 298.7 K. In all the
different cases, the reference value of the SOC is reached at
different time instant; according to the most conservative
control action, the reference is reached in 6000 s. Finally,
after one charging cycle, the overall lost capacity of the
most conservative profile results to be less than 1/3 of
most aggressive control action. The reduction in anode
capacity over multiple charging cycles are compared in Fig.
3, whereas Table 1 summarizes the lost anode capacity as a
function of the cycle number. To compare the different sce-
narios, a common charging/discharging protocol has been
defined. After 10 charging cycles, the total lost capacity
is significantly reduced when aging dynamics are weighted
in the optimization, which magnifies the results obtained
over a single charging cycle.

Cycle # γ∆Qs = 0 γ∆Qs = 1 γ∆Qs = 5 γ∆Qs = 10
1 0.3327 0.202 0.1362 0.1098
5 1.661 1.011 0.6829 0.5498
10 3.322 2.021 1.362 1.099

Table 1. Lost anode capacity over multiple cycles.

6. SUMMARY

An advanced battery management system (ABMS) is pro-
posed that accounts for long-term degradation effects. A
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Fig. 2. Lost anode capacity for different violation weights.

Fig. 3. Lost anode capacity over multiple cycles with different

violation weights.

QDMC predictive approach is adopted to perform an op-
timal charge of a Li-ion cell while taking into account both
input and outputs constraints. A linear representation of
the Li-ion battery is employed to reduce the computational
burden while still guaranteeing good control performance.
Despite longer charging times, the results show significant
life-cycle improvement by defining less aggressive charging
protocols. The proof of principle provided by this work

highlights the capabilities of predictive algorithms for use
in a health-aware ABMS application.
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