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Abstract: The process of optimization of chemical/ biochemical processes can often involve
multiple conflicting objectives. This gives rise to a class of problems called multi-objective
optimization problems. Solving such problems results in an infinite set of points, the Pareto set,
which includes all the solutions in which no objective can be improved without worsening at
least one other objective. In this paper, we propose a new strategy that is inspired by branching
phenomena in nature for exploring the objective space to obtain a representation of the Pareto
set. The algorithm starts from a single point in the objective space, and systematically constructs
branches towards the Pareto front by solving correspondingly-modified subproblems. This
process continues till points that lie at the Pareto front are obtained. This way, it ensures
that no region in the objective space gets explored more than a single time. Additionally,
using a proximity parameter, the branches density can be controlled, consequently leading
to controlling the resolution of the Pareto front. The proposed method has been applied to a
numerical bi-objective optimization problem as well as the problem of the bi-objective control
of a William-Otto reactor. Results show that the new algorithm has managed to obtain a Pareto
front with adaptive resolution where the areas with high trade-offs are represented with higher
points density.

Keywords: Multi-objective optimization, Optimal control, Recursive algorithms, Process
industry

1. INTRODUCTION

An optimization problem that involves more than one ob-
jective is termed a Multi-Objective Optimization Problem
(MOOP). In the engineering domain, these objectives are
usually conflicting with each other. Hence, while solving
a Single Objective Optimization Problem (SOOP) should
ultimately result in a single optimal solution, solving a
MOOP on the other hand will result in a solution set
of mathematically equally optimal solutions, called the
Pareto front, where no objective can be improved with-
out worsening at least one other conflicting objective. A
subcategory of MOOP that is commonly encountered in
the context of the chemical industry is Multi-Objective
Optimal Control Problems (MOOCPs). In such problems,
the aim is to find the optimal time profile of a control
variable in order to optimize a dynamic system with
respect to multiple objectives. An example of a MOOCP
would be to optimize the control variables of a bioreactor
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to maximize the production rate and minimize the cost
simultaneously. The control variables in this case could
be the reactor’s feed rate, temperature and agitator speed.

Solving a MOOP corresponds to approximating its Pareto
front. For that, two main classes of algorithms are imple-
mented: vectorization and scalarization based methods.
Vectorization algorithms are stochastic population-based
algorithms that have been inspired by biological evolution
and do not require the calculation of gradients (Deb
(2001)). Alternatively, scalarization methods work by con-
verting the MOOP into a set of SOOPs, such that solving
each of the resulting problems yields a point on the Pareto
front (Marler and Arora (2004)). Each SOOP is solved by
supplying a solver with initial parameter values. Then, the
solver deploys the appropriate optimization algorithm.
In this paper, we propose an alternative deterministic
algorithm that utilizes a branching strategy to obtain
the Pareto front, starting from a single initial guess. The
algorithm is then applied to two case studies, a numerical
and an industrial one. The influence of the algorithm’s key
parameters on its performance is investigated. The rest of
the paper is structured as follows: Section 2 introduces
the formulation of a MOOCP as well as an overview of
existing deterministic solution strategies. In Section 3, the
case studies are introduced: a numerical bi-objective op-
timization problem and the optimal control of a chemical



reactor. The algorithm is applied to both case studies, and
the solution process and the results are discussed. Finally,
Section 4 summarizes the conclusions of the paper.

2. MATHEMATICAL FORMULATION AND
METHODS

A MOOCP can be formulated as follows (Logist et al.
(2010)):

min
u(ϵ),x(ϵ),p,ϵf

{J1, J2, ..., Jm} (1)

which is subject to:
dx

dϵ
=F (x(ϵ), u(ϵ), p, ϵ) (2)

0 =bi(x(0), p) (3)
0 =bt(x(ϵf), p) (4)
0 ≥cp(x(ϵ), u(ϵ), p, ϵ) (5)
0 >ct(x(ϵf), u(ϵf), p, ϵf) (6)

with vector u representing the control variables of the
process and x as the state variables describing the process.
ϵ represents the independent variable of the process,
usually space or time, where ϵ ∈ [0, ϵf ]. And p is a
vector which represents the constant parameters of the
system. The objectives of the problem are represented by
J1, J2, ..., Jm, where m is the total number of objectives.
The constraints of the system are described via bi and
bt, which represent the initial and terminal boundary
conditions respectively. The path and terminal inequality
constraints on the other hand are represented via cp and
ct. An individual objective function can be formulated as
follows:

Ji = M(x(ϵf), p, ϵf) +

∫ ϵf

ϵ0

L(x(ϵ), u(ϵ), p, ϵ)dϵ (7)

withM andL representing the Mayer and Lagrange terms
respectively. The Mayer term indicates the terminal cost of
the objective function. It is used to model objectives such
as the conversion rate of the process. The Lagrange term
is path dependent, for example, the total heat removal
during the process. Finally, the vector y is defined as y =
[x(·)⊤, u(·)⊤, p⊤, ϵf ]⊤ and represents all the optimization
variables of the process. The objectives of the problem
are grouped as J(y) = [J1(y), J2(y), ..., Jm(y)]

⊤. A Pareto
optimal set consists of all solutions where there is no
other feasible solution that could improve a subset of the
objectives without worsening at least one other objective.
Therefore, a vector y∗ is said to be a Pareto optimal solution
if there exists no y ∈ S such that Ji(y) ≤ Ji(y

∗) for
i = 1, 2, ...,n and Ji(y) < Ji(y

∗) for at least one Ji.
According to Marler and Arora (2004), there are two
classes of algorithms to obtain a representation of the
Pareto front: vectorization algortihms and scalarization
algorithms. The most popular examples of vectorization
algorithms are genetic algorithms like NSG A-II. Their
drawbacks can be summarized in their inability to handle
constraints, having a computationally expensive nature
and their unreliability in high dimensional spaces (Logist
et al. (2013)). Scalarization algorithms work by parame-
terizing the problem into a set of subproblems using a
weights vector. Each subproblem is then solved to obtain
a corresponding point on the Pareto front. And then, a

filtering algorithm can be used a posteriori to keep the
points that are relevant to the Decision Maker (DM) such
that the more interesting "knee regions" of the Pareto
front, where high tradeoffs exist between solutions, are
represented by a higher density of points than the less
interesting plateau segments (Mattson et al. (2004)).

2.1 Branching strategy to explore the objective space

The new algorithm attempts to find points on the Pareto
front starting from an Initial Guess (IG), the point in the
objective space which corresponds to the initial guess of
the parameters values supplied by the user. First, the
anchor points corresponding to solving the two SOOPs
min J1 and min J2 are obtained. The two anchor points,
combined with the IG, can be used to determine the
boundaries of the growth region, the subset of the ob-
jective space where the solution process will take place,
shown in Figure 1(a). The algorithm constructs branches
in the objective space, starting from IG, by solving a SOOP
sub-problem at predefined directions. Hereby, a branch
in the objective space corresponds to solving a SOOP
subproblem starting from the current point/ node to find
a new node that lies at a distance equal to the Branch
Length (BL), as shown in Figure 1(b).

To set the angle and the length of the branch, two ad-
ditional constraints are adjoined to the original problem.
An equality constraint is added to specify the branch’s
direction, described in Figure 1(b) using the slope ae and
the intercept be. ae is determined by the angle θn, and be
is calculated from the previous node and ae. Secondly,
an inequality constraint limits the length of the branch
by constructing a second line that is perpendicular to the
equality constraint, at a distance BL from the previous
node with slope ap and intercept bp. Each branch ends at a
node in the objective space closer to the Pareto front than
its parent. This node will be the initial point for the next
subproblem. The iterations are performed through a re-
cursive pattern. In this algorithm, two new branches grow
from each node. The directions of these two new branches
are based on the direction of the parent branch θn−1 and on
a certain user-defined branching angle θbr. The two new
branch directions are then defined as: θnu = θn−1−θbr and
θnd = θn−1+θbr. The angles corresponding to each branch
are relative to the horizontal line, as shown in Figure 1(c).
The recursive function is exited whenever: (i) a node lies
outside the growth region, (ii) a node lies at a distance
to another existing node that is lower than a prespecified
proximity parameter, or (iii) when a point is found at the
Pareto front. In the latter case, the obtained point is added
to the solution set, which gets displayed when all recursive
calls are exited. Hence, this strategy can increase the speed
of the solution process as the objective space gets explored
only once. An overview of the algorithm’s structure is
presented in Algorithm 1.

2.2 Software

MATLAB R2020b is used as the optimization platform
and is run on a 64-bit Windows 10 system with an Intel(R)
Core(TM) i5-8365U CPU @ 1.60GHz processor and 16
GB of RAM installed. The built-in optimization toolbox



(a) (b) (c)

Fig. 1. An illustration of the branching strategy procedure. (a) Starting from the inital guess, the MOOP is solved for the
anchor points. And the borders of the growth region are set. (b) Starting from an existing node, an optimization
problem is solved. The solution process stops once an intermediate solution lies at a distance exceeding the prefixed
branch length. (c) For any existing node, two branches are created at angles θnu and θnd.

Algorithm 1 A branching algorithm
Input: The Initial Guess, IG, and Minimal Proximity,MP .
Output: Pareto set, S, with a resolution which depends on
MP .
Step 1: The solution set is initializaed, S = {}.
Step 2: The two SOOPs, min J1 and min J2, are solved, to
determine the anchor points and the borders of the growth
space.
Step 3: Starting from IG, an initial branch is constructed
with an angle of θ0 = (θJ1 + θJ2)/2, with θJ1 and θJ2

are the angles of the lower border and the upper border
respectively to the horizontal line.
Step 4: The solution process ends once an intermediate
solution lies at a distance from the IG that is higher than
BL. That solution is labeled N1.
Step 5: The start of the recursive process, with the node
N1 as an input.
For the current node Ni, check the three stoppage condi-
tions:
IF Ni does lie outside the growth region,
OR IF, Ni is at a distance less than MP from another node
EXIT
IF Ni lies at the Pareto front:
Add Ni to S and EXIT
ElSE: create two branches at angles, θnd and θnu, to obtain
the next two nodes Ni+1 and Ni+2.
Step 6: When all recursive calls are exited, produce solu-
tion set S.
of MATLAB is also used, specifically the fmincon func-
tion and the ode15s function. fmincon is a function that
returns parameters that minimize an objective (SOOP)
while satisfying the problem’s constraints, here the se-
lected algorithm is Sequential Quadratic Programming
(SQP). ode15s is used to solve systems of stiff differential
equations via numerical differentiation.

3. RESULTS AND DISCUSSION

The algorithm is illustrated through two case studies
(De Buck et al. (2021)). Each case study involves finding
the Pareto front for a bi-objective optimization problem.

3.1 Case Study 1: Numerical Bi-objective Problem

Formulation The first case study is relatively straight-
forward, as the two objective functions are equal to the
decision variables and the inequality constraint limits the
feasible space to a rectangle with rounded corners. It was
introduced by C. Mattson (2004), and can be described
mathematically as:

min
x

(J1, J2)

with
J1 = x1

J2 = x2

and (x1 − 10

10

)8

+
(x2 − 5

5

)8

− 1 ≤ 0

x1 ∈ [−10, 10]

x2 ∈ [−10, 10]

(8)

The high-degree polynomial inequality constraint estab-
lishes a high-trade-off region of the Pareto front near the
origin of the objective space. The Pareto front is long and
flat for higher values of the objectives (De Buck et al.,
2021).

Results The branching algorithm successfully sampled
the Pareto front; results from two runs are shown in
Figures 2 and 3, where two different branching strategies
are compared. In the first run, a relatively short branch
length of BL = 0.2 is used. This results in dense
branching and more thorough exploration of the objective
space. However, more branches end up at the non Pareto
boundaries of the growth region, leading to a high number
of nodes and longer calculation times. For the second run,
a different strategy is tested where BL = 0.5 and the
Branch Depth Multiplier (BDM) is set to be BDM = 0.7.
The BDM is an auxiliary parameter which is equal to
the ratio between two the lengths of two consecutive
branches. It allows the branching scheme to begin with
longer branches to quickly get closer to the Pareto front,
before using shorter branches to explore the Pareto front



thoroughly. This has resulted in a decreased runtime
and number of generated nodes, while getting a Pareto
front with a resolution similar to the first run. Both runs
were able to generate a higher density of points at the
knee region of the problem, which is deemed to be more
interesting to the decision maker as it is characterized
by higher level of trade-offs than the long plateaus. The
Minimal Proximity (MP) parameter prevents the growth
from a node that lies in the neighborhood of an existing
node. And thus, it saves further time as there is no need
to continue the solution processes that leads to Pareto
points that are close to an already existing one. This in turn
eliminates the need for a posteriori filtering. An overview
of the algorithm’s parameter values and the performance
parameter values are provided in Tables 1 and 2. It can be
seen from Table 2 that using the second branching strategy
resulted in a faster runtime and a lower number of nodes,
despite aiming for a higher Pareto front resolution.

Parameter Run 1 Run 2
Branch Length (BL) 0.2 0.5

Branch Depth Multiplier (BDM ) 1 0.7
Branch Angle (BA) 14 14

Minimal Proximity (MP ) 0.02 0.01
Initial Guess (IG) (1.28,1.28) (1.28,1.28)

Table 1. Algorithm’s parameters values for the
bi-objective numerical case study.

Parameter Run 1 Run2
Recursive runtime (s) 14.9 9.8

Number of nodes 221 178
Number of Pareto points 43 52

Table 2. Performance parameters values for the
bi-objective numerical case study.

3.2 Case Study 2: Williams-Otto Reactor

Formulation The branching algorithm is tested for
an industrial problem using a mathematical model for
the Williams-Otto fed-batch reactor (Williams and Otto
(1960)). In this reactor, the following reactions take place:

A+B −→ C

C +B −→ P + E

P + C −→ G

(9)

Reactant A is present in the reactor and reactant B is
fed continuously. The products P and E are formed
during the exothermic reactions, as well as G, the side-
product. A cooling jacket is required for the removal of
heat generated through the exothermic reactions. This
cooling jacket is controlled by the temperature of the
cooling water (Hannemann and Marquardt (2010)). The
two considered objectives are the maximal conversion of
the main products P and E. During the process, there are
some variables that need to be observed, being the path
constraints on the inlet flow rate of reactant B, denoted
as FB,in, the reactor temperature T , the reactor volume
V , and the scaled cooling water temperature TW . The
control variables of this process that can be manipulated
are FB,in(t) and TW (t). The dynamic model consists of

nine differential equations (Hannemann and Marquardt
(2010), Williams and Otto (1960)).

dxA

dt
=

xAx1

1000V
− k1η1xAxB (10)

dxB

dt
=

(1− xB)x1

1000V
− k1η1xAxB − k2η2xBxC (11)

dxC

dt
=

xCx1

1000V
+ k7η1xAxB − k3η2xBxC − k6η3xPxC

(12)
dxP

dt
= − xPx1

1000V
+ k2η2xBxC − k4η3xPxC (13)

dxE

dt
=

xEx1

1000V
+ k3η2xBxC (14)

dxG

dt
=

xGx1

1000V
+ k5η3xPxC (15)

dT

dt
=

(TF − T )x1

1000V
+ k8η1xAxB + k9η2xBxC

+ k1η3xPxC − h(T − 1000x2) (16)
dV

dt
=

x1

1000
(17)

Not to confuse xA and x1, the former is a dimensionless
weight fraction and the latter a decision variable. The
initial conditions are: x0 = {1, 0, 0, 0, 0, 0, 65, 2}. kj , with
j ∈ 1, 2, ..., 10 are the pre-exponential reaction constants,
whose values along with the rest of the problem’s parame-
ters can be found in Williams and Otto (1960) and De Buck
et al. (2021). Each reaction has its own temperature depen-
dency given by Arrhenius terms ηm:

η1 = exp(
−6666

T + 273
) (18)

η2 = exp(
−8333

T + 273
) (19)

η3 = exp(
−11111

T + 273
) (20)

This problem is controlled by two process variables, the
feeding rate x1 of the reactant B and the scaled tempera-
turex2 of the refrigerant in the cooling jacket. Dimensional
constraints and safety precautions put constraints on the
system:

60 ≤ T (t) ≤ 90 (21)
0 ≤ x1 ≤ 5.7 (22)
0.02 ≤ x2 ≤ 0.1 (23)

V (tf ) ≤ 5 (24)

The derivatives are calculated using a MATLAB integra-
tor, namely ode15s (De Buck et al. (2021)). The formulation
of the objectives is:

min
x

(J1, J2)

with
J1 = −xP (tf )V (tf )

J2 = −xE(tf )V (tf )

(25)
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Fig. 2. Visualizations of the first run for the bi-objective numerical case study. While the algorithm was able to obtain
a representation of the Pareto front, it is noted that a number of branches ends up growing laterally towards the
borders of the growth space. (a) The obtained Pareto set. (b) A representation of the iterative solution process in
the objective space, starting from the initial guess.

(a) (b)

Fig. 3. Visualizations of the second run for the bi-objective numerical case study. The usage of initially large branches
reduces solution processes that end up at the boundaries of the growth space, whilst maintaining an accurate
representation of the Pareto front. (a) The obtained Pareto set. (b) A representation of the iterative solution process
in the objective space, starting from the initial guess.

Results The algorithm’s configurations when applied
to the Williams-Otto reactor problem are over-viewed in
table 3, while the quantitative results of its performance
are provided in table 4. As seen in Figure 4, the algorithm
managed to obtain a representation of the Pareto front,
albeit requiring a relatively long runtime compared to
the previous case study, owing to the higher complexity
of this problem. A main difference that can be observed
compared to the last case study, is the point density of the
obtained Pareto front, owing to choosing a higher value

for MP, the branching structure is more sparse and the
Pareto front is less dense. The usage of MP allows the user
of the algorithm to adjust the resolution of the Pareto front
based on their needs.

4. CONCLUSION

In this paper, a novel branching strategy is proposed
for solving bi-objective optimization problems. The new
algorithm explores the objective space using a branching
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Fig. 4. Visualization of the Pareto front as well as the solution process of the branching algorithm when applied to the
Williams-Otto reactor case study. (a) The obtained Pareto set. (b) A representation of the iterative solution process
in the objective space, starting from the initial guess.

Parameter Value
Branch Length (BL) 0.2

Branch Depth Multiplier (BDM ) 1
Branch Angle (BA) 12

Minimal Proximity (MP ) 0.04
Initial Guess (IG) (1.54, 0.76)

Table 3. Algorithm’s parameters values for the
William-Otto case study.

Parameter Value
Recursive runtime (s) 2 370.3

Recursive runtime (min) 39.5
Number of nodes 78

Number of Pareto points 17
Table 4. Performance parameters values for the

William-Otto case study.

strategy by solving a series of subproblems for a number
of iterations, corresponding to a predefined distance in
the objective space, while recursively constructing further
branches to obtain a representation of the Pareto front.
This has two advantages over current methods. First, it
allows a systematic exploration for the objective space,
which leads to reducing the number of iterations. Second,
a proximity criterion ensures that branches that get closer
to existing nodes are terminated, which allows controlling
the resolution of the Pareto front during the iterative
solution process, instead of filtering the obtained solutions
afterwards as it is currently traditionally done, thus
reducing the computational effort. The algorithm has been
applied and illustrated on two case studies and managed
to successfully obtain the Pareto front. Future work is
needed to (i) test the algorithm on further case studies
and (ii) to further reduce the number of parameters that
the algorithm uses.
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