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Abstract: Digital twins are expected to play a pivotal role in digital transformation. Although
process informatics has attracted much attention, physical models are essential to realizing the
digital twins. However, building a physical model of an industrial process takes much toil. We aim
to facilitate the physical model building by developing an automated physical model building AI,
named AutoPMoB, which performs five tasks: 1) retrieving documents about a target process
from literature databases, 2) converting the format of each document to HTML format, 3)
extracting information required for building a physical model from the documents, such as
variables, equations, and experimental data, 4) judging the equivalence of the information
extracted from different documents, and 5) reorganizing the information to output a desired
physical model. This study focuses on task 4, especially judging the equivalence of variable
definitions, i.e., whether two noun phrases represent the same variable. We created a large-
scale corpus consisting of papers on chemical engineering, and built ProcessBERT, which is a
domain-specific language model pre-trained on the corpus. We proposed a method for judging the
equivalence of variable definitions based on ProcessBERT. When judging the equivalence, our
proposed method first uses ProcessBERT to obtain the embeddings of the variable definitions.
Then, the method calculates the cosine similarity between the embeddings. The method judges
that the two definitions are equivalent when the similarity is larger than a threshold. Our
proposed method judged the equivalence with higher accuracy than the method based on original
BERT and SciBERT.
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1. INTRODUCTION

In the process industry, physical models are indispensable
for process design and operation. Conventional physical
model building heavily relies on engineers with a deep
understanding of a target process. They need to survey
a vast amount of documents and continue to improve the
model by trial-and-error until a desired model is obtained.
Hence, it takes a lot of time and effort to build a physical
model that meets users’ requirements.

To free the engineers from physical model building, we aim
to develop an automated physical model building system,
named AutoPMoB. AutoPMoB automatically collects rel-
evant documents from literature databases, extracts neces-
sary information from them, and builds a desired physical
model by combining the information. Several fundamental
technologies need to be developed to realize AutoPMoB.
In the present study, we proposed a method for judging
the equivalence of variable definitions: whether two noun
phrases represent the same variable or not.
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A language model trained with a large corpus, such as
BERT (Devlin et al., 2019), can achieve high perfor-
mance on natural language processing (NLP) tasks. Sev-
eral language models using in-domain corpora, such as
BioBERT (Lee et al., 2020) and SciBERT (Beltagy et al.,
2019), perform better than original BERT for NLP tasks in
a specific domain. These results indicate that the model’s
performance varies depending on the corpus used for train-
ing. Inspired by this observation, we assume that the pre-
trained model with a corpus related to chemical engi-
neering will benefit the equivalence judgment of variable
definitions.

Many of the BERT-based models in the previous studies
shown in Table 1 have used Wikipedia articles or papers
in arXiv.org. The Wikipedia articles cover various fields,
and arXiv.org contains a few papers related to chemical
engineering. Such documents seem to have little useful in-
formation for equivalence judgment of the variable defini-
tions appearing in physical models of processes. However,
to our best knowledge, there has been no corpus specific
to chemical engineering; thus, we first built such a corpus.
We then pre-trained ProcessBERT using the corpus. The
model was evaluated by judging the equivalence of two
variable definitions in papers on a continuous stirred tank



Table 1. Summary of various BERT models using the following text corpora: English Wikipedia
(Wiki), BookCorpus (Books), Web-crawled data (Web), PubMed abstracts (PubMed), Semantic
Scholar (SS), MIMIC-III database (MIMIC), and a chemical engineering corpus (ChemECor-
pus). Pre-training type means whether the model was initialized from original BERT (Continual)

or not (From scratch). This table is based on Gu et al. (2021).

Model Vocabulary Pre-training type Corpus Corpus size

BERT (Devlin et al., 2019) Wiki + Books From scratch Wiki + Books 3.3B words / 16GB
RoBERTa (Liu et al., 2019) Wiki + Books + Web From scratch Wiki + Books + Web 160GB
BioBERT (Lee et al., 2020) Wiki + Books Continual PubMed 4.5B words
SciBERT (Beltagy et al., 2019) SS From scratch SS 3.2B words
ClinicalBERT (Alsentzer et al., 2019) Wiki + Books Continual MIMIC 0.5B words / 3.7GB
BlueBERT (Peng et al., 2019) Wiki + Books Continual PubMed + MIMIC 4.5B words
PubMedBERT (Gu et al., 2021) PubMed From scratch PubMed 3.1B words / 21GB

ProcessBERT Wiki + Books Continual ChemECorpus 0.68B words / 4.0GB

reactor (CSTR). We finally compared the model’s perfor-
mance with original BERT and SciBERT.

2. RELATED WORK

BERT (Devlin et al., 2019) is a major language model
which utilizes a transformer network and has achieved
the highest accuracy on various NLP tasks. Table 1 sum-
marizes various BERT models. Most of them were pre-
trained using “general-domain” text corpora created from
newswire and Web domains. For example, the original
BERT model was pre-trained on Wikipedia and BookCor-
pus (Zhu et al., 2015). RoBERTa (Liu et al., 2019) per-
formed even larger-scale pre-training using a large amount
of additional text data: CC-NEWS collected from the En-
glish portion of the CommonCrawl News dataset (Nagel,
2016), OPENWEBTEXT (Gokaslan and Cohen, 2019),
and STORIES (Trinh and Le, 2018).

Previous studies have shown that language models us-
ing in-domain corpora perform better than those using
general-domain corpora when solving NLP tasks in a spe-
cific domain. BioBERT (Lee et al., 2020) was pre-trained
on PubMed abstracts and outperformed previous models
on biomedical text mining tasks such as named entity
recognition, relation extraction, and question answering.
Alsentzer et al. (2019) pre-trained ClinicalBERT on clin-
ical text from the approximately 2 million notes in the
MIMIC-III v1.4 database (Johnson et al., 2016) and found
that its embeddings are superior to those of other models
for clinical NLP tasks. SciBERT (Beltagy et al., 2019) was
trained on the full text of biomedical and computer sci-
ence papers from Semantic Scholar corpus (Ammar et al.,
2018). Moreover, SciBERT used an in-domain vocabulary
while other models used the original BERT vocabulary.
The model achieved new state-of-the-art results on several
tasks from scientific domains.

3. METHODS

We build a language model specific to chemical engineering
and judge the equivalence of variable definitions using the
model.

3.1 Corpus

We collected papers related to chemical engineering using
Elsevier Research Product APIs available at https://

dev.elsevier.com/ from 18 journals as shown in Table 2.
We first obtained a list of DOI and then downloaded
documents. We then removed some of the documents
that were not journal articles and finally obtained about
130,000 papers. The numbers of DOIs and obtained papers
are shown in Table 2.

The obtained papers are in XML format and contain
tags that have nothing to do with chemical engineering.
Pre-training with the papers without preprocessing will
result in a language model with poor performance. Since
the goal of this study is to judge the equivalence of
two variable definitions correctly, we decided to use the
abstract and the full text, i.e., “ce:simple-para” element
in “ce:abstract” element and “ce:param” elements in the
papers in XML format. We did not use the text in the
keywords, references, and nomenclature (notation). We
removed all of the tags from the abstract and full text.
It is difficult to hold the information of figures and tables
without tags; hence, they are removed and not used for
pre-training. Then, we split the sentences in the papers us-
ing ScispaCy (Neumann et al., 2019), a Python library for
practical biomedical/scientific text processing. We finally
obtained a chemical engineering corpus (ChemECorpus)
with a total word count of approximately 0.68 billion
(4.0GB).

3.2 Pre-training

The various model parameters, including the model di-
mensionality, were initialized to BERTBASE parameters:
the number of layers (i.e., Transformer blocks) is 12, the
number of units in each layer is 768, and the number of self-
attention heads is 12 (Devlin et al., 2019). The pre-training
tasks also followed those used for BERTBASE: masked
language model and next sentence prediction. We used
their recommended hyperparameters and Adam (Kingma
and Ba, 2015) for the optimizer with a learning rate of
2× 10−5.

We used the original BERT code (available at https://
github.com/google-research/bert). We trained a lan-
guage model using a maximum sequence length of 128
and a batch size of 64 for 900,000 steps and then using
longer sequences of a maximum length of 512 with a batch
size of 8 for additional 100,000 steps. Here, we call the
pre-trained language model ProcessBERT. Pre-training of
ProcessBERT was performed on a single TPU v3 with 8



Table 2. Journal and the number of DOIs and the obtained papers. Some documents with DOIs
were not papers, and thus were not included in ChemECorpus.

Journal Number of DOIs Number of papers in ChemECorpus

Applied Catalysis B Environmental 11,369 10,727
Carbohydrate Polymers 17,280 16,361
Chemical Engineering and Processing - Process Intensification 4,200 3,935
Chemical Engineering Journal 27,818 27,222
Chemical Engineering Research and Design 6,000 5,375
Chemical Engineering Science 14,572 13,527
Chinese Journal of Catalysis 2,731 2,709
Computer Aided Chemical Engineering 8,213 1,344
Computers & Chemical Engineering 5,610 5,240
Current Opinion in Chemical Biology 2,605 2,201
Journal of Catalysis 10,849 10,248
Journal of Cleaner Production 27,814 26,994
Journal of Energy Chemistry 2,251 2,236
Journal of Process Control 3,048 2,744
Progress in Crystal Growth and Characterization of Materials 332 256
Progress in Polymer Science 1,252 1,017
South African Journal of Chemical Engineering 242 233
Thermal Science and Engineering Progress 986 950

Total 147,172 133,319

cores, which took about 13 hours to complete. We created
another model (ProcessBERTdouble) trained with double
the number of steps (1,800,000 and additional 200,000
steps).

3.3 Equivalence Judgment

We use the word embeddings from language models to
calculate the similarity of two definitions and judge their
equivalence, as shown in Fig. 1. First, two variable defini-
tions to be judged are inputted to the language model,
and then embedding vectors (768 dimensions) for each
word output from Transformer Encoders in the model are
obtained. Next, a vector obtained by averaging the embed-
ding vectors of each word is used as the one representing
the definition. Finally, the cosine similarity between the
vectors is calculated as the similarity between the defini-

Fig. 1. An architecture of judgment of equivalence of two
variable definitions. The two definitions are vectorized
by the same language model. v1 and v2 denote the
embedding vectors of definitions 1 and 2, respectively.

tions. The two definitions are judged to be equivalent when
the similarity exceeds a threshold.

4. EXPERIMENT

We compared the performance of ProcessBERT with that
of original BERT and SciBERT.

4.1 Evaluation Dataset

We prepared three papers (Botre et al., 2016; Sundari and
Nachiappan, 2017; Wang et al., 2016) and extracted noun
phrases representing variable definitions from the section
describing a CSTR model. We then created a combination
of variable definitions in different papers and manually
assigned a label: equivalent (1) or not (0). We finally
obtained a dataset including 21 equivalent pairs and 539
non-equivalent pairs. Part of the samples in the dataset
are shown in Table 3.

4.2 Evaluation Metrics

A receiver operating characteristic (ROC) curve and the
area under the ROC curve (ROC-AUC) are commonly
used to assess the performance of a binary classifier (Davis
and Goadrich, 2006). The ROC curve plots the true
positive rate (TPR) versus the false positive rate (FPR)

Table 3. Examples in evaluation dataset. Each
sample has two definitions and a label that
indicates whether the definitions are equivalent

(1) or not (0).

Definition 1 Definition 2 Label

constant reaction volume reactor volume 1
flow rate in and out feed flow rate 1

constant reaction volume feed flow rate 0
feed temperature feed flow rate 0



under various thresholds. The TPR, which is also known
as recall, and FPR are calculated as follows:

TPR =
TP

TP + FN
, (1)

FPR =
FP

FP + TN
, (2)

where true positives (TP) and true negatives (TN) are
samples correctly predicted as positive and negative, re-
spectively. False positives (FP) and false negatives (FN)
are samples incorrectly predicted as positive and negative,
respectively.

A precision-recall (PR) curve and the area under the PR
curve (PR-AUC) are often used to evaluate the perfor-
mance of a binary classifier for imbalanced data. The PR
curve is a plot of precision versus recall under various
thresholds. Precision is calculated as follows:

Precision =
TP

TP + FP
. (3)

In imbalanced data, the number of negative samples far
exceeds the number of positive samples. As a result, the
FPR used in ROC analysis changes little even when the
number of FP is large. On the other hand, precision
compares FP to TP rather than TN, and thereby PR-AUC
is better suited for evaluating the classifier’s performance
for a minority positive class.

We evaluated the performance of four models with ROC-
AUC and PR-AUC. PR-AUC was used because the eval-
uation dataset in this experiment has a small number of
equivalent pairs (21/560 = 4%).

Since BERT architecture has 12 layers (i.e., Transformer
blocks), we can obtain 12 embedding vectors for each word.
In this study, we compared the performance of all 12 layers
of embedding vectors separately to validate which layer
should be used for our purpose.

4.3 Results and Discussions

Tables 4 and 5 show ROC-AUC and PR-AUC for each
layer of each model. The ROC-AUC of ProcessBERT and
ProcessBERTdouble is equal to or larger than that of BERT
and SciBERT. In layers 1–3, and 12, ProcessBERTdouble

achieved the highest PR-AUC. In layers 7–11, ProcessBERT
achieved the highest PR-AUC, and BERT achieved the
highest PR-AUC in the other layer. The highest PR-AUC
of ProcessBERT, ProcessBERTdouble, BERT, and SciB-
ERT are 0.468, 0.482, 0.442, and 0.403. These results indi-
cate that ProcessBERT or ProcessBERTdouble performed
better than BERT or SciBERT on average. The results
also indicate that the performance of the layer closer to
the input is higher, and ProcessBERTdouble using Layer 1
performed the best performance.

However, the value of PR-AUC itself is small, and
ProcessBERT and ProcessBERTdouble are still not prac-
tical. In the present study, the dataset is created from
only three papers— this is not enough to conclude that
the proposed method is useful. We need to evaluate the
performance using a dataset that contains more pairs of
variable definitions.

5. CONCLUSION

This study developed ProcessBERT, a chemical engi-
neering domain-specific language model, and a method
for variable definitions equivalence judgment based on
ProcessBERT. The proposed method calculates the co-
sine similarity between two variable definitions and judges
equivalent when the similarity exceeds a threshold. The re-
sults have shown that the method based on ProcessBERT
achieved higher ROC-AUC and PR-AUC than the meth-
ods based on original BERT and SciBERT.

However, the current performance of the proposed method
is insufficient for practical use. In future work, we will
improve the performance by applying fine-tuning because
fine-tuning can significantly improve the performance of
NLP tasks. Devlin et al. (2019) fine-tuned the BERT
model on a task judging whether each sentence pair con-
stitutes a paraphrase using Microsoft Research Paraphrase
Corpus (MRPC, (Dolan and Brockett, 2005)). The same
architecture can be applied to the equivalence judgment
of variable definitions.

We will also increase the number of test data to validate
the proposed method in various situations.

Furthermore, although the 4th task was addressed in this
study, the fundamental technologies to accomplish other
tasks have been under development. We will combine these
modules to release the prototype of AutoPMoB.
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