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Abstract: In this paper, we discuss model predictive control applied to blending processes.
Blending processes are ubiquitous in the chemical process industries since reactants usually
need to be mixed before entering a reactor. Many times, the blending is trivial as pure streams
of reactants are mixed. We consider non-trivial blending problems in which non-pure streams
with the reactants are to be mixed. The motivating example is the blending problem that
occurs in cement production. The raw mix for the cement kiln must have a specified chemical
composition. This composition is obtained by mixing piles with different chemical compositions
and economic value such that the raw mix meets specifications in the cheapest possible way. We
formulate the blending problem as a nonlinear optimization problem that can be approximated
well as a convex quadratic optimization problem. We implement the corresponding nonlinear
and linear model predictive controllers (NMPC, LMPC) using a continuous-time transfer
function description that is realized as a discrete-time linear state space model. The controller
obtains feedback by combining regularly sampled online measurements and irregularly sampled
laboratory measurements using a time variant dynamic Kalman filter with memory. Numerical
simulations demonstrate that the NMPC and LMPC have similar performance.
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1. INTRODUCTION

With the growth of the construction industry, global ce-
ment production has doubled in the last decade, peaking
at 4.2 Gt in 2016. The rapid growth of cement produc-
tion has brought more carbon emissions, accounting for
approximately 7% of the global CO2 emission (Robbie,
2019). To develop a sustainable cement industry, research
related electrification, carbon capture and storage (CCS),
as well as digitalization and optimization of the cement
manufacturing process is needed. In this paper, we con-
tribute to the digitalization, control and optimization of
cement manufacturing by describing nonlinear and linear
model predictive control for cement raw material blending.

1.1 Cement manufacturing and raw material blending

The cement manufacturing process consists of four phases:
raw material quarrying, raw mix blending, clinker burning,
and cement mill grinding. The purpose of the raw mix
blending process is to guarantee that the output raw meal
meets certain quality standards. The raw mix blending
process needs to be well controlled since the quality of the
raw meal directly influences the cement quality. Figure 1
shows a diagram of the raw mix blending process. The raw
mix blending process starts with the transportation of raw
materials. Limestone, clay, and other raw materials from
1 Corresponding author: J.B. Jørgensen (e-mail: jbjo@dtu.dk)

raw material piles are fed to the raw mill by conveyor belts.
In the raw mill, raw materials are blended and ground into
particles of a desired size. The final output from the raw
mill is denoted as raw meal. Finally, a conveyor belt trans-
ports the output raw meal to a homogenization silo. The
quality standards of the raw meal are determined by the
oxide composition of the raw meal. Online X-ray sensors
and laboratory analyzes are used to determine the compo-
sition of the raw meal. Compared to online measurements,
the processing time is longer and the sampling frequency is
lower for laboratory measurements, but the latter has more
accurate measurement results. Therefore, it is necessary to
address the problem of including measurements with de-
lays, different frequencies, and even missing observations.
In this paper, we consider three compositional parameters:
lime saturation factor (LSF), alumina modulus (ALM),
and silica modulus (SIM). These compositional parameters
are nonlinear functions of the concentration of the four
main oxide components: SiO2 (Si), Al2O3 (Al), Fe2O3 (Fe),
and CaO (Ca). This paper focuses on optimal control of
the compositional parameters for the raw mix blending
process.

1.2 Model predictive control for uncertain systems

In the raw mix blending process, the model uncertainty
caused by the variation in raw material pile composition
must be considered. Vinicius et al. (2015) introduce a



Fig. 1. The cement raw mix blending process. The green dot indicates the online measurement point Y1. The red dot is
the laboratory measurement point Y2. τD1,i for i ∈ {1, 2, . . . , nu} are the time delays between the i’th pile and the
online measurement point Y1. τD2 indicates the time delay between Y1 to Y2. k2 and τ2 indicate the gain and time
constant of the raw mill transfer function model.

linear parameter varying (LPV) system for modeling the
raw mix blending process, where the model uncertainty is
presented in a set of uncertain parameters. They describe
a robust gain-scheduled control method, which can effec-
tively control the raw mix blending process. Prasath et al.
(2010) describe a soft constrained model predictive control
(MPC) algorithm for an industrial cement mill grinding
process. The proposed soft constrained MPC can handle
the plant-model mismatch. Due to the nonlinearity of the
compositional parameters, the linear MPC (LMPC) algo-
rithm cannot be directly applied to the reference tracking
objective. This paper presents a soft constrained LMPC
based on a novel formulation of the blending optimization
problem. Furthermore, a Kalman filter with memory is in-
troduced for handling missing and delayed measurements.
This paper demonstrates through a numerical experiment
that the proposed LMPC performs similarly to a nonlin-
ear MPC (NMPC) for reference tracking and disturbance
rejection related to variations in the chemical composition
of the piles.

1.3 Paper organization

This paper is organized as follows. Section 2 describes
the dynamics and modeling of the raw mix blending pro-
cess. Section 3 illustrates a linear discrete-time dynamic
Kalman filter with memory. Section 4 describes a novel for-
mulation of the blending optimal control problem, where it
is approximated as a convex quadratic program (QP). The
comparison between the proposed LMPC and an NMPC is
provided and discussed in Section 5. Conclusions are given
in Section 6.

2. SYSTEM MODELING

Figure 1 illustrates the cement raw mix blending process
considered in this paper. We assume the total system
feed rate F [t/h] is fixed. The feed fractions of the
individual raw material piles are manipulated variables
(MVs). Therefore, the system input u(t) is defined as

u(t) = [u1(t); u2(t); . . . ; unu
(t)] , eTu(t) = 1. (1)

ui(t) for i ∈ {1, 2, . . . , nu} indicates the feed fraction of
the i’th pile. e = [1; 1; . . . ; 1] is a unit vector, such that∑nu

i=1 ui(t) = eTu(t) = 1.

The composition of the raw material piles are represented
by the compositional matrix P , and the corresponding unit
costs [$/t] are represented by the cost vector c, i.e.

P =

 Si1 Si2 · · · Sinu

Al1 Al2 · · · Alnu

Fe1 Fe2 · · · Fenu

Ca1 Ca2 · · · Canu

 , c =


c1
c2
...

cnu

 . (2)

Sii, Ali, Fei, Cai, ci represent oxide element concentrations
and the cost of i’th pile, respectively.

The controlled variables (CVs) of the blending process are
considered as the concentration of oxide components at
two measurement points. Therefore, the system output
Z(t) is defined as

Z(t) =

[
Z1(t)
Z2(t)

]
, Zi(t) =

 Siz,i(t)
Alz,i(t)
Fez,i(t)
Caz,i(t)

 , i ∈ {1, 2} . (3)

The raw mix blending process can be described by two
coupled input-output models, and they can be expressed
on standard form as



[
Z1(s)
Z2(s)

]
=

[
GD1(s)
ḠD2(s)

]
U(s) +

[
H1(s) 0
H21(s) H2(s)

] [
W 1(s)
W 2(s)

]
,

(4a)[
Y 1(s)
Y 2(s)

]
=

[
Z1(s)
Z2(s)

]
+

[
V 1(s)
V 2(s)

]
, (4b)

where

GD1(s) = PT (s), GD2(s) =
k2

τ2s+ 1
e−τD2s, (5a)

H1(s) =
kH1

τH1s+ 1
, H2(s) =

kH2

τH2s+ 1
, (5b)

ḠD2(s) = GD2(s)GD1(s), H21(s) = GD2(s)H1(s), (5c)

GD1(s), and ḠD2(s) are transfer functions for the de-
terministic system dynamics from the MVs (U) to the
outputs (Z). GD1(s) indicates the dynamics from raw
material piles to the online measurement point Y1, where
T (s) = diag([e−τD1,1s; e−τD1,2s; . . . ; e−τD1,nus]) are input
time delays. The deterministic dynamics from the online
measurement point Y1 to the laboratory measurement
point Y2 is given by GD2(s) = G2(s)e

−τD2s; the raw mill
transfer function, G2(s) = k2/(τ2s + 1) (with k2 = 1)
and the conveyor belt transportation delay, e−τD2s. H1(s)
and H2(s) are transfer functions for the stochastic system
dynamics, i.e. the dynamics from the process noise (W) to
the outputs (Z).W 1(s) andW 2(s) are inputs representing
system uncertainties and modeled as standard Wiener
processes. The measurements, Y 1(s) and Y 2(s), are the
system outputs, Z1(s) and Z2(s), corrupted by additive
Gaussian measurement noise, V 1(s) and V 2(s).

The input-output model is realized as a discrete-time state
space model 2

xk+1 = Axk +Buk +Gwk, wk ∼ Niid(0, Q), (6a)

zk = Cxk, (6b)

yk = zk + vk, vk ∼ Niid(0, R). (6c)

x is the system state, u is the system input. z and y
are the system output and the measurement, respectively.
The initial state is assumed to be normally distributed,
x0 ∼ N (x̄0, P0). wk and vk indicates the process and
the measurement noises. Q and R indicate the process
and measurement noise covariance. (A,B,G,C,Q,R) are
computed from the transfer function representation (4)-
(5). The discrete-time state space model (6) is used as
the simulation model. The model used for control is (6)
augmented with integrators to have offset free control.

3. STATE ESTIMATION

In this section, we present a linear Kalman filter with
memory for handling missing and delayed observations.
The proposed Kalman filter can estimate system states
using delayed laboratory measurements such as Y2.

3.1 Dynamic Kalman filter

The Kalman filter is initialized with the mean and covari-
ance of the initial state

x̂0|0 = x̄0, (7a)

P0|0 = P0. (7b)

2 We use the MPC toolbox from 2-control ApS.

Algorithm 1: Dynamic Kalman filter with memory.

Data:
Yk, Fk, Uk, Nmem,
(x̂k−Nmem|k−Nmem

, Pk−Nmem|k−Nmem
).

for i = 1 : Nmem do
One-step prediction. Use (8) to compute

(x̂k−Nmem+i|k−Nmem+i−1, Pk−Nmem+i|k−Nmem+i−1)

Filtering. Define

yk−Nmem+i, Ck−Nmem+i, Rk−Nmem+i,

as in (14) and use (9)-(11) to compute

(x̂k−Nmem+i|k−Nmem+i, Pk−Nmem+i|k−Nmem+i).

end
Result: (x̂k|k, Pk|k)

Time update:
In the time update, the mean and covariance are computed
using the linear system dynamics, as

x̂k+1|k = Ax̂k|k +Buk, (8a)

Pk+1|k = APk|kA
′ +GQG′, (8b)

Measurement update:
In the measurement update, we compute the innovation
and its covariance as

ek = yk − ŷk|k−1, (9a)

Re,k = CkPk|k−1C
′
k +Rk, (9b)

where ŷk|k−1 = Ckx̂k|k−1. The Kalman gain is computed
as

Kfx,k = Pk|k−1C
′
kR

−1
e,k. (10)

The mean and covariance estimates are computed as

x̂k|k = x̂k|k−1 +Kfx,kek, (11a)

Pk|k = (I −Kfx,kCk)Pk|k−1 (I −Kfx,kCk)
′

+Kfx,kRkK
′
fx,k,

(11b)

where (11b), Joseph stabilizing form, is numerically stable.

3.2 Dynamic Kalman filter with memory

The dynamic Kalman filter with memory estimates the
states over a horizon of past observations. At any point in
time, the memory can be updated with available observa-
tions, current or delayed, e.g., laboratory measurements.
We define an integer Nmem indicating the length of the
memory, the horizon of the past observations Y, a boolean
matrix F indicating the availability of observations at any
point over the horizon, and the horizon of the past inputs
U as

Yk =

[
yk−Nmem+1 yk−Nmem+2 · · · yk

]
, (12a)

Fk =

[
fk−Nmem+1 fk−Nmem+2 · · · fk

]
, (12b)

Uk =

[
uk−Nmem uk−Nmem+1 · · · uk−1

]
. (12c)

Additionally, we store the estimated state mean and co-
variance required for state estimation over the horizon of
past observations in each iteration



x̂k−Nmem|k−Nmem
, Pk−Nmem|k−Nmem

. (13)

At each point in the state estimation over the horizon, the
boolean matrix is used to slice the relevant vectors and
matrices to the right size, such that

yk−Nmem+i = Yk[Fk[:, i], i], (14a)

Ck−Nmem+i = C[Fk[:, i], :], (14b)

Rk−Nmem+i = R[Fk[:, i],Fk[:, i]], (14c)

for i ∈ {1, 2, . . . , Nmem}, i.e., only the relevant rows and
columns of the matrices, corresponding to the available
observations, are used in the state estimation. If at any
point a delayed observation becomes available, it is stored
at the relevant position in Yk and the corresponding
boolean vector elements in Fk are changed from 0 to 1,
indicating that the observations should be included in
the state estimation. In each step, the state estimation
is performed using Algorithm 1.

4. OPTIMIZATION FOR BLENDING PROCESSES

This section introduces the LMPC and the NMPC for
the raw mix blending process. A novel formulation for the
LMPC is presented.

4.1 Compositional parameters

The compositional parameters LSF, ALM, and SIM can
be computed from the oxide component concentrations,

L(t) = 100Ca(t)

2.8Si(t) + 1.18Al(t) + 0.65Fe(t)
, (15a)

A(t) =
Al(t)

Fe(t)
, (15b)

S(t) = Si(t)

Al(t) + Fe(t)
. (15c)

Si(t), Al(t), Fe(t), Ca(t) are the concentrations of oxide
components in weight percentage. A fractional-form qual-
ity function q(z(t)) is introduced to express the nonlinear
compositional parameters,

qn,k = qn(zk) =
b′nzk + βn

a′nzk + αn
, n ∈ {L,A,S} , (16a)

qk = q(zk) =

[
qL,k

qA,k

qS,k

]
. (16b)

bn ∈ Rnz and an ∈ Rnz are two constant vectors. βn and
αn are two scalars. In the raw mix blending optimal control
problem, the compositional parameters need to follow the
given targets while satisfying constraints. The set point
of the compositional parameters is denoted as q̄ = [L̄;
Ā; S̄]. The upper and lower bounds of the compositional
constraints are denoted as qmax = [Lmax; Amax; Smax] and
qmin = [Lmin; Amin; Smin].

4.2 Nonlinear blending MPC

The optimal control problem considered in the NMPC is
defined as

min
{ui,si+1,ti+1}N−1

i=0

ϕ = ϕq + ϕs + ϕt + ϕeco + ϕ∆u (17a)

s.t. x0 = x̂k|k, (17b)

xi+1 = Axi +Bui, i ∈ N , (17c)

zi+1 = Cxi+1, i ∈ N , (17d)

e′ui = 1, i ∈ N , (17e)

umin,i ≤ ui ≤ umax,i, i ∈ N , (17f)

∆umin,i ≤ ∆ui ≤ ∆umax,i, i ∈ N , (17g)

qi+1 = q(zi+1), i ∈ N , (17h)

qi+1 ≤ qmax,i+1 + ti+1, i ∈ N , (17i)

qi+1 ≥ qmin,i+1 − si+1, i ∈ N , (17j)

si+1 ≥ 0, ti+1 ≥ 0, i ∈ N , (17k)

where N = {0, 1, . . . , N − 1} for N indicating the predic-
tion and control horizons of the NMPC. In the blending
optimal control problem, we consider the reference track-
ing objective ϕq, the soft constraint penalty objectives ϕs

and ϕt, the economic objective ϕeco, as well as the input
rate of movement (ROM) objective ϕ∆u

. They are denoted
as

ϕq = αq

N−1∑
i=0

1

2
∥Wq(qi+1 − q̄i+1)∥22 , (18a)

ϕs = αs

N−1∑
i=0

1

2
∥Wssi+1∥22 + q′ssi+1, (18b)

ϕt = αt

N−1∑
i=0

1

2
∥Wtti+1∥22 + q′tti+1, (18c)

ϕeco = αeco

N−1∑
i=0

c′ui, (18d)

ϕ∆u = α∆u

N−1∑
i=0

1

2
∥W∆u∆ui∥22 . (18e)

in which Wq,Ws,Wt,W∆u, qs, and qt are scaling factors.
αq +αs+αt+αeco+α∆u = 1 for αq, αs, αt, αeco, α∆u ≥ 0
indicate the weights of objectives. c is the unit cost vector
of the raw material piles. umin, umax, ∆umin, and ∆umax

are the input and the input ROM hard constraints. s and
t are slackness variables for softening the compositional
parameter constraints.

4.3 Linear blending MPC

The nonlinearity in the optimal control problem (17)
appears as qk is nonlinear in zk. Consider a reference
tracking problem on a quality function (16),

ϕq,n =

N−1∑
i=0

1

2
∥Wq(qn,i+1 − q̄n,i+1)∥22

=

N−1∑
i=0

1

2
∥Wqϵn,i+1∥22 ,

(19)

where n ∈ {L,A,S}. q̄n indicates the set point of the
compositional parameter n. The residual function ϵn,i+1 is

ϵn,i+1 = qn,i+1 − q̄n

=
(b′n − q̄na

′
n)zi+1 + βn − q̄nαn

a′nzi+1 + αn
,

(20)

By multiplying the denominator of (20) on both side, a
new residual function can be defined as

ϵ̃n,i+1 = (a′nzi+1 + αn)ϵn,i+1

= (b′n − q̄na
′
n)zi+1 + βn − q̄nαn

= Mnzi+1 +mn,

(21)



whereMn = b′n−q̄na
′
n andmn = βn−q̄nαn. Consequently,

we can formulate an approximation to the reference track-
ing objective (19) as

ϕ̄q,n =

N−1∑
i=0

1

2

∥∥W̄q(Mnzi+1 +mn)
∥∥2
2
, (22)

The value of (21) will be zero when the error between
the set point q̄n,i+1 and qn(zi+1) is zero. We can use
this feature to minimize the reference tracking objective.
Therefore, a quadratic objective for the reference tracking
objective can be defined as

ϕ̄q = αq

N−1∑
i=0

1

2
||Wq(Mqzi+1 +mq)||22, (23a)

Mq =

[
ML̄
MĀ
MS̄

]
=

−2.8L̄ −1.18L̄ −0.56L̄ 100
0 1 −Ā 0
1 −S̄ −S̄ 0

 , (23b)

mq =

[
mL̄
mĀ
mS̄

]
=

[
0
0
0

]
, (23c)

Similarly, we can reformulate the nonlinear composi-
tional parameter inequality constraint (17i) with the same
method. By multiplying the denominator of the quality
function q(z(t)) on both sides of (17i), we can obtain a
linear inequality constraint as

qi+1 ≤ qmax,i+1 + ti+1, Mq,maxzi+1 ≤ mq,max + ti+1,
(24a)

qi+1 ≥ qmin,i+1 − si+1, Mq,minzi+1 ≤ mq,min − si+1,
(24b)

where

Mq,max =

[−2.8Lmax −1.18Lmax −0.56Lmax 100
0 1 −Amax 0
1 −Smax −Smax 0

]
,

(25a)

Mq,min = −

[−2.8Lmin −1.18Lmin −0.56Lmin 100
0 1 −Amin 0
1 −Smin −Smin 0

]
,

(25b)

In this case, mq,min = mq,max = 0 since the compositional
parameters have no constant term. It should be noticed
that this reformulation method only works when the sign
of the denominator is constant (positive or negative).

With (23) and (24), a convex QP for the LMPC can be
defined as

min
{ui,si+1,ti+1}N−1

i=0

ϕ = ϕ̄q + ϕs + ϕt + ϕeco + ϕ∆u (26a)

s.t. x0 = x̂k|k, (26b)

xi+1 = Axi +Bui, i ∈ N , (26c)

zi+1 = Cxi+1, i ∈ N , (26d)

e′ui = 1, i ∈ N , (26e)

umin ≤ ui ≤ umax, i ∈ N , (26f)

∆umin ≤ ∆ui ≤ ∆umax, i ∈ N , (26g)

Mq,maxzi+1 ≤ ti+1, i ∈ N , (26h)

Mq,minzi+1 ≤ si+1, i ∈ N , (26i)

si+1 ≥ 0, ti+1 ≥ 0, i ∈ N , (26j)

where the objectives ϕs, ϕt, ϕeco, and ϕ∆u are the same
as in the objective functions (18b) - (18e) for the optimal
control problem in the NMPC.

5. SIMULATION RESULTS

In this section, we test and compare the LMPC and NMPC
on the simulated raw mix blending model described in Sec-
tion 2. The sampling time is Ts = 5 [min]. The prediction
and control horizons are selected asN = 50. The simulated
blending process has four raw material piles. The time
delay of input piles are τD1 = [0.55, 0.50, 0.45, 0.40] [min].
The composition matrix P and the cost vector c are

P =

65.0 2.10 1.40 0.90
1.80 15.9 2.20 4.10
0.10 1.30 32.6 0.20
0.50 0.40 2.80 62.40

 , c =

 550.0
1600.0
935.0
1145.0

 . (27)

The time delay of GD2 is τD2 = 20 [min]. We assume
that the laboratory measurement Y2 is available every 60
[min]. The measurement covariance is selected as R =
diag([10−1e; 10−3e]), e = [1; 1; 1; 1]. The input and in-
put ROM hard constraints are umin = 0, umax = 1 and
∆umin = −0.5,∆umax = 0.5 for all piles. The compo-
sitional parameter constraints are Lmin = 92,Lmax =
98,Amin = 1.0,Amax = 2.5, Smin = 2.3, and Smax = 2.7.
The set point for LSF is L̄ = 95.0, and it changes to
L̄ = 90.0 at t > 6 [h]. Similarly, the constraints of the
LSF are changed to Lmin = 87, and Lmax = 93. We
do not consider set points for ALM and SIM. Therefore,
the scaling factors of the reference tracking objectives
are Wq = diag([101; 0; 0]) and W̄q = diag([2.6; 0; 0]).
Other scaling factors are selected as Ws = Wt =
diag([103; 103; 103]),W∆u = diag([101; 101; 101; 101]) and
qs = qt = [103; 103; 103]. The weighting parameters are
selected as αq = αs = αt = αeco = α∆u = 0.2, such that
all objectives are treated equally.

Based on the model identification method described in
Prasath et al. (2013), we can obtain a control-oriented
model for MPCs,

Ŷ (s) = Ĝ(s)U(s) + Ĥ(s)E(s), (28)

where Ĝ(s) and Ĥ(s) are the deterministic and stochas-
tic transfer functions. A gain mismatch matrix Gm =
diag([1.1; 0.95; 0.90; 1.05]) is introduced as Ĝ(s) = G(s)
Gm(s), representing the variations of the input pile com-
positions. The control model is realized to a discrete-
time state space model, which is used in the MPCs and
the Kalman filters. To compare the performances of the
MPCs, we test the MPCs on the same simulation model
with the same parameters. We use CasADi to solve the
optimization problem of the NMPC, and the LMPC is
solved by using the MATLAB function quadprog. Several
performance indicators are introduced for quantifying the
controller performance. The time-outside-range parameter
Ti[%] for i ∈ {L,A,S} indicates the percentage of samples
for which the parameter i violates boundaries. TCPU [s] is
the average computation time and cost [$/t] is the average
piles cost. The initial input is u0 = [0.25; 0.25; 0.25; 0.25]
and the initial states are steady states. An unknown dis-
turbance d = [8.0; 8.0; 8.0; 20] · 10−2 is added to u during
the simulation.

Figure 2 illustrates the closed-loop simulation results. We
notice that the NMPC and the LMPC perform similarly
for the three compositional parameters. This indicated
that the LMPC approximates the NMPC well, which is
reasonable since the dynamics and the objective functions
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Fig. 2. The closed-loop simulation results of the LMPC and NMPC on a simulated raw mix blending process. Three
compositional parameters LSF, ALM, and SIM are shown in the plot. The green line indicates the set point for
LSF. Red dashed lines are boundaries. The blue lines indicate the true value of the LMPC. The black lines are the
true value of the NMPC. The last row of figures are the system inputs and the unknown disturbance.

Table 1. KPIs for the LMPC and the NMPC.

TL TA TS TCPU Cost

LMPC 9.27 10.60 56.95 6.04 990.10
NMPC 7.28 7.28 42.38 8.55 989.99

of the MPCs are designed with this property in mind.
At the beginning, both MPCs take some time to bring
the system to the target area. This indicates that the
MPCs can handle plant-model mismatch. Two significant
overshoots caused by unknown disturbance d occur at
t ∈ {3, 10} [h]. After a few iterations, the two overshoots
disappear, indicating that the MPCs can reject unknown
disturbances. The reference point and constraints of the
LSF are changed at t = 6 [h], and both MPCs follow
the new target and satisfy the constraints. There are
slight differences between the LMPC and NMPC on ALM
and SIM. We consider this phenomenon normal, since the
optimal control problems are not exactly equivalent. The
inputs of the MPCs show similar trends.

Table 1 displays the key performance indicators for the
NMPC and the LMPC. The LMPC and NMPC have sim-
ilar performances regarding the time-in-range performance
metrics, TL, TA and TS . As expected, the NMPC performs
slightly better than the LMPC on the time-in-range met-
rics as well as the cost. The average costs related to both
MPCs are around 990 [$/t]. As expected the the LMPC
is slighlty more computationally efficient than the NMPC.
The average CPU times of the LMPC and the NMPC are
both less than 10 seconds, which is much smaller than the
sampling time of 5 min. The computational time may be
further optimized, by tailoring the optimization algorithm
to the special problem structure.

6. CONCLUSION

For controlling the output raw meal quality of the raw
mix blending process, LMPC and NMPC using a Kalman
filter with memory are described. The simulation results
indicate that both MPCs can stabilize and control the
simulated raw mix blending process well. The proposed
NMPC and LMPC have similar performance and are both
computationally feasible. Consequently, both the NMPC
and the LMPC can be used for cement blending control.
We recommend the NMPC.
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