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Abstract: Cybersecurity of control systems is an important issue in next-generation manufac-
turing that can impact both operational objectives (safety and performance) as well as process
designs (via hazard analysis). Cyberattacks differ from faults in that they can be coordinated
efforts to exploit system vulnerabilities to create otherwise unlikely hazard scenarios. Because
coordination and targeted process manipulation can be characteristics of attacks, some of
the tactics previously analyzed in our group from a control system cybersecurity perspective
have incorporated randomness to attempt to thwart attacks. The underlying assumption for
the generation of this randomness has been that it can be achieved on a classical computer;
however, quantum computers can also create random behavior in the results of computations.
This work explores how errors in quantum hardware that can create non-deterministic outputs
from quantum computers interact with control system cybersecurity. These studies serve as a
reminder of the need to incorporate cybersecurity considerations at the process design stage.
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1 INTRODUCTION

Attacks on process control systems can provide a means
for an attacker to use a computing system to impact a
safety-critical physical system. Prior work in our group
has attempted to thwart attacks via control and detection
implementation strategies that force attacks to show them-
selves before a safety issue can occur (e.g., Oyama et al.
(2022)). Though randomness in control action computa-
tion has been considered in strategies discussed in Durand
(2018); Oyama and Durand (2020), it has not in these
works been able to guarantee that attacks cannot create
safety hazards. However, these control designs have been
implemented on classical computers. Recently, quantum
computing has been applied to problems in process sys-
tems engineering such as optimization and machine learn-
ing (Ajagekar et al. (2020); Ajagekar and You (2019)).
Quantum computers can also introduce randomness to the
results of the computations which they execute. One way
that they can do this is through errors (“noise”) in the com-
putations on present-day devices. This work will therefore
investigate relationships between randomness introduced
by noise in a quantum computation and stabilization of
a closed-loop state trajectory where the control actions
are computed by a quantum simulator. This will be used
to extend the understanding of the role of randomness in
cyberattack detection and handling strategies; however, as
in our prior work, we will not see a benefit from the use of
the randomness for attempting to thwart an attack. This
serves as a reminder of the complexity of attacks and the

need to consider them at the design stage. We close with
remarks regarding how cybersecurity considerations might
impact evaluation of results from a steady-state simulator
during the design process of a geothermal energy process.

2 Motivation: Cyberattacks are Distinct from
Disturbances, Faults, and Measurement Noise

In this section, we motivate the need for studying control
system cyberattacks using a continuous stirred tank re-
actor (CSTR) where a second-order exothermic reaction
A → B occurs with the following dynamics:
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where b1 = 5 and b2 = 50 represent a bias in the dynamics
compared to a standard mass and energy balance for a
CSTR, which might be attributed to unmodeled dynamics
or faults. The reactant concentration CA and temperature
T in the reactor are the states, and CA0 and Q (the inlet
concentration of the reactant and the heat rate, respec-
tively) are the inputs. The parameters of the model are
taken from Alanqar et al. (2015). w1 and w2 are bounded
disturbances with zero mean and standard deviations of
2 kmol/m3 · h and 10 K/h and bounds of 1 kmol/m3 ·
h and 5 K/h, respectively. Measurement noise was also
considered with zero mean and standard deviations of
0.005 kmol/m3 and 0.1 K, and bounds of 0.05 kmol/m3

and 1 K, respectively. These were implemented using the



function “normal_distribution” in C++ with the seed set
to one greater than the sampling period number (the first
sampling period corresponds to the time from t0 to t1).

It is assumed that the fact that the bias terms 5 and 50
exist on the right-hand sides of Eqs. 1-2 is not known, and
that therefore data is gathered by operating the system
under an EMPC that assumes that the process model does
not have these biases (or disturbances/noise) to observe
relationships between states and inputs. The EMPC used
in this case was implemented in Ipopt (Wächter and
Biegler (2006)) with ADOL-C (Walther and Griewank
(2009)) using code for integrating IPOPT and ADOL-C
from Walther (2010) and has the following form:

min
CA0,Q∈S(∆),s

∫ tk+N

tk

[
−k0e

− E
RgT̃ (τ) C̃A(τ)

2 + 108s2
]
dτ

(3a)
s.t. Eq. 1, b1 = 0, b2 = 0, w1 = 0, w2 = 0 (3b)

C̃A(tk) = C̄A(tk), T̃ (tk) = T̄ (tk) (3c)
T̃ (t) ≤ 450 K + s, ∀ t ∈ [tk, tk+N ) (3d)

0.5 ≤ CA0 ≤ 7.5 kmol/m3
, ∀ t ∈ [tk, tk+N )

(3e)
|Q| ≤ 5× 105 kJ/h, ∀ t ∈ [tk, tk+N ) (3f)
0 ≤ s ≤ 5 (3g)

where C̄A(tk) and T̄ (tk) represent the state measurement
(subject to measurement noise) at tk, and s represents a
slack variable to handle the plant/model mismatch. Eq. 3a
represents an economics-based objective function, Eq. 3d
bounds the temperature in the reactor (and is enforced at
the end of every integration step of 10−4 h used within
the EMPC with the explicit Euler numerical integration
method), and Eqs. 3e-3f represent input constraints. The
process of Eqs. 1-2 with disturbances added is integrated
using the explicit Euler numerical integration method with
an integration step size of 10−5 h. Data is collected for 10
sampling periods of length 0.01 h, where N = 10. The
resulting data is then fed to a separate optimization prob-
lem (in the spirit of moving horizon estimation (Alessandri
et al. (2010))) to estimate the bias terms as follows:

min
CA(t0),T (t0);b1,b2

∫ tk+N

tk

[104(C̃A(τ)− CA(τ))
2

+ (T̃ (τ)− T (τ))2] dτ (4a)
s.t. Eq. 1, w1 = 0, w2 = 0 (4b)

C̃A(t0) = CA(t0), T̃ (t0) = T (t0) (4c)

0 ≤ CA(t0) ≤ 5 kmol/m3
, ∀ t ∈ [tk, tk+N )

(4d)
0 ≤ T (t0) ≤ 500 K, ∀ t ∈ [tk, tk+N ) (4e)

|b1| ≤ 500 kmol/m3 · h, ∀ t ∈ [tk, tk+N )
(4f)

|b2| ≤ 10000 K/h, ∀ t ∈ [tk, tk+N ) (4g)
where b1 and b2 are decision variables representing the
bias terms on the right-hand side of Eqs. 1-2. Eq. 4a
reflects that the error between the measurements obtained
from inputs computed using the first optimization problem
(Eq. 3) and the predictions made using the models in
Eq. 4b is minimized in this equation, using the same inputs
recorded from solving the optimization problem of Eq. 3.
The initial guess provided to the optimization problem is
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Fig. 1. State trajectories under inputs from Eq. 4 with
different process models. The data from the “Actual”
model may differ from that used in the identification
of the biases due to the random number generator
computing different noise profiles.

CA0(t0) = 1.1 kmol/m3, T (t0) = 435 K, b1 = 0.1, and
b2 = 5. The solution to this optimization problem from
Ipopt using the data from t0 until right before t10 gives
an initial state estimate of CA(t0) = 1.199 kmol/m3 and
T (t0) = 437.982 K, where b1 = 5.065 and b2 = 50.934.
To evaluate the performance of the model incorporating
the biases, we compare the state trajectories from the
initial condition under the same inputs when both the
actual system model (including disturbances and noise)
is used (“Actual” in Fig. 1), when the model without the
biases or disturbances or noise is used (“None”), and when
the model with the estimated biases but no disturbances
or noise is used (“Estimate”). These indicate that the
model can be significantly improved by accounting for the
fault/plant-model mismatch. It would be expected that
the more accurate model would provide better control in
an MPC. The difference between a fault and a disturbance
can be highlighted in this discussion; specifically, even if a
cyberattack (e.g., on the actuators) was to affect the right-
hand side of Eqs. 1-2 in the same manner as the “faults”
currently accounted for in that equation, the cyberattack
could simultaneously include falsification of the measure-
ment data (for example, data corresponding to the case
without noise or disturbances might be provided instead).
This would prevent Eq. 4 from computing adequate values
of b1 and b2 so that the system is not able to update the
controller to account for the attacks on the actuators. This
constitutes the fundamental difference between cyberat-
tacks and faults: while a fault and cyberattack may affect
the system dynamics in similar ways, cyberattacks involve
a coordination to prevent the system from compensating
for issues as it would in the case of a fault. This makes
handling cyberattacks particularly challenging, as it re-
quires not only strategies for handling them once they are
detected, but also for revealing that they exist.

3 Control System Resilience and Quantum
Computing-Implemented Control

In this section, we simulate a control algorithm on a
quantum computer in the presence of noisy inputs and use



the results to investigate ideas for attempting to thwart
some types of attacks on the control system. We begin
with a description of the basic operating principles of a
quantum computer. Rather than storing information using
bits (represented by 0’s or 1’s) as classical computers
do, quantum computers use quantum bits, or “qubits”,
to encode information as |0⟩, |1⟩, or in a superposition
of the two states (c1 |0⟩ + c2 |1⟩). Quantum algorithms
are implemented through a series of gates, known as
quantum gates, which are used to manipulate qubits
between different quantum states. Quantum gates can be
represented using matrices if qubits are represented via
vectors (|0⟩ = [1 0]T , |1⟩ = [0 1]T ); for example, the NOT
gate can be represented by the matrix [0 1; 1 0], because
multiplying this matrix by |0⟩ gives back |1⟩, and vice
versa. An important unitary operation for placing qubits
in a superposition of states is denoted by the “Hadamard
matrix”, H, and is represented by H = 1√

2
[1 1; 1 −

1] (Yanofsky and Mannucci (2008)). Controlled rotation
gates (Zk gates, where Zk = [1 0; 0 e

2πi

2k ]) can be used
as part of an addition strategy with H gates (where
the addition strategy is based on a Quantum Fourier
Transform (QFT) (Yanofsky and Mannucci (2008); Ruiz-
Perez and Garcia-Escartin (2017))).

QFT adds two numbers deterministically, and therefore
on a quantum computer with no noise, would produce the
same sum of two numbers that a classical computer would.
However, if QFT is used in computing a control action (for
example, in computing 2x as part of the control strategy
u = −2x, via the sum of x and x), then decoherence
and noise in today’s quantum computers can decrease the
fidelity of the gates and result in different inputs being
applied to the process than if there was no noise.

In this section, we explore what happens when the input
u = −2x, to be applied to the process ẋ = x+u (this input
is thus stabilizing if implemented deterministically with in-
finite precision) is computed partially via a quantum sim-
ulator (specifically, x+x is computed via a quantum simu-
lator). The simulator (called qasm_simulator) is available
from IBM’s Quantum Experience with the software devel-
opment kit Qiskit. A Quantum Fourier Transform-based
addition, based on a modified version of Anagolum (2018),
is incorporated into a closed-loop simulation for evaluating
the input. Noise is accounted for in the algorithm run
on the quantum simulator using a custom noise model
(depolarizing error) applied with respect to a “cp” gate in
the QFT-based addition algorithm. As a result, multiple
runs of the addition algorithm (or “shots” as they are called
in the IBM Quantum Experience) are run at each sampling
time. The case with a single “shot” (or number of iterations
that a quantum algorithm is run) used in a computation
of u, is compared against the case where the quantum
algorithm is run with multiple shots, in addition to the
result when evaluated using a classical digital computer.
The depolarizing error probability was set to 0.05.

The control input evaluated in the quantum computing
framework using QFT-based addition first requires the
state measurements of the process sent to the controller,
in this case the quantum simulator, to be represented as
a combination of |0⟩ and/or |1⟩. This is achieved by first
truncating the state measurement to two decimal places at
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Fig. 2. State trajectories with 254 shots.

every sampling time via multiplication by 100 and taking
the floor and absolute value of the consequent value. This
number is then converted to its binary representation and
placed on the qubits (a NOT gate can be used to flip
one of the bits initially in a |0⟩ state to a |1⟩ state).
Once the modified state measurement is operated on by
QFT-based addition, it is then transformed back to an
integer value from binary and divided by 100 to provide
the component of the control action, 2x = x + x. The
negative sign is accounted for by negating the result if the
value of x was positive. The QFT-based addition algorithm
was executed in a manner that requested the size of x in
binary before the addition was begun. It then added a
0 in the most significant bit and performed the addition
using registers of the resulting size. Ten hours of operation
of the process were simulated, with the initial condition
x(0) = 0.74, using the Explicit Euler numerical integration
method with an integration step of 0.001 time units and
a sampling period of 0.1 time units. Simulations were
performed using Python and the Integrated Development
Environment (IDE), Spyder, using both 1 shot and 254
shots for comparison. When the process input is evaluated
on a quantum simulator with no noise, the process states
and inputs match those from a classical implementation.

The state trajectories for three simulations are compared
in Fig. 2, with the quantum simulations being run with 254
shots, and in Fig. 3 with the quantum simulations being
run with 1 shot. The classical computer is referred to as the
“Classical system,” the quantum simulator with the desig-
nated number of shots and no noise is the “Ideal quantum
system,” while with noise it is the “Noisy quantum sys-
tem.” Despite the noise, in both cases, the control actions
computed appear stabilizing. Since the impact of the noise
is to cause unintended control actions to be applied to the
process, this raises the question of what the noise in the
quantum computer could mean for cyberattacks.

To investigate this, we first consider the intuitive attack
where a false state measurement of -0.02 is continuously
provided to the controller when the closed-loop state is
initialized at 0.74. If this input is applied, then u = −2x is
positive, and ẋ = x+u then has a positive right-hand side
that will cause x to increase and to drive the closed-loop
state away from the origin. To simulate the noisy system
in this case, we used a depolarizing error parameter of 1
and a single shot to perturb the control actions compared
to the classical computation case. The resulting closed-
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Fig. 3. State trajectories with 1 shot.
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Fig. 4. State trajectories with a false sensor measurement
of -0.02 and 1 shot.

loop state and input trajectories are presented in Figs. 4-5
(the case with inputs computed on a classical computer is
“Classical,” on a quantum simulator with no noise and 1
shot is “Ideal,” and on a quantum simulator with 1 shot
and a depolarizing error parameter of 1 is “Noisy”). The
results with the classical and ideal quantum simulator are
overlaid, but the inputs computed by the noisy computer
are significantly different. Despite this, we can see that
the closed-loop state trajectories are similar. This is due
to two major factors: 1) The sign is implemented outside
of the addition algorithm, so there is no randomness to
the sign that could cause x to decrease under any of
the inputs computed by the noisy computer; instead, x
will always increase because ẋ will always have a positive
sign. 2) The size of the qubit registers depends on the
state measurement, so the inputs computed by the noisy
computer cannot be overly different from those computed
by the classical computer when the state measurement is
a small value. In this way, despite the noise, the attacker
is able to gain approximately the same problematic state
trajectory even with differences in the input trajectory
compared to that in the classical case.

The analysis above indicated that the noise in the quantum
hardware was not beneficial for handling an attack when
the sign of the input was fixed in the wrong direction using
the state measurement. We could then instead explore
what happens if the sign of the input will turn out
correctly (i.e., re-running the simulation with the closed-
loop state measurement starting at 0.74 and the false state
measurement at 0.02). However, in this case, a similar
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Fig. 5. Input trajectories with a false sensor measurement
of -0.02 and 1 shot.
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Fig. 6. Comparison between the state trajectories with the
false sensor measurement of 0.02. “Ideal” and “Noisy”
use a shrinking register; “Register” uses a fixed register
size with 1 shot and a depolarizing error parameter 1.

phenomenon is observed where because the register size
in the addition procedure is limited, even in the noisy
simulation, no input is computed that has a large enough
magnitude for its absolute value to cause ẋ to be negative
when the initial value of the state is 0.74.

We could ask then if using a fixed register size could help
to alleviate this problem or not, as then in the case that
inputs are randomly selected, there are more possibilities.
In this case, we use a register size fixed to the size that
would be obtained if the state measurement was 0.74. The
result for the closed-loop state is shown in Fig. 6. While the
use of the fixed register size creates different inputs than
in the case with the shrinking register size, it runs into
the issue that when the actual closed-loop state becomes
negative, since the input being computed for the false state
measurement of 0.02 is negative, it is able to continue
to cause the closed-loop state to decrease. Even if the
depolarizing error parameter is decreased to 0.05, the sign
is still not able to flip since the false state measurement is
always positive. Again the closed-loop state continues to
decrease after x becomes negative under the sample-and-
hold control law.

The results above help to clarify that despite that the state
trajectories in Fig. 3 appear stabilizing in the presence
of the noise, this is not an indication that an arbitrarily
bad state measurement could be obtained and that the



inputs would still be stabilizing; for example, the sign
of the state measurement was still correct. We also see
that modification to the register size alone is unlikely
to be able to remove all potentially bad inputs for a
given state measurement from the set of possible inputs.
Though the noise in the quantum computer was not able
to fight the cyberattacks on its own, the discussion of the
implementation of the addition algorithm does provide a
potential concept for probing for attacks via the detailed
implementation of a control law. For example, consider an
attack where the actual state measurement is 0.74, but
the false state measurement is 0.36 (so that −2x is -0.72,
which will cause ẋ for the actual system to be positive). In
the absence of noise, the control action computed would
appear to be stabilizing, and an attacker could provide a
state trajectory that appears consistent with the control
law believed to be computed (which would be driving the
closed-loop state toward the origin). However, suppose
that at the time when the falsified state measurement
reads 0.36, the size of the register is capped and a control
action that would not be stabilizing if the actual state
was 0.36 is applied. If the state measurement continues to
decrease x, this would indicate an attack.
Remark 1. This section does not focus on computational
efficiency of control implemented on quantum comput-
ers; in general, developing quantum computing algorithms
with benefits compared to classical computing algorithms
can be challenging, so that past works (e.g., Cincio et al.
(2018)) have even suggested using machine learning to
develop quantum algorithms. However, there are many
considerations to be taken into account when attempting
to do something like this. To see this, we can consider
a thought experiment in using optimization to seek to
computationally design a means to use quantum com-
puting to help with locating the ground state energy of
a material, for which algorithms such as the variational
quantum eigensolver (VQE) (Moll et al. (2018)) have been
used. We can consider a case where an attempt is made
to locate a quantum algorithm that, in combination with
post-processing of data from the qubits using a classical
computer, uses a single qubit and four gates (in the ab-
sence of noise). If we consider IBM’s ibmq_manila, the
available gates are CX, ID, RZ, SX and X. Of these, the
single-qubit gates are ID, SX, X, and RZ, corresponding to
ID = [1 0; 0 1], SX = 1

2 [1+i 1−i; 1−i 1+i], X = [0 1; 1 0]

and RZ = [e
−iλ
2 0; 0 e

iλ
2 ] where λ is a parameter. These

gates will take a qubit initially in state |0⟩ to the final state
α |0⟩ + β |1⟩ where the post-processing algorithm will set
the energy E = c1α + c2β. c1 and c2 will be continuous
decision variables to be determined by the optimization
problem that is “searching” for an algorithm of the class
specified to attempt to match the algorithm result to
data on ground state energies. Discrete decision variables
(related to the selection and position of the mentioned
gates to be applied in the circuit) should also be included.
The objective function of the optimization problem will
be considered to be:

∑N
k=1(Epred,k −Eactual,k)

2, where N
is the number of molecules in the set being used to find
(train) the algorithm, and Epred,k is the value of E for the
k-th molecule for a given value of the decision variables.
Eactual,k are considered to be the values obtained from
a data set. Because the actions of gates on qubits can
be described by matrices, the final values of αk and βk

(i.e., α and β for the k-th molecule) can be obtained
by multiplying |0⟩ = [1 0]T by a series of four matrices
representing the gates. We consider an ad hoc selection
of chemistry properties for dictating some of the gates
to be used (to make the algorithm chemistry-dependent).
For example, we can consider the first two gates which
impact the qubits to represent whether certain chemistry
properties (e.g., types of bonds) are present (properties p1
and p2). The decision variables indicating which gates are
selected on the first two gates impacting the qubits are
represented by δ3ikp1 and δ4ikp2, i = 1, 2, 3, 4. The last two
gates to act on the qubit are taken to be the same for all of
the molecules (i.e., they are not chemistry-dependent) and
are selected by binary variables δijk ∈ [0, 1], where i ∈ [1, 2]
corresponds to the position of the gate (with 1 signifying
the last gate and 2 the second-to-last gate), k signifies the
k-th molecule, and j ∈ [1, 2, 3, 4] signifies the gate’s type
(ID, RZ, X, or SX). This would lead to the following
expressions for αk and βk, along with requirements that
only one gate can be selected for each position:[

αk

βk

]
= [[δ11kID + δ12kRZ + δ13kX + δ14kSX]∗

[δ21kID + δ22kRZ + δ23kX + δ24kSX]∗
[δ31kp1ID + δ32kp1RZ + δ33kp1X + δ34kp1SX]∗

[δ41kp2ID + δ42kp2RZ + δ43kp2X + δ44kp2SX]] ∗
[
1
0

] (5)

δ11k + δ12k + δ13k + δ14k = 1 (6)
δ21k + δ22k + δ23k + δ24k = 1 (7)

δ31kp1 + δ32kp1 + δ33kp1 + δ34kp1 = 1 (8)
δ41kp2 + δ42kp2 + δ43kp2 + δ44kp2 = 1 (9)

This strategy provides a means to set up a learning
strategy, but is unlikely to provide a useful circuit. If
the data includes two molecules with the same chemistry
properties p1 and p2, αk and βk will be the same. This
restricts the possible values that can be returned as c1αk+
c2βk. This reflects some of the challenges of coming up with
new algorithms on a quantum computer that are beneficial
using computational techniques; the learning algorithms
need to have a search space that includes non-classical
manipulations that could be significant.

4 Conclusion and Perspectives on Design for Resilience
Against Cyberattacks

In this work, motivated by simulations of a simple control
law implemented on a quantum simulator with noise where
the applied control actions appeared to be stabilizing
despite uncertainty, we investigated what these results
for quantum computing-implemented control indicate for
control system cybersecurity (there was not a clear ben-
efit to quantum computers’ randomness for attempting
to thwart cyberattacks in the simulations studied). While
modifying control actions to attempt to handle attacks,
as was done in the course of the quantum computing-
implemented control study, is one way of attempting to
address cyberattacks on control systems, process design is
another way, and may be particularly meaningful in cases
where failure to detect an attack could otherwise be catas-
trophic. For example, consider a geothermal plant that is a
renewable source of heat. Prior work, such as Mohan et al.
(2015) analyzed an enhanced geothermal system coupled



with the binary Organic Rankine Cycle (ORC) for power
extraction with a variety of working fluids. This was used
to compare success metrics such as power output. However,
different design decisions may have different impacts not
only on the power output, but also on how much it changes
with changes in other process variables. Considering the
robustness of the power output to changes that an attacker
might make to the system could be a consideration in the
design of a system particularly for cases such as more
remote locations (e.g., island nations such as Comoros
where failure of an energy system could make obtaining
back-up energy solutions more challenging due to the lack
of connection to other land resources). In addition to
considering resilience in process design, resilience can also
be considered in design of systems in other domains where
process systems engineers might apply their expertise.
For example, consider a case where optimization is used
for organizing volunteers for nonprofits. Since volunteers
fulfill an essential role in communities around the world by
offering support to nonprofit organizations, social causes
could be disrupted as a consequence of misappropriation
of resources by an optimizer. As a thought experiment,
consider the problem of helping volunteers to find the
right nonprofit support in a given week to make the most
impact. An optimization problem might be formulated
in which a number of volunteers is split between several
nonprofits, with constraints based on the number of hours
they are available. One could imagine a problem for this
optimal resource allocation problem if “fake” volunteers
state that they will put in hours to skew the scheduling,
and have no intent of showing up. Strategies should be
considered for attempting to thwart malicious behavior
to this effect; for example, volunteers may need to be
validated or otherwise may be randomly assigned, instead
of being considered as contributors with respect to the
optimal resource allocation, until they have a track record
of showing up for their commitments.
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