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Abstract: Classical thermodynamics has the standard assumption that there should exist a
once differentiable and homogeneous of degree one entropy function with a strict maximum.
Based on the concavity assumption, we derive a convex storage function called thermodynamic
availability that can be used for passivity-based control design. In this paper, we show that a
thermodynamic system with equilibrium reactions controlled by feedback controllers is stable.
In particular, the mapping from the feed flow rate to pressure and from the heating/cooling
rate to temperature is passive. Simulations of a methane steam reforming reactor provide an
example of the control design.
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1. INTRODUCTION

The control design of a CSTR with kinetic reactions, for
example Arrhenius rate expressions, can be approached
by classical methods as studied by Alvarez-Ramirez and
Femat (1999); Antonelli and Astolfi (2003). More recently,
thermodynamic-based strategies are applied to such prob-
lems using the availability function (Hangos et al. (1999);
Hoang et al. (2009)) or the Hamiltonian framework (Do-
erfler et al. (2009)). However, control designs using ther-
modynamic properties still have many open issues (Hoang
et al. (2012)). Despite the obvious importance of reactors
operating near the thermodynamic equilibrium, stability
theory supporting the control design for such reaction
systems with equilibrium constraints is not sufficient. The
main problem is that the equilibrium constraints convert
the differential system to a differential systems with al-
gebraic constraints, i.e. a DAE system, which makes it
difficult to apply classical stability theories, such as Lya-
punov’s direct and indirect methods.

In this paper, we attempt to explain why low order and
well designed PI controllers with feedforward components
stabilize chemical process systems with high order and
complex nonlinear dynamics. More generally, the theory
applies to any controller that is input-strictly passive, such
as indirect adaptive controllers, optimal and predictive
controllers.

Dissipation of useful work is a consequence of entropy
production in irreversible processes. In classical thermo-
dynamics, this is expressed as the maximization of the
entropy of an isolated system as postulated by Clausius. In
an open system such as a multi-phase distillation process
or a chemical reactor, the entropy is no-longer maximized.
However, we can still apply the concept of local equilib-
rium to establish the presence of an equilibrium manifold
? This work was funded by NSF and ALCOA and DOE under
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defined by entropy maximization. Along this manifold, we
find that the entropy production is minimized and that the
inherent irreversibility is quantified by the loss of available
work (Salamon and Berry (1983)) or availability as was
called by Keenan (1951).

In this paper we use the temperature-scaled availability
to define a storage function for passivity-based control.
We use the Gibbs equation (Sandler (1999)) to define the
entropy, or the primitive surface, as it was called in the first
monograph by Gibbs (1906). We furthermore assume that
the entropy function has a strict maximum, as postulated
by Noll (1970) and show how this leads to the construction
of a thermodynamic availability function (Alonso and
Ydstie (1996, 2001)) for passivity based control design and
stabilization.

2. PROBLEM DEFINITION

In this paper we consider the class of positive state space
systems that we refer to as thermodynamic systems. The
state vector z represents a typical point in the nc + 2
dimensional space of non-negative reals

z = (U, V,N1, · · · , Nnc) (1)

where U represents the internal energy, V the volume and
Ni the number of moles of i-th chemical species, where
i ∈ {1, · · · , nc}. It follows that z with elements 0 ≤ zi <∞
define the state space Z as an open subset of Rnc+2

+ .

Components may undergo chemical reactions according to
stoichiometric constraints

nc∑
i=1

νi,kIi = 0, k = 1, ..., nr (2)

Ii is chemical formula of species i, nr is the number of inde-
pendent chemical reactions, and νi,k is the stoichiometric
coefficient of species i in reaction k. The stoichiometric co-
efficients are positive for products, negative for reactants,



and equal to zero for inert species. In addition, we impose
equilibrium constraints

nc∑
i=1

νijµi(z) = 0, j = 1, ..., nr (3)

where µi(z) is the chemical potential of the ith species.
The justification of equation 3 is provided in appendix A.

Such systems have non-negative states and dynamics con-
strained so that they satisfy the second law of thermody-
namics. Specifically, the dynamics satisfy the conservation
laws

dz

dt
= φ(z, u, d), z(0) given (4)

The state variables are non-negative with z(0) being the
initial condition. The function φ(z, u, d) depends on the
state, and vectors u and d of controls and disturbances.

An output vector
y = h(z) (5)

is defined to model measured outputs.

The problem addresses how to choose the vector of control
variables u and output variables y so that the mapping
u 7→ y defined by the equilibrium constrained system (4
- 5) is passive. I.e. that there exists a positive definite
storage function W (z) so that

dW (z)

dt
≤ uT y

for all valid disturbance signals. In addition we need to
establish the existence, stability and uniqueness of the
solutions to the differential equations (4) with algebraic
constraints (3) when we apply passivity based controls of
the type u = C(y) where C(·) is output strictly passive.

3. THERMODYNAMIC SYSTEMS

Classical thermodynamics is based on the idea that a
nonlinear function of the state, called the entropy, achieves
its maximum at equilibrium.

We claim the following properties

The entropy function S: Z→ R̄+ is differentiable at least
once. Furthermore

(1) The entropy is homogeneous degree one, i.e.S(λz) =
λS(z).

(2) The temperature is positive, i.e. T = ∂U/∂S > 0, and
S(z)→ 0 as T → 0.

(3) The entropy has a strict maximum for isolated sys-
tems.

The Euler equation gives the important relation

S(z) = wT z (6)

where w is a vector of intensive variables defined by

w = ∇S(z)

= (
∂S

∂U
,
∂S

∂V
,
∂S

∂N1
, · · · , ∂S

∂Nnc

)

= (
1

T
,
P

T
,−µ1

T
, · · · ,−µnc

T
)

(7)

Application of these properties establishes the phase rule,
nf = nc+2−np−nr. It establishes the rank of the mapping
w(z) = ∇S at the point z. Due to homogeneity,

Fig. 1. Thermodynamic availability and the entropy func-
tions with respect to the state space z

Fig. 2. A illustrative example of a gas-phase reactor with
heat and outward flow control

its rank is always less than nc + 2. Strict maximality
ensures that the phase distribution is unique 1 .

The concavity of entropy makes it a good candidate to
define a storage function for passivity-based design of
feedback control systems. By taking the difference between
the supporting hyperplane zTw(z∗) at a given point z∗ and
the entropy function at z, we define a distance function

A(z, z∗) = zTw∗ − S(z) (8)

where w∗ = ∇S(z)|z=z∗ . The concavity of the entropy S
guarantees that the availability (8) is positive definite 2 .
An illustrative example of a homogeneous thermodynamic
system is shown in Fig 1.

4. PASSIVITY BASED CONTROL OF GAS-PHASE
EQUILIBRIUM REACTORS

In this section, a passivity-based control design is devel-
oped for the single phase reactive system shown in Fig 2
based on thermodynamic notations introduced in section
3. The internal energy, volume, and component balances
are given by

1 The assumption of strict maximization can be replaced by gener-
icity (nothing is really flat), by second order differentiability and
with it strict local concavity at the equilibrium phase distribution,
or equivalently, the validity of the phase rule.
2 The availability is related to the Exergy and also to the Bregman
distance (Bregman (1967)). The main difference with Bregman being
that A is homogeneous degree one and not positive definite in z.
However, it follows from the phase rule that it is positive definite in
w(z)



dU

dt
= ĤinF in − ĤoutF out +Q

dV

dt
= 0

dNi

dt
= F inxini − F outxini + pi(U, V,N1, ..., Nnc)

(9)

F represents molar flow rates, Ĥ is a compact notation for
the molar enthalpies and xi represents the mole fraction
of species i in a flow. The subscripts “in” and “out”
denote flows into and out of the reactor. pi represents the
production term due to chemical reactions for species i. Q
denotes the rate of heat transfer to the reactor.

Lemma 1. Availability for the single phase reactor
Consider the thermal system (9) with equilibrium con-
straints (3). The availability function then satsifies

dA

dt
= din − dout + sin − ∆P

TT ∗ ∆(FT ṽ)out +
1

TT ∗ ∆T∆Q

with dissipation

din = −(ω − ω∗)T (F ẑ − (F ẑ)∗)in

dout = −(ω − ω∗)T (F ẑ − (F ẑ)∗)out

where ẑ are molar quantities of z and

sin = −∆(
1

T
)∆(FPV̂ )in + ∆(

P

T
)∆(FV̂ )in

Proof. From equation (8), the time derivative of the
available function can be written as

dA

dt
= w∗T dz

dt
− dSD

dt
(10)

Homogeneity gives dSD

dt = wT dz
dt , we then get

dA

dt
= w∗T dz

dt
− wT dz

dt

To simplify the notation, the deviation operator ∆ is
introduced so that

∆w = w − w∗ ∆z = z − z∗

The reference state is time invariant so that

d∆z

dt
=
dz

dt

Now the time derivative of the availability function has
the form

dA

dt
= −∆w∗T d∆z

dt
(11)

Expanding the right hand side into the product of each
component of ∆z and ∆w using equations (9) and (7)

dA

dt
=−∆(

1

T
)
d∆U

dt
−∆(

P

T
) · 0 + ∆(

µ

T
)T
d∆N

dt

=−∆(
1

T
)∆((FĤ)in − (FĤ)out +Q)

+

nc∑
i=1

∆(
µ

T
)T ∆((xiF )in − (xiF )out + pi)

According to the definition of molar enthalpy Ĥ = Û+PV̂ ,
where Û is the molar internal energy, P is the pressure,
and V̂ represents the molar volume, now

dA

dt
=−∆(

1

T
)∆(FÛ)in −∆(

1

T
)∆(FPV̂ )in

+ ∆(
1

T
)∆(FÛ)out + ∆(

1

T
)∆(FPV̂ )out

−∆(
1

T
)∆Q

+

nc∑
i=1

(
∆(

µi

T
)T ∆(xiF )in −∆(

µi

T
)T ∆(xiF )out

)
+

nc∑
i=1

∆(
µi

T
)T ∆pi

For species i,

pi =

nR∑
j=1

νijεj

where εj is the rate of the jth reaction.

∆(
µi

T
)∆pi = ∆(

µi

T
)∆

nR∑
j=1

νijεj

= ∆(
µi

T
)

nR∑
j=1

νij∆εj

=
1

T

nR∑
j=1

µiνij∆εj −
1

T ∗

nR∑
j=1

µ∗
i νij∆εj

Considering all species

nc∑
i=1

∆(
µi

T
)∆pi

=
1

T

nc∑
i=1

nR∑
j=1

µiνij∆εj −
1

T ∗

nc∑
i=1

nR∑
j=1

µ∗
i νij∆εj

=
1

T

nR∑
j=1

∆εj

nc∑
i=1

µiνij −
1

T ∗

nR∑
j=1

∆εj

nc∑
i=1

µ∗
i νij

For single-phase systems reaching reaction equilibrium,
the production term p is shown to be 0 using the equi-
librium criterion, the proof of which is in Appendix A.
The equilibrium criterion gives

nc∑
i=1

µiνij = 0

nc∑
i=1

µ∗
i νij = 0

Hence

nc∑
i=1

∆(
µi

T
)∆pi = 0



dA

dt
=

−∆(
1

T
)∆(FÛ)in −∆(

P

T
)∆(FV̂ )in + ∆(

µ

T
)T ∆(xF )in

(12)

+ ∆(
1

T
)∆(FÛ)out + ∆(

P

T
)∆(FV̂ )out −∆(

µ

T
)T ∆(xF )out

(13)

−∆(
1

T
)∆(FPV̂ )in + ∆(

P

T
)∆(FV̂ )in (14)

+ ∆(
1

T
)∆(FPV̂ )out −∆(

P

T
)∆(FV̂ )out (15)

−∆(
1

T
)∆Q (16)

Applying the well-mixed assumption, we expand and re-
arrange terms in expression (15)

−∆(
1

T
)∆(FPV̂ )out + ∆(

P

T
)∆(FV̂ )out

=
1

TT ∗ (T − T ∗)(FPV̂ − (FPV̂ )∗)out

+
1

TT ∗ (PT ∗ − P ∗T )(FV̂ − (FV̂ )∗)out

=
1

TT ∗ (PTF V̂ − P ∗TF V̂ − P (TF V̂ )∗ + (PTF V̂ )∗)out

=
1

TT ∗ ∆P∆(TF V̂ )out

We use sin to define expression (14) as is stated in lemma
1.

For equation 16,

−∆(
1

T
)∆Q =

∆T

TT ∗ ∆Q

Combining derived terms together gives the proposed
expression in lemma 1.

For a gas-phase equilibrium reactor with fixed feed condi-
tions:

• the deviation in feed conditions equals zero, i.e. din

with expression 12 and sin is zero, according to the
assumption of fixed feed conditions.

• dout = −(ω−ω∗)T (F ẑ−F ẑ∗)out = F out(C1A(z, z∗)+
C2A(z∗, z)) ≥ 0, where C1 and C2 are positive
numbers scaled by mole numbers.

Lemma 1 shows that a single-phase equilibrium reactor
with fixed feed conditions is strictly passive with

u = ∆

(
F out
V
Q

)
, y = ∆

(
P
T

)
(17)

where F out
V is the volumetric out flow.

5. METHANE STEAM REFORMING

The steam reforming reaction accounts for up to 95% of
the world’s hydrogen production and most ammonia is
produced by the Haber Bosch process. Both processes and
many other industrial examples such as the production of
sulfuric acid and lime are governed by chemical equilib-
rium. In this section, a methane steam reforming reactor
with control design shown in equation (17) is modeled in
Matlab.

Fig. 3. Model Example: Water gas shift reactor with
constant volume

The materials flowing in and out of the reactor is shown
in Fig 3 The system is simplified by applying the following
assumptions:

• The reactor operates as a CSTR and all components
are in gas phase.

• The gases are treated as ideal.
• The kinetics at high temperatures are fast so that the

chemical equilibrium is reached by Minimizing Gibbs
free Energy.

Methane reacts with water to produce syn-gas (CO + H2).

CH4 + H2O 
 CO + 3 H2 (18)

Carbon monoxide and water undergo water gas shift
reaction to form hydrogen and carbon dioxide.

CO + H2O 
 CO2 + H2 (19)

5.1 Reaction Invariants and Thermodynamic Mapping

Elements are conserved during chemical reactions and are
referred to as reaction invariants. Under the assumption of
reaction equilibrium, the invariant space zI can be mapped
into the component space zC by applying thermodynamic
data of the system.

P
T
NC

NH

NO


︸ ︷︷ ︸

invariant space

thermodynamic−−−−−−−−−−→
mapping



U
V

NCO2

NCO

NH2

NH2O

NCH4


︸ ︷︷ ︸

component space

Under the assumption of reaction equilibrium, the mini-
mization of Gibbs free energy is a good candidate for the
thermodynamic mapping. The algorithm can be consid-
ered as a constrained optimization problem under given
temperature and pressure in the following form

min G =

5∑
j=1

µj(Nj)Nj

s.t. NC = NCO +NCO2
+NCH4

NH = 2NH2 + 2NH2O + 4NCH4

NO = NCO + 2NCO2
+NH2O

(20)

The minimum is unique due to strict maximization in the
entropy formulation.

5.2 Modeling Framework

The general equations for a system model based on reac-
tion invariants have the following form



dzI
dt

= φ(x, d, u)

x = h(zI)
(21)

where zI represents the reaction invariants. The equation
x = h(zI) is the thermodynamic mapping function that
maps the invariant state space to the equilibrium compo-
nent state space. If a process system under equilibrium is
modeled in a framework based on reaction invariants, the
mass balance described by reaction invariants is a set of
first-order linear differential equations as the net change
depend only on boundary flows. The higher order terms
including production and consumption of components are
considered in the equilibrium thermodynamic calculation.

For the water gas shift model, there are two separate inlets
for steam and methane and one single outlet for reaction
products. The inlet molar flow rates are fixed. Based on
lemma 1, the system is passive with respect to the input-
output pairs shown in 17 and the can be stabilized by
simple feedback controllers. The outlet molar flow rate is
controlled by a PI controller to achieve a desired pressure
set point.

F out(t) = kp

(
eP (t) +

1

Ti

∫ t

0

eP (τ)dτ
)

eP (t) = P (t)− P ∗(t)

The energy balance is written as

dU

dt
= ĤinF in − ĤoutF out +Q (22)

where Ĥin and Ĥout are molar enthalpies of formation of
components in the inlet and outlet flows respectively and
Fin and Fout are molar flow rates. Q represents the rate
of heat transfer to the system. We first derive the time
derivative of temperature from the energy blance. Expand
the expression of the internal energy on the left-hand side
of equation 22, we get

U =

5∑
j=1

Njuj (23)

and

dU

dt
=

5∑
j=1

uj
dNj

dt
+

5∑
j=1

Nj
duj
dt

(24)

Applying the assumptions of reaction equilibrium and
ideal gas mixture, we have

dU

dt
=

5∑
j=1

Nj
duj
dt

=

5∑
j=1

Njcv,j
dT

dt
(25)

where Cv,j is the molar heat capacity at constant volume
and uj is the molar internal energy of species j.

In order to control the temperature of the system to a set
point, a PI controller is implemented in the heat supply
such that

Q = kp

(
eT (t) +

1

Ti

∫ t

0

eT (τ)dτ
)
− ĤinF in + ĤoutF out

eT (t) = T (t)− T ∗(t)

The closed-loop system of the water gas shift tank with
reaction invariants is written as

dNC

dt
= F in

CH4
− F out(xCO2

+ xCO + xCH4
)

dNH

dt
= 4F in

CH4
+ 2F in

H2O
− F out(2xH2

+ 2xH2O + 4xCH4
)

dNO

dt
= F in

H2O
− F out(2xCO2

+ xCO + xH2O)

dT

dt
= kp

(
ep(t) +

1

Ti

∫ t

0

ep(τ)dτ

)
/

( 5∑
j=1

Njcp(Nj , T )

)
(
U
V
NJ

)
= h

(
P
T
NI

)

F out(t) = kp

(
eP (t) +

1

Ti

∫ t

0

eP (τ)dτ

)

Fig. 4. Example of Pressure set point change for the water
gas shift reactor model



NJ is a compact notation for mole numbers of chemical
species and NI is a compact notation for mole numbers of
atoms. The DAE system above has index 1 and is solved by
Matlab solver ode15s and the thermodynamic mapping
is solved by nonlinear programming solver fmincon. In
this case, the Gibbs minimization problem has a unique
solution so a global solver is not needed.

The following simulation example illustrates the applica-
tion of the theory to the water gas shift reactor model and
its control system. The result is shown in figure 4 . Given a
constant volume gas phase system, the molar flow rates of
methane and steam are fixed. The temperature set point
is 1000K and the system is able to reach a new state of
equilibrium after a step change in the set point of pressure.

6. CONCLUSION

Passivity-based control theory is applied to the stability
analysis of a gas-phase equilibrium reactor with fixed feed
conditions. A thermodynamic availability function is de-
veloped as the storage function, which leads to feedback
control design of the reactor system. It can be shown that
the pressure and temperature of a gas-phase equilibrium
reactor can be stabilized with feedback controls of outward
flow and heat supply respectively. The theorem developed
in this paper is applicable to reaction systems with more
complex dynamics. For future studies, stability analysis
of a multi-phase equilibrium reactor is considered. Chem-
ical reactors described by PDE systems with varied feed
conditions and spatial discretization of temperature and
material concentration is also a promising direction.
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Appendix A. THE EQUILIBRIUM CRITERION

For a single chemical reaction, the molar extent of reaction
X is related to mole number Ni of a specie i in the reaction
at any time t and the initial mole number Ni,0 by the
following equation

Ni = Ni,0 + νiX (A.1)

X is defined in a way such that it is the same for every
chemical species in a single reaction. Considering a closed
single-phase constant temperature and constant pressure
system with multiple chemical reactions, the mole number
of species i at any time is

Ni = Ni,0 +

nR∑
j=1

νijXj (A.2)

The total Gibbs free energy energy of the systen can be
written as

G =

nc∑
i=1

Niµi =

nc∑
i=1

Ni,0 +

nR∑
j=1

νijXj

µi

=

nc∑
i=1

Ni,0µi +

nc∑
i=1

nR∑
j=1

νijXjµi

(A.3)

At chemical equilibrium, the Gibbs free energy is min-
imized and partial derivation of G with respect to all
reaction variables are zero. For the system of interest, this
gives (

∂G

∂Xj

)
T,P,Xi6=j

= 0 j = 1, 2, · · · , nR (A.4)

and then for all reactions j = 1, 2, · · · , nR
nc∑
i=1

Ni,0

(
∂µi

∂Xj

)
T,P,Xi6=j

+

nc∑
i=1

νijµi = 0 (A.5)

The generalized Gibbs-Duhem equation gives
nc∑
i=1

Ni,0

(
∂µi

∂Xj

)
T,P,Xi6=j

= 0 (A.6)

Combining equation A.5 and equation A.6 gives
nc∑
i=1

νijµi = 0 (A.7)


