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Abstract: High throughput experimental systems play an important role in bioprocess
development, as they provide an efficient way of analysing different experimental conditions
and perform strain discrimination in previous phases to the industrial scale production. In
the millilitre scale, these systems are combinations of parallel mini-bioreactors, liquid handling
robots and automated workflows for data handling and model based operation. For successfully
monitoring cultivation conditions and improving the overall process quality by model-based
approaches, a proper model identification is crucial. However, the quality and amount of
measurements makes this task challenging considering the complexity of the bio-processes. The
Dissolved Oxygen Tension is often the only measurement which is available online, and therefore,
a good understanding of the errors in this signal is important for performing a robust estimation.
Some of the expected errors will provoke uncertainties in the time-domain of the measurement,
and in those cases, the common Weighted Least Squares estimation procedure can fail providing
good results. Moreover, these errors will have even a larger effect in the fed-batch phase where
bolus feeding is applied, as this generates fast dynamic responses in the signal. In the present
work, an insilico study of the performance of Weighted Least Squares estimator is analysed
when the expected time-uncertainties are present in the oxygen signal. As an alternative, a loss
based on the Dynamic Time Warping measure is proposed. The results show how this latter
procedure outperforms the former reconstructing the oxygen signal, and in addition, returns
less biased parameter estimates.

Keywords: Dissolved Oxygen Tension, Nonlinear system identification, Dynamic time warping,
Estimation and control in biological systems, Time series modelling

1. INTRODUCTION

Characterising process models in biotechnology is still a
very challenging task. Apart from the general difficulties
in parameter estimation for nonlinear models and model-
specific problems with correlations between parameters,
the reduced availability and quality of the measurements
is the major obstacle to overcome. The measurements
of the principal states contributing in the identification
of the model are generally scarce and require several
processing and calibration steps to finally be usable. Yet,
the Dissolved Oxygen Tension (DOT) is often monitored
online, as it contains important information about the
cellular activity in the bioreactor (Ruffieux et al., 1998)
and usually is a limiting factor in the cultivations (Suresh
et al., 2009). Several continuous measurement techniques
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have already been developed (Wang and Wolfbeis, 2014;
Flitsch et al., 2016), and among these, optical sensors
based on fluorescent quenching are the most suited for
small scale bioreactors, as they provide a non-invasive
technique which does not consume oxygen and allows easy
miniaturisation (Wei et al., 2019).

The identification of the model will highly depend on the
fit of the oxygen signal and it is important to understand
the sources of errors that can happen in order to perform
a correct estimation. One of the limitations of its online
measurement is that the response time of the optical
sensors is not immediate. The reported sensor response
times range from 10−40 s (Achatz et al., 2011) 1 for
sensor spots consisting in a fluorescent dye. Approaches
to analyse this problem and proposals for new sensing
techniques with lower response times can be found in the
literature (Flitsch et al., 2016), however, using sensor spots

1 https://www.presens.de



is still a more usual practice. Other possible sources of
errors may result from wrong assumptions in the modelling
of the oxygen mass transfer, i.e. when using models with
constant volumetric oxygen transfer rates (kLa) during
the entire fermentation. For example, neglecting changing
biomass concentrations and media compositions can pro-
voke unmodelled expansions or contractions of the signal
(Pappenreiter et al., 2019). In addition, in cultivations
where the feeding is performed in bolus-mode, the inputs
to the system might experience some delays due to the
viscosity of the feed, its volume or the mixing times in
the dissolution, producing a mismatch between the de-
terministic inputs to the simulation and the actual times
when these occur. What all these errors have in common
is, that they produce uncertainties in the time-domain
of the measurement, and when abrupt changes of oxygen
happen, these might produce large residuals which violate
the assumptions of the common estimation procedure.

The most common procedure for the identification of
parametric models is the Weighted Least Squares (WLS)
estimation procedure. This can be seen as a maximum like-
lihood estimation with independent normally distributed
measurement errors in the dependent variables, where er-
rors in the independent variables, usually time for dynamic
models, are not taken into account. Furthermore, from the
studies on robust statistics (Huber, 1981; Özyurt and Pike,
2004; de Menezes et al., 2021; da Cunha et al., 2021),
it is well known that the least squares estimator is not
robust against large errors violating the normality and
independence assumptions. It can be expected that the
existing time uncertainties will provoke both scenarios.

An alternative measure of similarity between time se-
ries that seems to be appropriate for coping with the
mentioned uncertainties, is the Dynamic Time Warping
(DTW). This measure is well known in the machine
learning community due to its robustness for quantita-
tively comparing different length time series which can be
shifted, dilated or contracted in time. Since its first appli-
cation for speech recognition (Sakoe, Hiroaki and Chiba,
Seibi, 1978), several variants and applications can be found
in the literature, mostly related to pattern recognition
and time series classification and clustering (Keogh and
Pazzani, 2001; Eilers, 2004; Cuturi and Blondel, 2018;
Blondel et al., 2021; Aghabozorgi et al., 2015; Jeong et al.,
2011).

The specific case study that is addressed in this work, is
the cultivation of Escherichia Coli in an automatic high
throughput (HT) parallel cultivation system where bolus
feeding is applied. The experimental metadata, measure-
ments, set-points, and control inputs are measured and
updated in a central database, which allows automatic
operation as well as online model-based bioprocess mon-
itoring and control (Cruz Bournazou et al., 2017). The
DOT is measured using fluorescent dye sensor spots in-
tegrated at the bottom of the mini-bioreactors and with
a sampling period of approximately 60s. The used bolus
feeding strategy produces fast oxygen responses to the
sudden substrate concentration changes, which produces a
pattern-like oscillatory signal of oxygen. Thus, small time
uncertainties in the measurements can produce large resid-
uals between the data and the simulation, and therefore

the most informative measurement for characterising the
process model can spoil the good behaviour of the common
estimation method whenever these time uncertainties are
present.

In the present work, an analysis of the performance of
the common WLS estimator is presented considering DOT
data where the expected time uncertainties are generated
artificially. As an alternative fitting methodology, a differ-
entiable divergence between time series based on the DTW
is proposed as a loss function. For doing so, a synthetic
dataset is generated in silico using the macrokinetic growth
model for E. coli, presented in (Anane et al., 2017). The
data is generated containing delayed inputs of bolus feed,
which reflects the difficult to model time shifts due to
sensor delay, non-ideal mixing, and actual uncertainties
in the feeding times.

2. METHODS

This section present the two ways used for quantifying the
goodness of the fit of a given model to the experimental
data, formulating the parameter estimation procedure as
an optimisation problem.

2.1 Weighted Least Squares

Considering our system model to be a function:

y = f(t,u,θ) (1)

The errors or residuals (ϵ) between measurements (ym)
and model predictions (y) are described as:

ϵi,j = ymi,j − yi,j (2)

Where i = 1, .., ns represents the states and j = 1, ..., ni
t

the time stamps of the measurements.

In the optimal parameter values, these residuals are as-
sumed to follow a normal distribution centred at zero
and with standard deviation equal to the measurement
accuracy σi. Thus, the probability of each individual resid-
ual under the assumed distribution, will be given by the
probability density function in equation 3.

f(ϵi,j |0, σi) =
1

σi
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(3)

Considering the errors are independent from each other,
the inference of the model parameters can be seen as a
maximisation problem, where the optimal parameters will
maximise the probability of getting the assumed residual
distribution:

θ∗ = argmax
θ

ns∏
i=1

nt∏
j=1

f(ϵi,j(θ)) (4)

By changing the sign of the expression and taking its
logarithm, the simplified expression is the commonly used
WLS estimation objective:
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Where σi is the accuracy of the measurement of state i
and the minimised function the WLS objective. This esti-
mation procedure will return an asymptotically unbiased
estimate of the model parameters when the assumptions
are correct, which means that using a large amount of data,
the estimates MLE will converge to the real parameter
values.

2.2 Dynamic time warping

DTW is defined as the minimum cost alignment between
two time series, and is efficiently computed using Bell-
man’s recursion. Therefore, the measure will not only
provide a time invariant cost scalar, but also the alignment
that makes that cost optimal, providing extra information
that will be useful in most of the cases.

Defining the elements of the cost matrix between two time
series X = x1, ..., xn and Y = y1, ..., ym as:

Cij(X,Y ) = ||xi − yj ||22 (6)

Where the norm will be considered to be the squared L2
norm and the two time series will represent measurement
data and simulation in this specific context. The DTW
finds the warping path or alignment matrix that minimises
the cost between them, and this optimisation problem is
formulated as:

DTW (C) = min
A∈A(n,m)

⟨A,C⟩ (7)

Where the optimal alignment matrix is:

A∗ = argmin
A∈A(n,m)

⟨A,C⟩ (8)

The elements of A are binary (Aij ∈ [0, 1]) and it
represents the optimal alignment between the two time
series. This alignment is not necessarily unique.

From the original definition in (Sakoe, Hiroaki and Chiba,
Seibi, 1978), the alignment matrix or indifferently, the
warping path, will fulfil:

• Monotonicity condition: Forces the warping path
to choose the indexes in an order preserving and
increasing manner, as is natural for time series:

ik−1 ≤ ik and jk−1 ≤ jk

• Continuity condition: Forces the warping path to
have a match for all indexes

ik − ik−1 ≤ 1 and jk − jk−1 ≤ 1

• Boundary conditions: The first and last indexes of
the two time series will be matched:

w1 = (1, 1) and wk = (n,m)

A variant of interest for our application is the differentiable
version of this similarity measure. An approach to do so
is presented in (Cuturi and Blondel, 2018), where the
minimum operator is substituted by a soft minimum as:

Fig. 1. DTW (left) and Euclidean (right) matching be-
tween two identical but time-shifted signals, and their
corresponding cost and alignment matrixes

SDTWγ(C) =
1

γ

∑
A∈A(n,m)

exp

(
−⟨A,C⟩

γ

)
(9)

Where γ can be seen as the regularisation strength of
the soft minimum operator. This new definition no longer
returns an optimal alignment path, but an averaged ver-
sion of it and the cost will be calculated among all those
possibilities.

Despite the success of the smoothed version of the DTW,
one of its biggest drawbacks is that its value is not
minimised when the two time series are the same. As a
solution to this, the Soft-DTW divergence (SDTWDγ) is
proposed in (Blondel et al., 2021):

SDTWDγ(X,Y ) = SDTWγ(X,Y )

−1

2
SDTWγ(X,X)

−1

2
SDTWγ(Y, Y )

(10)

The authors also provide an open source Python package
for the calculation of the SDTWD cost and its gradient,
which can be found in Github 2 .

3. IN SILICO EXPERIMENT

In order to analyse the performance of the two proposed
objective functions under the expected errors, a synthetic
dataset has been generated using the process model with
fixed parameter values. The expected time uncertainties
and the normal errors from the measurement systems
precision are added in order to have a realistic scenario.

3.1 Model

The model used for generating the data is described in
(Anane et al., 2017). The nonlinear system of differential
equations contains 7 state variables: X-biomass (g/L), S-
substrate (g/L), A-acetate (g/L), DOTa-actual oxygen
tension (%), DOTm-measured oxygen tension (%), V-
volume (L) and P-product(g/L). The reaction kinetics
and mass balance equations are described by 18 model
parameters, which change depending on the strain and
the experimental conditions, but certain bounds can be set
using expert knowledge. In this case study, just 3 out of 18
parameters will be considered unknown, which still enter
the process model in a non-linear way. Their true values

2 https://github.com/google-research/soft-dtw-divergences



and bounds can be found in Table 1, and the interested
readers are referred to (Anane et al., 2017) for a detailed
description of the process model.

Table 1. True parameter values and bounds

Parameter Value Bounds

qs,max 1.60 1.20-1.70
Yxs,em 0.59 0.50-0.60
kLa 373.6 200.0-700.0

3.2 Synthetic data

The generated synthetic data just contains oxygen data,
as is the signal that will be more affected by the input-time
uncertainties and is the only one that is available online.
The sampling period for oxygen is 60 s. Random normal
errors with a standard deviation of 0.1%, as constant
measurement accuracy, are added to the simulated oxygen
signal. The experiment runs for a total of 8 h, where
a batch phase of approximately 3.5 h will be followed
by the fed-batch phase where the feed will be added
in a bolus feeding-mode. The inputs to the system are
instantaneous and follow a discrete exponential feeding
profile, with inputs every 10 min. The synthetic data is
generated by perturbing the feed input time a constant
amount of 60 s, while the simulation to fit will contain the
unperturbed feeding times. This way, the resulting oxygen
response signal and the simulation for model identification
are shifted imitating the possible sources of delay. The
choice of using a constant delay of 60s is to make the
initial analysis simpler and use the maximum deviation
which can be unperceived with the given sampling period.

3.3 Numerical solution

The differential equation system was solved using CVODES
routine from the SUNDIALS suite (Hindmarsh et al.,
2005), and the Assimulo package (Andersson et al., 2015)
as an interface to it from the Python programming envi-
ronment. In addition to the integrated states, the sensitiv-
ity solutions are also returned by the solver, which allows
a more efficient computation of the gradients needed for
solving the optimisation problem. Volume changes due to
bolus feeds are modelled as instantaneous changes, and
these are implemented using explicit time event functions.
With regard to the optimisation problem, 3 of the model
parameters will be considered unknown. A random number
within the parameter boundaries shown in 1 will be used
as initial guess for the optimisation. As objective functions
for minimisation, the WLS (eq. 5) and SDTWD (eq. 10)
will be used, the latter with γ = 0.1. The optimisation
algorithm is the L-BFGS-B from Python’s scipy package,
to which the gradients of the objective functions will be
manually provided.

3.4 Performance measures

In order to compare the performance of the two objective
functions when reconstructing the oxygen signal from
the parameterised model, a different quantitative measure
from the usual ones has to be defined. The usual measures
for model accuracy quantification, as the Root Mean
Squared Error, cannot be used when one of the objective

does not evaluate the solution as a point-wise difference
where time is certain. To be able to compare the goodness
of the fit between the WLS and SDTWD objectives, a new
scoring function is defined based on the goodness of the
solution in terms of biological meaning, where capturing
the amplitude of the oxygen signal is considered to be of
importance for proper control and correct oxygen uptake
rate approximation.

The Amplitude Capturing Power (ACP) is defined as a
function of the Mean Absolute Error (MAE) between
the moving maxima and minima (Mmax, Mmin) of the
experimental data and the simulation, as is shown in
eq. 11 and 12. The closed form of this measure has
not been defined yet, however the undefined function f
is understood to be inversely proportional to the MAE.
Hence, a high MAE will imply a bad ACP. On the other
hand, the moving maxima and minima of the signals are
simply the maximum and minimum values that the time
series reach within a constant size rolling window w along
the entire signals duration, as shown in eq. 12 and depicted
in fig. 5.

ACP = f(MAEMmaxw
,MAEMminw

) (11)

The MAE for the moving maximum is defined as:

MAEMmaxw =
1

nw

nw∑
k=1

|Mmaxw(y
m)k −Mmaxw(y)k|

(12)

Where w is the window size, nw is the total number of
windows, ym is the measured state and y is the simulated
one. For the MAE of the moving minimum, the same
definition holds. In figure 2, an example of the moving
maxima and minima for a given signal is shown for a
window of size 15, which having a sampling period of 60s
implies windows of 15 minutes. If the smoothed envelope
of the oxygen signal wants to be captured, the window size
should be higher than the feeding period and smaller than
two periods in order to properly capture the oxygen drops
that are observed after the feed pulses.

Fig. 2. Red: moving maximum of the signal in a 15 minute
window; Blue: moving minimum with same window



As stated above, the ACP will be higher when the MAE of
the moving maxima and minima is smaller. This measure
is intended to give a quantitative score of the goodness of
the signal reconstruction in terms of its envelope, which is
important for a correct monitoring and control of oxygen
limitation in the culture as well as for having a better
approximation of the oxygen uptake rate during the fast
drops.

In addition to the ACP, the performance of the two
objectives will also be compared in terms of the estimated
parameters, as the true values that generate the data are
known. Even if the results are not that significant when not
reporting a proper uncertainty quantification, this study
aims to show the potential of this method for more detailed
future analysis.

4. RESULTS

In figure 3, the fed-batch phase fitting result for the
WLS objective is shown, where a clear mismatch be-
tween synthetic data and simulation is observed at first
glance, mostly for the low oxygen values corresponding
to maximum oxygen uptake rate intervals. Together with
the optimisation results, the simulation with the initial
parameter guess is shown in dashed grey.

Fig. 3. Results from fitting the model to the synthetic
dataset using the WLS objective.

On the other side, figure 4 shows the results obtained using
the SDTWD as objective function. In this case, due to the
time invariance of this objective, the shape of the signal
is well preserved and the oxygen drops can be properly
fitted.

The performance of the estimations when capturing the
signals maxima and minima is graphically represented in
figure 5, where the dark blue markers show the amplitude
of the signal estimated using WLS, the light blue corre-
sponds to the SDTWD and the black to the synthetic data.
The MAE for each of the results is shown in the legend,
and as can be seen, the error when capturing the minima
using the WLS estimation procedure is six times larger
than when using SDTWD, which implies an inferior ACP
for the WLS.

Finally, the estimated parameter values are show in table
2, where the parameters estimated using the WLS objec-
tive are further from the truth than the ones given by the
SDTWD.

Fig. 4. Results from fitting the model to the synthetic
dataset using the SDTWD objective.

Fig. 5. Moving maxima and minima for the two estimation
results and the data.

Table 2. True and estimated parameters with
both objectives

Parameter Truth WLS SDTWD

qsmax 1.60 1.56 1.56
Yxsem 0.59 0.50 0.53
kLa 373.6 440.1 375.1

5. CONCLUSION

In this work, an insilico analysis of the effect that delayed
inputs provoke in the oxygen signal reconstruction and
model parameter estimation is presented. The experimen-
tal data has been generated containing the errors that
are expected on the real system, where the delayed inputs
are considered to imitate time shifts due to sensor delay,
non-ideal mixing, and delayed inputs. The hypothesis that
the Weighted Least Squares objective can fail providing
correct results in the presence of this time uncertainties is
proved by an example with fast oxygen responses to the
sudden substrate concentration changes. An alternative
objective function that can deal with this kind of uncer-
tainties is presented. The results using a differentiable di-
vergence between time series based on the Dynamic Time
Warping measure show superior performance on oxygen
signal reconstruction and drop capturing, as well as less
biased parameter estimates. In addition, as this analysis



just considers fitting the oxygen signal for the model
identification, the parameter estimates are expected to
considerably improve when taking into account additional
state measurements.

One of the reasons why this proposed objective function
performs properly in this case study, is the pattern-like
dynamics that the oxygen manifests in response to the
periodic bolus feeds. In cases where slow dynamics are
present, this objective would not be appropriate, as sub-
optimal minima can be found where faster or slower rate
parameters generate the same output, and at the same
time the standard estimation procedure could probably
yield reasonable results. This problem might be solved by
constraining the alignment path within a finite size window
or the slope of the moves along the warping path, as is
usually seen in applications of the classical Dynamic Time
Warping.

Additionally, a new performance measure has been pro-
posed in order to evaluate the goodness of the fit, the
Amplitude Capturing Power. This measure offers a quanti-
tative value for the fitting evaluation that is usually made
by simple visual inspection, and in addition, is expected to
yield better estimates for the oxygen uptake rates of the
organisms. However, a closed form for this measure has
not been defined yet.

As future work, a more general analysis which includes a
better representation of the expected errors - as a time
varying oxygen transfer rate - and a proper analysis of the
uncertainty on the estimates is planned.
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