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Abstract: Phenylalanine, tyrosine and tryptophan are highly important aromatic amino acids, vital for food 

and pharmaceutics industry. They aren’t only valuable by themselves, as they are also precursors for other 

high-added value compounds. However, their production by microorganisms is highly regulated, which 

hampers industrial production. Using kinetic modelling, we aim to provide a new tool to identify targets 

for metabolic engineering, in order to increase these amino acids production. To do this, we created a model, 

that encompasses the central carbon metabolism all the way to these amino acids production pathways, 

including their regulation by feedback inhibition. Optimizations were then performed to obtain sets of 

targets for metabolic engineering, which were then compared to the existing strategies found in literature. 

We obtained solutions similar to the strategies found in literature, but also new strategies not yet reported, 

which could imply new chassis for aromatic amino acids production. 
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1. INTRODUCTION 

The three aromatic amino acids (AAA): L-phenylalanine (L-

Phe), L-tryptophan (L-Trp) and L- tyrosine (L-Tyr) are 

compounds of great interest, both as individual metabolites as 

well as precursors for other high-added value compounds, 

namely in the food and pharmaceutics industries (Báez-

Viveros et al., 2004; Lütke-Eversloh and Stephanopoulos, 

2007; Zhao et al., 2011; Liu et al., 2018; Singh and Tiwari, 

2018). These AAA are usually produced by biosynthesis with 

genetically modified microorganisms, using simple 

carbohydrates, such as D-Glucose, constituting a clean and 

renewable alternative to chemical synthesis(Singh and Tiwari, 

2018). However, due to the complexities and intrinsic 

regulation of metabolic networks, the yield coefficient of these 

biosynthetic processes is relatively low, creating a new 

challenge: improving AAA yield (Polen et al., 2005; Juminaga 

et al., 2012; Tröndle et al., 2018). 

Systems biology is a field that aims to understand and simulate 

these metabolic intricacies, to the point where it allows 

prediction of biological processes, providing tools for 

metabolic engineering of biological systems, thus redesigning 

said systems with a set of desired properties (Chassagnole et 

al., 2002; Jahan et al., 2016; Kim, Rocha and Maia, 2018). A 

tool commonly used in this field is the modelling of biological 

systems using mathematical equations, describing biological 

processes and enabling quantitative predictions of the cells’ 

states (Chassagnole et al., 2002; Lima et al., 2016; Kim, Rocha 

and Maia, 2018). 

The potential of modeling is great, but the lack of information 

on biological systems can become a hindrance, particularly to 

kinetic modelling, which relies in enzyme kinetics for its 

quantitative simulations (Chassagnole et al., 2002; Kadir et al., 

2010; Peskov, Mogilevskaya and Demin, 2012; Jahan et al., 

2016). While some metabolic pathways, such as the glycolysis 

or the tricarboxylic acid cycle (TCA), have been greatly 

studied over the years, there is still much to learn regarding 

kinetic information on the dynamics of reactions for less 

studied pathways.  

While smaller than stoichiometric models in sheer size, 

kinetic, or dynamic, models can provide a level of detail that 

stoichiometric models can’t measure up to (Link, 

Christodoulou and Sauer, 2014; van Rosmalen et al., 2021). 

The kinetic information present in this kind of models allows 

for quantitative predictions of metabolites, as well as foresight 

into inhibitory roles by different compounds, for instance, in 

end-product inhibition. This allows for more accurate 

metabolic simulations and for better target predictions 

regarding metabolic engineering purposes. 

In this paper, we strive to predict metabolic engineering targets 

for the optimization of AAA production using a kinetic model 

created with in vitro enzyme kinetics. Inhibition parameters 

were also allowed as targets to enable solutions with reaction 

knockout (KO), over/under expression (OU) and with an 

increase/decrease in inhibition feedback resistance (FbR). 

2. METHODS 

2.1 Designing an Escherichia coli (E. coli) kinetic model 

Unlike genome scale metabolic models, which cover 

thousands of metabolic reactions and encompass entire 

pathways, kinetic models can only cover tens of reactions 



symbolizing one or a few pathways (Stalidzans et al., 2018). 

While this simplifies the creation of a metabolic pathway 

structure, each individual reaction is more complex due to the 

kinetic information added to it. At the same time, kinetic 

models are hindered by the lack of kinetic information on the 

reaction dynamics (Chassagnole et al., 2002). 

The central carbon metabolism (CCM) of E. coli has been 

extensively studied and several dynamic models have been 

made to depict this pathway (Chassagnole et al., 2002; Kadir 

et al., 2010; Peskov, Mogilevskaya and Demin, 2012; Jahan et 

al., 2016). However, none of them have the reactions needed 

for AAA production. Therefore, a new model was needed that 

included all previous studied pathways, while also including 

the shikimate pathway and AAA formation reactions, as well 

as any other reactions considered necessary. 

This new model has its structure and kinetics based on existing 

models found in the literature: glycolysis and PPP was based 

on Chassagnole et al., 2002, TCA was based on Peskov, 

Mogilevskaya and Demin, 2012, acetate formation was based 

on Kadir et al., 2010, ammonia (NH4) intake was based on 

Bruggeman, Boogerd and Westerhoff, 2005, and the electron 

transport chain (ETC) and ATP synthase was based on Peercy 

et al., 2006, Taylor, Korla and Mitra, 2013, and Ederer et al., 

2014. Co-metabolites (ATP, NAD, NADP, etc.) maintenance 

and equilibrium were based on Chassagnole et al., 2002 and 

Peskov, Mogilevskaya and Demin, 2012. The model can be 

found in https://github.com/andrepacofonseca/model.git. 

With this work’s objective being optimization of AAA 

production, there was the need to extend this model into L-Phe, 

L-Trp, and L-Tyr pathways. To do this, a thorough analysis 

into the AAA was made, collecting information about the 

shikimate pathway, a common pathway leading to these three 

amino acids, and about each AAA individual pathway. This 

information was collected through the literature and with the 

help of BRENDA (Chang et al., 2021). Stoichiometry of 

reactions and pathway structure was also conferred from an E. 

coli stoichiometric model, iJO1366 (Orth et al., 2011). In case 

no kinetic information was found on BRENDA or on the 

literature, empirical kinetics or parameters were used, 

depending on how much information was lacking. The AAA 

biosynthesis is extremely regulated, with several enzymes of 

their pathways being feedback inhibited by their end-product 

(L-Phe, L-Trp and L-Tyr), in fact the very first reaction of the 

shikimate pathway, which converts erythrose-4-phosphate 

(E4P) and phosphoenolpyruvate (PEP) into the first metabolite 

of the shikimate pathway, 2-dehydro-3-deoxy-D-arabino-

heptonate 7-phosphate (2DDA7P), is carried out by 3 

isozymes, each regulated by a different AAA. In this work, 

care was taken to properly represent this inhibition, which was 

deemed as vital for later simulation and optimization work. 

The basic structure of the model is shown in Figure 1. 

2.2 Simulation of a kinetic model 

For both the simulation and optimization of the kinetic model, 

a python package called optimModels was used. This package 

allows for kinetic model simulation and in silico strain design 

optimization by finding combinations of knockout (KO) and 

Figure 1. Basic structure of the kinetic model, including glycolysis, PPP, TCA, acetate formation, NH4 intake, shikimate pathway and AAA 

formation. ETC and ATP synthase are not shown in this image. Glucose, acetate and NH4 are external metabolites.  Black arrows: reactions; 

dotted lines and white diamonds: inhibition. G6P: glucose 6-phosphate; G1P: glucose 1-phosphate; F6P: fructose 6-phosphate; FdP: D-

fructose 1,6-biphosphate; G3P: glyceraldehyde 3-phosphate; DHAP: dihydroxyacetone phosphate; 1,3dPG: 3-phospho-D-glyceroyl 

phosphate; 3PG: 3-phospho-D-glycerate; 2PG: D-glycerate 2-phosphate; PYR: pyruvate; CoA: Coenzyme A; AcCoA: acetyl CoA; OAA: 

oxaloacetate; CIT: citrate; ACON: cis-aconitate; ICIT: isocitrate; AKG: 2-oxoglutarate; SucCoA: succinyl CoA; SUCC: succinate; FUM: 

fumarate; MAL: L-malate; GLX: glyoxylate; ACTP: acetyl phosphate; phosph: phosphate; 6PGL: 6-phospho-D-glucono-1,5-lactone; 

6PGC: 6-phospho-D-gluconate; Ru5P: D-ribulose 5-phosphate; Xu5p: D-xylulose 5-phosphate; R5P: D-ribose-5-phosphate; S7P: 

sedoheptulose-7-phosphate; 3DHQ: 3-dehydroquinate; 3DHSK: 3-dehydroshikimate; SKM: shikimate; SKM5P: shikimate 5-phosphate; 

3PSME:5-O-(1-carboxyvinyl)-3-phosphoshikimate; CHOR: chorismite; PPHN: prephenate; PHPYR: phenylpyruvate; 34HPP: 3-(4-

hydroxyphenyl)pyruvate; ANTH: anthranilate; PRAN: N-(5-phospho-D-ribosyl)anthranilate; PRPP: 5-phospho-alpha-D-ribose 1-

diphosphate; 2CPR5P: 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate; 3IG3P: C’-(3-indolyl)-glycerol 3-phosphate; Glu: 

glutamate; Gln: Glutamine. 



over/under expression of genes or reactions. The package can 

be found in https://github.com/saragcorreia/optimModels.  

The kinetic model is prepared for simulation of a glucose pulse 

with a dilution rate of 0.1 h-1, a glucose initial concentration of 

2 mM and a glucose concentration in the feed of 110.96 mM. 

The sole carbon source for this model is glucose, the intake of 

which occurs by means of a phosphotransferase system (PTS), 

as described by Chassagnole et al., 2002. All simulations had 

a total run time of 72000 s. 

2.3 Optimization for AAA 

Evolutionary algorithms (EA) have been shown to be possible 

approaches for target prediction in metabolic engineering 

(Evangelista et al., 2009), giving a mix of solutions containing 

KO or OU of the maximum enzyme reaction rate (Vmax) for 

any set of reactions. This method works by multiplying the 

parameters with a factor, which can go from 0 to any positive 

number higher than 1. Should the factor value (f) be 0<f <1 

then it is considered an under expression of the reaction. In the 

case that f>1, then it is an over expression. If it is 0, then it is 

considered a reaction KO. If f is 1 then there is no change to 

the parameter. In this work we also used an EA optimization 

approach. However, we included inhibition parameters (Ki) 

alongside OU of reactions Vmax as possible values for the set 

of solutions, to provide better and more complete metabolic 

engineering strategies. Due to mathematical constraints on the 

reaction kinetics, Ki cannot have a value of zero, so KO was 

not a possibility, as can be exemplified in (1), where Km is the 

Michaelis-Menten constant. However, under expression of 

Vmax can be considered as KO, should it be biologically 

viable. 

𝑉𝑚𝑎𝑥 ∗ 𝐴 ∗ 𝐵

(𝐾𝑚1 + 𝐴) ∗ (1 +
𝐼𝑛ℎ𝑖𝑏

𝐾𝑖
) ∗ (𝐾𝑚2 ∗ (1 +

𝐼𝑛ℎ𝑖𝑏
𝐾𝑖

) + 𝐵)
   (1) 

To check for the most important targets, sets of solutions were 

divided in size with up to three or five alterations (the word 

alterations will from now on be used whenever a mix of 

knockouts, overexpressions, underexpressions and/or 

mutations are referred to). All Vmax and Ki belonging to the 

reactions present in Figure 1 were selected as possible 

parameters for OU, including drain reactions for the three 

AAA, AcCoA, Serine, PRPP, 3DHQ, 3DHSK, Glu and Gln. 

Some parameters were not selected as possible targets, since 

they may not be biologically viable to alter, such as the ETC, 

ATP synthase and co-metabolites pathways (ATP, NAD, 

NADP, etc.). Each optimization run had 200 generations, with 

a population of 100 for each generation. The objective function 

for the optimization was the concentration of a single AAA (L-

Phe, L-Trp or L-Tyr), depending on the AAA that was being 

optimized. The results were later filtered based on the highest 

fitness found, with only solutions having >90% of the highest 

fitness value being selected for further analysis. Since the 

dynamic model doesn’t incorporate genes, the optimization 

results were given in parameter changes for specific reactions. 

Therefore, all solutions were translated into genomic 

alterations in section 3 of this paper, for a better 

comprehension of the reader.  

3. RESULTS 

3.1 Wild type (WT) simulations 

OptimModels allows the simulation of the kinetic model in an 

unaltered state (referred to as the WT) and with altered 

parameters (representing strain mutations). It’s by comparing 

the changes between these two simulations that we assess the 

impact brought by specific mutated strains. Some of the 

metabolic concentrations of a WT simulation are shown in 

Table 1.  

3.2 Optimization 

The optimization process resulted in several possible strategies 

for creating E. coli producing strains, for all three AAA.  

Table 1 Steady state concentration of AAA and other metabolites in 

a WT simulation. 

The best optimization solution found for L-Phe includes 

feedback resistance of pheA and aroH, over expression of tyrB 

and aroB, and under expression of a reaction unique to the 

model that represents the use of L-Phe by the cell: Phe_drain. 

As can be seen in Table 2, aroHfbr, ↑aroB and ↓Phe_drain are 

always present among the top results obtained for L-Phe, 

implying their importance in L-Phe regulation. Other common 

targets include ↑tyrB and ↑pheA. Since L-Phe is important to 

the cell’s metabolism, optimizations without Phe_drain were 

made, to ensure viable metabolic engineering strategies, 

without altering L-Phe’s natural intake by the cell. In these 

new results, apart from the already mentioned alterations, 

↑aroC and ↑aroH were also common in the solutions. 

For L-Tyr optimization, the best solution includes feedback 

resistance for aroH, increasing feedback inhibition of pheA 

(+inhib), over expression of tyrB and aroB and under 

expression of Tyr_drain (reaction which represents use of Tyr 

by the cell, similar to Phe_drain. There is also one for L-Trp, 

called Trp_drain). In Table 2 it can be seen that ↑aroB, ↑tyrB, 

Metabolite 
Concentration 

(mM) 
Metabolite 

Concentration 

(mM) 

L-Phe 0.85560 PYR 0.30351 

L-Trp 0.01198 2DDA7P 0.02283 

L-Tyr 0.44248 CIT 0.10101 

G6P 3.44617 AKG 1.29453 

E4P 0.10386 Acetate 0.00038 

PEP 2.59049 Gln 0.07388 

ATP 4.14085 Glu 16.87863 



pheA+inhib and ↓Tyr_drain are indispensable for better L-Tyr 

production. Other common targets include ↑aroG and ↓pheA. 

Similar to L-Phe, more optimizations were made, but without 

Tyr_drain. In these results, apart from the previously 

mentioned alterations, ↑aroC and ↑aroL were also common 

targets. These results seem similar to L-Phe, which is to be 

expected since they share a common pathway, all the way to 

the reaction PPHN.  

For L-Trp optimization, the best solution includes feedback 

resistance of trpD, overexpression of trpE, trpD and trpC, and 

under expression Trp_drain. In Table2 it is shown that ↑trpDfbr, 

↑trpE and ↓Trp_drain are indispensable for a higher L-Trp 

concentration. Other common targets include increasing pheA 

inhibition by L-Phe or aroGfbr. 

Like for the previous AAA, more optimizations were made 

without Trp_drain. Apart from the previous alterations, ↓ppc 

and ↑sucA were also common. When comparing to L-Phe and 

L-Tyr, SHK pathway reactions seem of less importance for L-

Trp optimization. As seen in Table 2, the mutated strains 

obtained by optimization, even with a smaller number of 

alterations, show higher [AAA] than the WT strain, although 

expectedly lower than solutions with more alterations. 

3.3 Optimization results vs experimentally tested strategies 

There are several examples in the literature of successful 

strategies for AAA increased production. These use some of 

the over/under expressions or feedback resistant mutants that 

are present in our own optimizations’ solutions. However, our 

goal was not only to find new targets for metabolic 

engineering, but also to discover new and different sets of 

targets.  

In the literature, changes to pheA expression are the most used 

target for L-Phe producing strains, whether by over 

expression, feedback resistance mutation or a combination of 

both (Sugimoto et al., 1987; Backman et al., 1990; Tatarko and 

Romeo, 2001; Gottlieb, Albermann and Sprenger, 2014; Ding 

et al., 2016; Liu et al., 2018). Our best optimization solutions 

also present pheAfbr or pheA↑ as an ideal target. The first 

reaction of the shikimate pathway, determined by the genes 

aroG, aroF and aroH is also overexpressed or mutated to 

reduce feedback inhibition. Either aroF or aroG are found in 

literature as possible targets (Báez-Viveros et al., 2004; 

Yakandawala et al., 2008; Gottlieb, Albermann and Sprenger, 

2014; Liu et al., 2018). In this our solutions differ from the 

literature, presenting aroH as the best target out of the three 

isozymes. In the literature we found no strategies where 

reactions that use L-Phe as reactant are knocked out or under 

expressed. This could mean the inviability of our strategies 

that possess these reactions, represented as Phe_drain. Further 

studies into the L-Phe pathway would be needed to properly 

assess this hypothesis, since Phe_drain represents a broad 

range of reactions. When it comes to L-Tyr producing strains, 

the ones found in literature have tyrA and aroG as their main 

targets for over expression or feedback resistance mutations 

Table 2 Optimization solutions for each AAA and corresponding AAA concentration. ↑ Stands for over expression, ↓ for under expression, 
fbr for feedback resistance and +inhib for increasing inhibition. 

Solutions (L-

Phe) 
[L-Phe] (mM) 

Solutions (L-

Tyr) 
[L-Tyr] (mM) 

Solutions (L-

Trp) 
[L-Trp] 

pheAfbr, aroHfbr, 

↑tyrB, ↑aroB, 

↓Phe_drain 

10.03 

↑tyrB, ↑aroB, 

pheA+inhib, aroHfbr, 

↓Tyr_drain 

11.94 
↑trpDfbr, ↑trpE, 

↑trpC, ↓Trp_drain 
0.39 

pheAfbr, ↑aroH, 

↑aroB, ↑tyrB, 

↓Phe_drain 

9.80 

↑tyrB, ↑aroB, 

pheA+inhib, ↑aroG, 

↓Tyr_drain 

11.94 

↑trpDfbr, ↑trpE, 

aroGfbr, 

↓Trp_drain 

0.31 

↑pheA, aroHfbr, 

↓tyrA, ↑aroB, 

↓Phe_drain 

8.37 

↑tyrB, ↑aroB, 

↓pheA+inhib, 

↓Tyr_drain 

11.6 

↑trpDfbr, ↑trpE, 

pheA+inhib, 

↓Trp_drain 

0.31 

↑tyrB, aroHfbr, 

↑aroC, ↑aroB, 

↑pheA  

6.84 

↑tyrB, ↑aroB, 

↑aroC, aroHfbr, 

↑aroL 

10.78 
↑trpDfbr, ↑trpE, 

↑trpC, ↓ppc 
0.25 

↑tyrB, ↑aroH, 

↑aroC, ↑aroB, 

↑pheA 

6.81 

↑tyrB, ↑aroB, 

↑aroC, ↓trpE, 

↑aroL 

3.93 
↑trpDfbr, ↑trpE, 

↑trpC, ↑sucA 
0.23 

pheAfbr, aroHfbr, 

↓Phe_drain 
5.54 

↑aroB, aroHfbr, 

↓Tyr_drain 
6.05 

trpDfbr, ↑trpE, 

↓Trp_drain 
0.18 

↑pheA, aroHfbr, 

↑aroB 
2.28 

↑aroB, ↑aroC, 

aroHfbr 
2.78 

trpDfbr, ↑trpE, 

trpC 
0.09 



(Lütke-Eversloh and Stephanopoulos, 2007, 2008; Chávez-

Béjar et al., 2008; Juminaga et al., 2012; Kim et al., 2015), 

with Santos, Xiao and Stephanopoulos, 2012 also knocking 

out pheA. The solutions obtained in this paper show an under 

expression of pheA, which does a similar, less definitive, role 

to pheA KO. The fbr mutations on tyrA and aroG are also 

present in the top optimization results (data not shown) 

although not as common as the solutions shown in Table 2. 

Another common over expression found in both literature and 

in this paper is for aroL (Lütke-Eversloh and Stephanopoulos, 

2007; Juminaga et al., 2012). Again, reactions that use L-Tyr 

as reactant are not found in these strategies, which could imply 

the inviability of altering these reactions. At the same time, it 

could also mean that there is no need to alter these reactions, 

with other alternatives being more worthwhile.  

As for L-Trp, most strategies found in the literature aim to 

increase flux in the L-Trp specific pathway, with 

overexpression of trpDE (Zhao et al., 2011; Liu, Duan and 

Wu, 2016) or even most of the pathway (Chen et al., 2018; 

Tröndle et al., 2018). These also include mutation to cause fbr 

in trpE, but not in trpD. In this paper’s optimization results 

trpDfbr is a vital mutation for higher L-Trp production. 

Although trpEfbr is also a common occurrence in this paper’s 

solutions, it provides a lower L-Trp concentration (data not 

shown). Unlike for L-Phe and L-Tyr, there is data in literature 

for the KO of tnaA (Zhao et al., 2011; Tröndle et al., 2018), a 

reaction that uses L-Trp as a reactant to produce indole and 

pyruvate. This means that this paper’s strain solutions with 

Trp_drain (which represents tnaA and others) are viable. In 

fact, tnaA is a sort of regulator for L-Trp, preventing the cell 

from accumulating it. 

The strategies found in the literature are composed of more 

than five alterations, while the solutions found in this paper 

only have up to five, making it difficult to properly compare 

entire strategies instead of individual targets. Further 

optimizations with higher number of possible parameter 

changes are thus needed. However, the initial results show 

high potential in using kinetic models for strain optimization. 

These results also show that a diverse strategy, including a mix 

of OE, KO and fbr mutations is highly desirable. 
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