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Abstract: This paper considers the situation where data‐based optimization is to be performed but data 
sampling is limited due to high cost and time. Such situations demand highly efficient data‐sampling and 
utilization and Bayesian optimization (BO) is the most commonly used method as it allows users to balance 
between exploration and exploitation in deciding where to sample next in the design space. However, the 
standard acquisition functions used in Bayesian optimization such as the expected improvement have been 
criticized for being greedy and myopic in many situations. To address the limitation of the standard 
acquisition functions of BO due to its near-sighted nature, this paper suggests a novel reinforcement 
learning based method which enables multi‐step lookahead Bayesian optimization. Several benchmark 
functions are tested to compare the performance of the RL based method against the traditional BO methods 
using expected improvement and its rollout-based extensions. The proposed method outperformed popular 
Bayesian optimization methods in the case study. 
Keywords: Black box optimization, Bayesian optimization, surrogate modeling, acquisition function, 
reinforcement learning, dynamic programming, sequential decision making

1. INTRODUCTION 

Black‐box optimization using a data‐based model is one of the 
core tasks in engineering and process control as first principles 
are unknown or too complex to be used for optimization.  
Therefore, data driven modeling and optimization has become 
a popular research theme in many engineering domains. 
Problems such as materials design, protein folding, and 
process control are some of the well‐known cases where data 
driven modeling/optimization has been popular or is getting 
traction. Black‐box optimization can be challenged by many 
issues when the underlying function is non‐convex and is 
expensive to sample (e.g., polymer property, cell function).  In 
such cases, high data‐efficiency of the optimization method is 
critical. 

Bayesian optimization (BO) is an optimal sequential decision‐
making strategy through iteration between search and 
evaluation. It has recently gained great popularity owing to its 
high efficiency in terms of data requirements (J. Snoek et al, 
2012; D. R. Jones, 2001). The utility of BO has been examined 
in solving diverse experiment design problems, including 
those for materials discovery, reaction design, and control 
(Schmidt J. et al, 2019; Green hill et al, 2020; Shalloo et al, 
2020). 

The efficiency of BO is brought by controlling the balance 
between exploration and exploitation through a so‐called 
acquisition function, which is optimized in deciding the next 
sample to try. In BO, standard acquisition functions (e.g. 
expected improvement, probability of improvement, and upper 
confidence bound) are for a single step, which means that they 
consider just the immediate improvement at the next step, and 

do not optimize the long‐term gain obtained through many 
rounds of future evaluations. Such limitation of BO has been 
recognized by several researches in the past (Wu et al, 2019; 
Lam et al, 2018). 

However, few real‐world decision‐making problems can be 
solved in just a single step of iteration. Real‐world problems 
often require decision making over multiple iterations of 
sampling and evaluation starting from the initial knowledge 
state. In theory, to obtain an optimal solution to the multi‐step 
lookahead BO problem, a stochastic dynamic programming 
(SDP) problem should be solved, which is computationally 
intractable in almost all cases. Thus, several approximate 
methods for solving the multi‐step lookahead BO problem 
have been suggested (Wu et al, 2019, Lam et al, 2016); 
however, they are either computationally very expensive to 
implement or restricted to two‐step lookahead. 

In this work, we propose a reinforcement learning (RL) based 
BO architecture for multi‐step lookahead decision making in 
an unknown environment. RL is used to approximately solve 
the stochastic DP problem, in optimal or near‐optimal ways in 
many cases, to enable improved multi‐step lookahead decision 
making. To incorporate RL into the BO, the BO problem has 
to be translated into a Markov Decision Process (MDP) based 
on which RL methods can readily be applied.  Unlike games 
or robotics where the power of RL has been successfully 
demonstrated thus far, proper definitions of the knowledge 
state in BO are not clear‐cut.  One contribution of this paper is 
to suggest a novel way to define an MDP that addresses the 
multi‐step lookahead BO problem. The key idea is to latticize 
the search space and define the mean and standard deviation at 
the lattice points as the state of the MDP. 



 

2. BAYESIAN OPTIMIZATION 

The ultimate goal of Bayesian optimization (BO) is to solve 
the following problem: 

𝒙𝒙∗ = argmin𝒙𝒙∈Ω 𝑓𝑓(𝒙𝒙), (1) 

where 𝒙𝒙 is a 𝑑𝑑‐dimensional vector inside the 𝑑𝑑‐dimensional 
search space Ω ⊆ ℝ𝑑𝑑, and f : Ω → ℝ is the black box function 
which is “expensive” to evaluate. Therefore, finding 𝒙𝒙∗ which 
corresponds to a minimum value of 𝑓𝑓(𝒙𝒙) should be searched 
in a data‐efficient way, i.e., through fewest iterations possible. 
To achieve this goal, objective function 𝑓𝑓(𝒙𝒙) of BO is often 
modeled with a Gaussian process (GP) from the collected data 
set 𝒟𝒟𝑘𝑘 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑘𝑘 . GP prior 𝑓𝑓 ∼ 𝒢𝒢𝒢𝒢(𝜇𝜇,𝐾𝐾) is defined by a 
mean function 𝜇𝜇 ∶  Ω →  ℝ  and a kernel function 𝐾𝐾 ∶  Ω ×
 Ω →  ℝ. A kernel function, which defines how neighboring 
points are related with each other (i.e., the smoothness of the 
GP model), is selected based on available prior knowledge on 
the system. Thus, the choice of kernel function 𝐾𝐾(𝒙𝒙,𝒙𝒙′) and its 
hyperparameters should be carefully selected. Most common 
choices of kernel functions are the radial basis function (RBF) 
kernel and the Matérn kernel.  

The BO algorithm starts with the initial data 𝒟𝒟1 = (𝑥𝑥1,𝑦𝑦1), 
with 𝑦𝑦𝑖𝑖 =  𝑓𝑓(𝑥𝑥𝑖𝑖). GP prior is constructed based on the initial 
data. On top of the GP prior, new data is added after each 
iteration/experiment, and the GP prior is updated using Bayes’ 
rule to obtain the GP posterior distribution. Therefore, when 
the data at the current time step  𝒟𝒟𝑘𝑘 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑘𝑘  become 
available, the posterior mean �̅�𝜇𝑘𝑘(𝑥𝑥) and the posterior variance 
𝜎𝜎�𝑘𝑘2(𝑥𝑥) of the GP are evaluated as: 

�̅�𝜇𝑘𝑘(𝑥𝑥) = 𝐾𝐾(𝑋𝑋𝑘𝑘, 𝑥𝑥)⊤[𝐾𝐾(𝑋𝑋𝑘𝑘,𝑋𝑋𝑘𝑘) + 𝜆𝜆𝜆𝜆]−1𝑌𝑌𝑘𝑘
𝜎𝜎�𝑘𝑘2(𝑥𝑥) = 𝜅𝜅(𝑥𝑥, 𝑥𝑥) − 𝐾𝐾(𝑋𝑋𝑘𝑘 , 𝑥𝑥)⊤[𝐾𝐾(𝑋𝑋𝑘𝑘 ,𝑋𝑋𝑘𝑘) + 𝜆𝜆𝜆𝜆]−1𝐾𝐾(𝑋𝑋𝑘𝑘, 𝑥𝑥).

 

where 𝐾𝐾(𝑋𝑋𝑘𝑘,𝑋𝑋𝑘𝑘)  is the 𝑘𝑘 × 𝑘𝑘  matrix whose 𝑖𝑖𝑗𝑗𝑡𝑡ℎ  entry is 
𝜅𝜅�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�, 𝐾𝐾(𝑋𝑋𝑘𝑘, 𝑥𝑥)  (respectively 𝑌𝑌𝑘𝑘 ) is the 𝑘𝑘 × 1  vector 
whose 𝑖𝑖th  entry is 𝜅𝜅(𝑥𝑥𝑖𝑖 ,𝑥𝑥) (respectively 𝑦𝑦𝑖𝑖), and 𝜆𝜆 is the noise 
variance. Overall, the function value at a location 𝑥𝑥  is 
represented by the normal distribution 
𝒩𝒩��̅�𝜇𝑘𝑘(𝑥𝑥;𝒟𝒟𝑘𝑘),𝜎𝜎�𝑘𝑘2(𝑥𝑥, 𝑥𝑥;𝒟𝒟𝑘𝑘)�. 

Based on the GP model, the next evaluation point 𝑥𝑥𝑘𝑘+1 is 
selected by maximizing the acquisition function Λ(𝑥𝑥 ∣
𝒟𝒟𝑘𝑘): 𝑥𝑥𝑘𝑘+1 = argmax

Ω
 Λ(𝑥𝑥 ∣ 𝒟𝒟𝑘𝑘). The most popular choice for 

the acquisition function is the expected improvement (EI) (D. 
R. Jones et al, 1998). For the minimization problem, the EI can 
be represented mathematically as: 

𝑢𝑢(𝑥𝑥) = max(𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − 𝑓𝑓(𝑥𝑥),  0), (2) 

ΛEI(𝑥𝑥) = 𝔼𝔼[𝑢𝑢(𝑥𝑥) ∣ 𝑥𝑥,𝒟𝒟𝑘𝑘]. (3) 

From equations (2) and (3), it is clear that the EI based BO 
only considers the next time‐step’s decision (i.e., there is no 
consideration of 𝑘𝑘 + 1th or 𝑘𝑘 + 𝑛𝑛th time‐step’s decision at the 
𝑘𝑘th   time step’s decision). This can lead to suboptimal results 
as most real‐world problems cannot be solved after just one 
iteration. Generally, iterations would repeat many times, and 

data acquired at 𝑘𝑘 + 1 th time step (𝑥𝑥𝑘𝑘+1,𝑦𝑦𝑘𝑘+1), and so on, 
would be utilized for subsequent decisions. Therefore, the 
whole decision‐making process that BO is intended to address 
would be more precisely formulated as a stochastic dynamic 
programming (DP) problem that considers all future decisions. 

 

3. MULTISTEP LOOKAHEAD BAYESIAN 
OPTIMIZATION  

As mentioned in the previous section, the entire process of BO 
can be viewed as a multi‐stage stochastic dynamic 
programming (DP) problem cast over the information state. 
Previous works on using the DP approach for BO (Lam et al, 
2016) have formulated the system dynamics on 𝑘𝑘‐ 𝑡𝑡ℎ time step 
in the following way: 

∀𝑘𝑘 ∈ {1,⋯ ,𝑁𝑁},∀(𝑧𝑧𝑘𝑘 ,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘) ∈ 𝒵𝒵𝑘𝑘 × 𝒰𝒰𝑘𝑘 × 𝒲𝒲𝑘𝑘 , 

𝑧𝑧𝑘𝑘+1 = ℱ𝑘𝑘(𝑧𝑧𝑘𝑘 ,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘), 
(4) 

where 𝑁𝑁 refers to the total number of stage, 𝑧𝑧𝑘𝑘  refers to the 
state 𝑧𝑧𝑘𝑘 ∈ 𝒵𝒵𝑘𝑘 , 𝑢𝑢𝑘𝑘 refers to the control which is a function of 
the state 𝑢𝑢𝑘𝑘 ∈ 𝒰𝒰𝑘𝑘(𝑧𝑧𝑘𝑘), and 𝑤𝑤𝑘𝑘  is a random disturbance. 

Under such dynamics, the goal is to find a policy 𝜋𝜋 =
{𝜋𝜋𝑘𝑘 ,⋯ ,𝜋𝜋𝑁𝑁}, which is a function of the state, i.e.,  𝜋𝜋𝑘𝑘:𝒵𝒵𝑘𝑘 ↦
𝒰𝒰𝑘𝑘 , that maximizes the expected total reward.  The reward 
function can be defined according to the user’s preference, but 
one of the most choices is a measure of the improvement. For 
the minimization problem, a stage‐reward function 
𝑅𝑅𝑘𝑘:𝒵𝒵𝑘𝑘+1 ↦ ℝ , which is a function of the state, control, and 
disturbance 𝑅𝑅𝑘𝑘:𝒵𝒵𝑘𝑘 × 𝒰𝒰𝑘𝑘 × 𝒲𝒲𝑘𝑘 ↦ ℝ, can be defined as:  

𝑅𝑅𝑘𝑘 = max(𝑦𝑦𝑘𝑘∗ − 𝑦𝑦𝑘𝑘+1, 0), (5) 

where 𝑦𝑦𝑘𝑘+1 refers to the observed result of 𝑘𝑘 + 1th time step, 
and 𝑦𝑦𝑘𝑘∗ refers to the smallest 𝑦𝑦 value in the dataset 𝒟𝒟𝑘𝑘. Thus, 
the expected total reward when following policy 𝜋𝜋 from the 
current time step until the end of the time horizon 𝑁𝑁 could be 
expressed as: 

𝐽𝐽𝜋𝜋(𝑧𝑧𝑘𝑘) = 𝔼𝔼 ��  
𝑁𝑁

𝑖𝑖=𝑘𝑘

𝑅𝑅𝑖𝑖(𝑧𝑧𝑖𝑖 ,𝜋𝜋𝑖𝑖(𝑧𝑧𝑖𝑖),𝑤𝑤𝑖𝑖)�, (6) 

  

The expectation is taken given the random disturbance term 
𝑤𝑤𝑖𝑖 , resulting in a probability distribution of the total reward 
value. An optimal policy 𝜋𝜋∗ that maximizes the expected total 
reward could be expressed as: 

𝐽𝐽∗(𝑧𝑧𝑘𝑘) = 𝐽𝐽𝜋𝜋∗(𝑧𝑧𝑘𝑘) = max
𝜋𝜋∈Π

𝐽𝐽𝜋𝜋(𝑧𝑧𝑘𝑘), (7) 

where Π is the set of all feasible control policies.  However, 
solving the above problem through DP to find an optimal 
policy 𝜋𝜋∗ can quickly become computationally intractable as 
the state dimension grows. Therefore, ways to solve dynamic 
programming in an approximate manner have been introduced 
by researchers in many fields, including machine learning, 
operations research, and control.  Among the suggested 



methods, one of the most popular method the rollout method 
suggested by Lam et al. (2016). 

The rollout‐based BO method interacts with GP posterior 
established based on 𝒟𝒟𝑘𝑘 at time 𝑘𝑘. It explores all the possible 
action time 𝑘𝑘  and receives a virtual output sampled from a 
normal distribution 𝑦𝑦𝑡𝑡+1 ∼
𝒩𝒩��̅�𝜇𝑘𝑘(𝑥𝑥𝑘𝑘+1;𝒟𝒟𝑘𝑘),𝜎𝜎�𝑘𝑘2(𝑥𝑥𝑘𝑘+1, 𝑥𝑥𝑘𝑘+1;𝒟𝒟𝑘𝑘)� . When the virtual 
result 𝑦𝑦𝑡𝑡+1 is sampled, it is added to the dataset 𝒟𝒟𝑘𝑘 and forms 
the hypothetical 𝒟𝒟𝑘𝑘+1. From 𝑘𝑘 + 1th time step to 𝑁𝑁th time step, 
the rollout‐based BO method conducts a rollout using the 
expected improvement (EI) as their base policy. After the roll 
out, the algorithm finds the action for the current step  𝝅𝝅∗ that 
maximizes the expected total reward of the rollout. 

The rollout method is definitely a far‐sighted approach 
compared to the traditional EI based BO method. However, 
there are still some gaps to be filled. After the 1st decision 
(assuming that 𝒟𝒟𝑘𝑘 was initial data‐in‐hand), the rollout based 
BO method assumes that the EI based BO is in place for all 
future decisions, to  approximately calculate the value function. 
Also, they defined the state space as an observation history 
𝒵𝒵𝑘𝑘 = (𝒳𝒳 × ℝ)𝑘𝑘. Therefore, the dimension of the state space 
keeps increasing as the iteration procedes. To address the 
suboptimality caused by such a gap, this paper proposes to use 
a more general approach of reinforcement learning (RL) in 
addressing the multi‐step Bayesian optimization problem. 

 

4. REINFORCEMENT LEARNING BASED BAYESIAN 
OPTIMIZATION  

Reinforcement learning (RL) is a machine learning method 
that can be used to find optimal or near‐optimal solutions of 
dynamic programming (DP) problems. In RL, the agent 
interacts with the environment (i.e., at each time, the agent 
takes a certain action given a state, and receives information 
on the reward at the next state) to learn the optimal policy 
𝝅𝝅∗over the state space. This research proposes to use the RL 
approach as a way to solve the stochastic DP problem 
associated with multi‐step BO. 

To train the RL agent, the system should satisfy the Markov 
property, which in essence stipulates that the state dynamics 
be memoryless (i.e., P[ 𝑓𝑓𝑢𝑢𝑡𝑡𝑢𝑢𝑓𝑓𝑓𝑓 ∣∣ 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑛𝑛𝑡𝑡, 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 ] =
  P[ 𝑓𝑓𝑢𝑢𝑡𝑡𝑢𝑢𝑓𝑓𝑓𝑓 ∣∣ 𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑓𝑓𝑛𝑛𝑡𝑡 ]). The state should be defined such that 
the Markov property holds. For training the RL agent, the 
problem needs to be described as a Markov decision process 
(MDP).  

An MDP is defined as a tuple: {𝑇𝑇,𝕊𝕊,𝔸𝔸,𝑃𝑃,𝑅𝑅} (Puterman, 2014), 
where 𝑇𝑇 = {0,1, … , ℎ − 1}, ℎ < ∞  is the set of decision 
epochs, assumed finite for our problem. State space 𝕊𝕊 is the set 
of all states, which should be defined to contain all the 
information at time 𝑡𝑡 ∈ 𝑇𝑇  that the agent can use to make a 
proper decision after observing it. Action space 𝔸𝔸 is the set of 
actions (for clarity of exposition, the 1st decision of the agent 
is noted as 𝑝𝑝0). 𝑃𝑃 ∶  𝕊𝕊 × 𝔸𝔸 ↦ (𝕊𝕊 ↦ 𝑅𝑅) is the state transition 
probability. When action 𝑝𝑝 ∈ 𝔸𝔸  is taken at state 𝑝𝑝 ∈ 𝕊𝕊 , 
𝑃𝑃(𝑝𝑝′ ∣ 𝑝𝑝, 𝑝𝑝) is the probability of the next state being 𝑝𝑝′. Last 
but not least, 𝑅𝑅 ∶  𝕊𝕊 × 𝔸𝔸 ↦  ℝ is the reward function. When 
action 𝑝𝑝 ∈ 𝔸𝔸 is taken at state 𝑝𝑝 ∈ 𝕊𝕊, the reward 𝑅𝑅(𝑝𝑝, 𝑝𝑝, 𝑝𝑝′) is 
given to the agent and the state is changed to 𝑝𝑝′ ∈ 𝕊𝕊,  

For the RL based BO approach, it is obvious how to define 
four out of the five components of the tuple, {𝑇𝑇,𝔸𝔸,𝑃𝑃,𝑅𝑅}. 𝑇𝑇, the 
set of decision epochs can be considered user‐chosen 
parameter (e.g. when a user wants to make 3‐step look‐ahead 
RL based BO,  𝑇𝑇 would be defined as 𝑇𝑇 = {0,1,2}). Also, 𝔸𝔸 
would be defined as the search space for the decision, 𝑃𝑃 would 
be defined by the GP model, and 𝑅𝑅 can be defined according 
to the user’s preference, just as in the rollout based BO 
approach. However, how to define the state space 𝕊𝕊  is not 
obvious as it should summarize all the information gathered up 
to a time point.  One can always choose the data‐observation‐
history as the state but such defined state would cause its 
dimension to change after each iteration. Therefore, this paper 
suggests the GP means and variances over the latticized input 
space as the components of the state space 𝕊𝕊. The role of the 
RL agent is to interact with the environment given by the 
defined MDP to find the optimal policy 𝜋𝜋∗(Figure 1). 

A decision policy, 𝜋𝜋𝑡𝑡:𝕊𝕊 → 𝔸𝔸 , takes the state as input and 
returns an action as output at time t. A policy 𝜋𝜋 =
(𝜋𝜋0,𝜋𝜋1, … ,𝜋𝜋ℎ−1) is implemented to the MDP System at each 
time step. Under the policy 𝜋𝜋, a starting state 𝑝𝑝0, and a look‐
ahead horizon ℎ , the expected total reward 𝑉𝑉ℎ𝜋𝜋(𝑝𝑝0)  can be 
defined as: 

𝑉𝑉ℎ𝜋𝜋(𝑝𝑝0) = 𝔼𝔼 ��  
ℎ−1

𝑡𝑡=0

𝑅𝑅(𝑝𝑝𝑡𝑡 ,𝜋𝜋𝑡𝑡(𝑝𝑝𝑡𝑡), 𝑝𝑝𝑡𝑡+1)�, (8) 

which is fundamentally the same expression as equation (7) 
when 𝑁𝑁 − 𝑘𝑘 = ℎ. As the BO process has been expressed as an 
MDP, our goal is to find the optimal policy 𝜋𝜋∗ that maximizes 
the expected total reward. 

Speaking of {𝑃𝑃}, when RL is applied in games or robotics, the 
agent interacts and learns from the real or simulated 

Figure 1. Proposed state space 𝕊𝕊 of MDP tuple for RL based BO 



environment to iteratively update their policy 𝜋𝜋 . However, in 
the case of the RL for BO, which is needed when the action is 
expensive and time‐consuming, one does not have the luxury 
to interact with the real environment while training. Therefore, 
the agent interacts with a simulated environment. At time t, the 
Gaussian Process model created from the initial data 𝒟𝒟𝑡𝑡 with 
the mean 𝜇𝜇(𝑡𝑡) and kernel 𝐾𝐾(𝑡𝑡)  acts as the simulated 
environment in this RL training. When the agent makes an 
action 𝐱𝐱𝑡𝑡+1, the simulated data 𝑦𝑦𝑡𝑡+1 is created by the normal 
distribution following: 

𝑦𝑦𝑡𝑡+1 ∼ 𝒩𝒩 �𝜇𝜇(𝑡𝑡)(𝐱𝐱𝑡𝑡+1;𝒟𝒟𝑡𝑡),𝐾𝐾(𝑡𝑡)(𝐱𝐱𝑡𝑡+1, 𝐱𝐱𝑡𝑡+1;𝒟𝒟𝑡𝑡)� (9) 

Such virtually generated data would be added to the dataset to 
form a new data set augmented with the virtual data (we use 
the notation 𝒟𝒟�𝑡𝑡+1 to denote this in order to distinghish it from 
the set with real data only) and the new GP based on updated 
dataset is drawn. So, based on 𝒟𝒟𝑡𝑡, the RL agent would freely 
conduct a large number of virtual experiments and add the 
virtual data on its database to form 𝒟𝒟�𝑡𝑡+1,𝒟𝒟�𝑡𝑡+2, etc. until the 

end of the user‐defined decision epoch is reached. While doing 
so, the agent would receive rewards for its own education. The 
reward for the RL agent can be calculated in the same way as  
in the rollout based BO, expressed as: 

𝑅𝑅(𝒟𝒟𝑡𝑡 , 𝐱𝐱𝑡𝑡+1,𝒟𝒟𝑡𝑡+1) = (𝑦𝑦𝑡𝑡∗ − 𝑦𝑦𝑡𝑡+1)+
≡ max(𝑦𝑦𝑡𝑡∗ − 𝑦𝑦𝑡𝑡+1, 0). (10) 

The ultimate goal for the RL agent to achieve is to maximize 
the expected reward through the entire episode. Thus, when 
the agent is looking ahead ℎ‐step starting with dataset 𝒟𝒟𝑡𝑡  at 
time 𝑡𝑡, the expected total reward can be expressed as:  

𝑉𝑉ℎ𝜋𝜋(𝒟𝒟𝑡𝑡) = 𝔼𝔼 � �  
𝑡𝑡+ℎ−1

𝑘𝑘=𝑡𝑡

𝑅𝑅� 𝒟𝒟�𝑘𝑘 ,𝜋𝜋𝑘𝑘� 𝒟𝒟�𝑘𝑘�,𝒟𝒟�𝑘𝑘+1��

= 𝔼𝔼 � �  
𝑘𝑘+ℎ−1

𝑡𝑡=𝑘𝑘

(𝑦𝑦𝑘𝑘∗ − 𝑦𝑦𝑘𝑘+1)+� .

 (11) 

 

For the training of the RL agent, the proximal policy 
optimization (PPO) algorithm is employed in this work to find 
𝜋𝜋∗ under a given MDP. The PPO algorithm is simple to use 
and has shown exceptional computational efficiency in many 
case problems (Schulman J. et al, 2017). All in all, the 
proposed RL based BO approach works in the following way: 

Step 0. At time step t, set k=t and 𝒟𝒟�𝑘𝑘 = 𝒟𝒟𝑡𝑡 

Step 1‐1. Based on given 𝒟𝒟�𝑘𝑘, a GP model is constructed. 

Step 1‐2. The RL agent makes a virtual action 𝑥𝑥�𝑘𝑘+1 based on 
the observation of GP model from step1‐1 combined with its 
policy 𝜋𝜋. As a consequence, virtual data 𝑦𝑦�𝑘𝑘+1 is created, 𝒟𝒟�𝑘𝑘 is 
updated to 𝒟𝒟�𝑘𝑘+1, and the agent receives reward 𝑅𝑅�𝑘𝑘. 

Step 1‐3. Based on 𝒟𝒟�𝑘𝑘+1, a new GP model is constructed and 
the same process as step 1‐1, 1‐2 happens for ℎ  steps 
(𝒟𝒟�𝑘𝑘+1,𝒟𝒟�𝑘𝑘+2, … ,𝒟𝒟�𝑘𝑘+ℎ). When the virtual ℎ‐step experiments 
are over (i.e., one episode is over), histories of states and 
rewards are saved.  

Step 2. step 1‐1 ~ 1‐3 repeats for user‐defined number of times 
(i.e., user‐defined number of virtual episodes are conducted) 
and histories of episodes are saved. RL agent updates its policy 
𝜋𝜋 based on gathered histories. 

Step 3. step 1~2 is repeated until the policy 𝜋𝜋 reaches stopping 
criterion. When the updating of policy stops, we obtain the 
optimal policy 𝜋𝜋∗. 

Step 4. Real experiment is conducted by action a suggested by 
𝜋𝜋𝑡𝑡∗ , the resulting optimal policy at the time step 𝑡𝑡 . As 
consequence, a new real data point is sampled. 

Step 5. Based on the new real data, dataset 𝒟𝒟𝑡𝑡 is updated to 
𝒟𝒟𝑡𝑡+1. Set t=t+1. Go back to Step 0. 

 

5. CASE STUDY 

Data sampling efficiency of the RL based BO method is 
compared with the rollout -based BO method and the EI-based 
BO method under three different categories of benchmark 
functions. EI-based BO is known for being more explorative 
than PI (probability of improvement)-based and UCB (upper 
confidence bound)-based (Berk et al, 2018; De Ath et al, 2021). 
Therefore, EI based BO was selected as a comparison basis. 
Also, rewards for rollout-based BO and RL based BO were set 
as Equation (5), (10) for the same reason. Thus, all three 
method aims to maximize expected improvement in their own 
way.  

The three selected benchmark functions are as follows (Figure 
2): 

Figure 2. Graphical illustration of Ackley function (left), Matyas function (middle), and Sum squares function (right) 



𝑓𝑓(𝐱𝐱) = −20exp �−0.2�1
2
∑  2
𝑖𝑖=1 𝑥𝑥𝑖𝑖2� −

exp �1
2
∑  2
𝑖𝑖=1 cos (2𝜋𝜋𝑥𝑥𝑖𝑖)� + 20 + exp (1)  

(12) 

𝑓𝑓(𝐱𝐱) = 0.26(𝑥𝑥12 + 𝑥𝑥22) − 0.48𝑥𝑥1𝑥𝑥2 (13) 

𝑓𝑓(𝐱𝐱) = � 
2

𝑖𝑖=1

𝑖𝑖𝑥𝑥𝑖𝑖2 (14) 

Equation (12) is the Ackley function which is known to have 
multiple local minima. It was evaluated on the 2D plane 𝑥𝑥𝑖𝑖 ∈
[−32.768, 32.768], for 𝑖𝑖 = 1, 2. Equation (13) is the Matyas 
function which is known to be plate‐shaped. It was evaluated 
on the 2D plane 𝑥𝑥𝑖𝑖 ∈ [−10, 10], for 𝑖𝑖 = 1, 2. Equation (14) is 
the Sum Squares function which is known to be a bowl‐shaped 
function. It was evaluated on the 2D plane 𝑥𝑥𝑖𝑖 ∈ [−5.12, 5.12], 
for 𝑖𝑖 = 1, 2 (Surjanovic, S. et al, 2013). 

For the GP, the RBF kernel was used and its hyper parameters 
were estimated by the maximum likelihood estimation method 
at each time step of iteration (Williams C. K. 2006). For the 
RL based BO, the GP hyper parameters were kept the same 
during the virtual lookahead training, and were updated only 
when the real data was observed.  

To compare the data efficiency of each BO algorithm with the 
three different benchmark functions on a fair basis, random 
initial data (data size = 50) selected from each benchmark 
function’s input space were given to each BO algorithm. Based 
on the initial data, BO was conducted with the three different 
BO algorithm without sharing information about newly 
acquired data during the BO process for 20 time‐steps. For 
each time step  𝑡𝑡  of iteration, regret (= 𝑦𝑦𝑜𝑜𝑜𝑜𝑡𝑡 − 𝑦𝑦𝑡𝑡∗ ), was 
recorded for the data efficiency index. Regret indicates the 
difference between the global optimum value and the best 
data‐in‐hand at the 𝑡𝑡‐ th  iteration point. However, random 
initial data given to the BO algorithms could be locally biased 
to a certain area of the search space. Locally biased input data 
could affect the data efficiency of the BO algorithms. To 
address this issue, 10 different sets of initial data which contain 
20 input‐output relationships were given to each BO algorithm. 
Regret values recorded throughout the BO process for each 
initial dataset were averaged to measure the general data 
efficiency of each BO algorithm. 

As a result, the proposed RL‐based BO algorithm has shown 
lower average regret values in each iteration compared to the 
conventional EI based BO and the rollout‐based BO at most of 
the iteration steps. This means that the RL‐based BO has found 
a better optimum faster than the conventional BO and the 
rollout‐based BO. The data efficiency was significantly better 
for the RL based BO algorithm compared to other BO 
algorithms for the Ackley function and the Sum Squares 
function. However, for the Matyas function, the data efficiency 
of the RL‐based BO was not significantly better compared to 
the other BO algorithms. This is because the Maytas function 
is a plate‐shaped benchmark function; due to the flatness of the 
function, there is not much room to optimize.  Figures 3, 4, 5 

show the average regret value of each iteration step for each 
benchmark function. 

 

Figure 3. Average regret of each BO algorithm on each time 
step for the Ackley function 

 

Figure 4. Average regret of each BO algorithm on each time 
step for the Matyas function 

 

Figure 5. Average regret of each BO algorithm on each time 
step for the Sum Squares function 

 

6. CONCLUSION AND FUTURE WORKS 

This work suggested a novel reinforcement learning based 
Bayesian optimization method to solve the multi‐step BO 
problem.  To apply the RL approach, the multi‐step BO 
problem was formulated as an MDP with a newly defined  state 
space 𝕊𝕊 base on the GP mean and variance over the latticized 
input space. The proposed BO method has been empirically 



shown to give higher data efficiency based on testing with 
several types of benchmark functions and this can be attributed 
to its ability to make far‐sighted sequential decisions by 
solving h‐step look‐ahead stochastic dynamic programming in 
a near optimal way. The suggested BO method can be applied 
to a variety of sequential decision‐making problems cast in an 
unknown environment to accelerate the finding of the global 
optimum or an improved optimal point. For future work, we 
believe the RL based BO method should be compared with 
other existing BO methods such as PI- and UCB-based BO 
methods for various types of systems. Also, besides data 
efficiency, properties like stability and scalability need to be 
studied as training a RL agent can be very sensitive and time‐
consuming depending on the problem.  
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