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Abstract: A partial differential-algebraic equation (PDAE) model of a dynamic moving bed
chemical looping combustion reduction reactor is developed in the IDAES process modeling
framework for nonlinear model predictive control (NMPC). Numerical stability of the PDAE
discretization and the index-1 property of the DAE are validated. An NMPC case study is
performed, which manipulates inlet flow rates to control the system to a steady-state setpoint
over approximately 6,000 s of simulated time, while respecting a lower bound on outlet oxygen
carrier conversion. The dynamic optimization problems are solved for each NMPC cycle with an
average of 39 CPUs, indicating that this model has the potential for use in a real-time scenario.
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1. INTRODUCTION

To meet increasing global energy demands while reducing
carbon dioxide emissions, there is a need for advanced com-
bustion technologies that are conducive to carbon capture,
either through post-combustion absorption or through iso-
lation of carbon dioxide from nitrogen. One such technol-
ogy is chemical looping combustion, in which a gaseous
hydrocarbon fuel reduces a solid oxygen carrier in one
reactor and air oxidizes the oxygen carrier in another (Fan
(2010)). The oxygen carrier is repeatedly oxidized and
reduced by looping between the air and fuel reactor beds,
respectively. Because air never comes into contact with the
hydrocarbon fuel, the carbon dioxide-water vapor product
from the fuel (i.e., reduction) reactor can be easily sepa-
rated for carbon capture and storage. As this technology
has not been implemented widely at large scale, there is a
need for simulations that capture the physics, dynamics,
and chemistry of the process at operating conditions of
interest. These operating conditions may be dynamic due
to time-varying prices and demands.

Simultaneous, equation-oriented dynamic models are at-
tractive for their versatility and amenability to many
different optimization studies, including nonlinear model
predictive control (NMPC). Several authors have studied
dynamic equation-oriented chemical looping combustion
models. Noorman et al. (2011) perform dynamic simula-
tion studies on a three-stage chemical looping combustion
cycle (oxidation, reduction, purge) in a fixed bed reactor
and Han and Bollas (2016) perform dynamic optimization
studies on the same cycle, although they restrict input
variables to have constant values over each stage. With
a similar process, Lucio and Ricardez-Sandoval (2020)
perform dynamic optimization with time-varying input

trajectories and Toffolo and Ricardez-Sandoval (2021) per-
form simultaneous optimization of design and operation.

While optimization studies with equation-oriented dy-
namic models have been reported in the literature, these
models can be difficult to converge. Details provided by
previous dynamic chemical looping case studies suggest
that this is the case. Noorman et al. (2011) use extremely
small timesteps (approximately 1 ms) in their simula-
tions due to limits of numerical stability, and Lucio and
Ricardez-Sandoval (2020) report solve times of over 1,200
CPU s for a simultaneous dynamic optimization formula-
tion, which is too long for a real-time implementation. Han
and Bollas (2016) solve the dynamic optimization problem
with a sequential dynamic optimization method and do
not report solve times. Because of potential difficulties
in formulating a tractable dynamic optimization problem,
validation of assumptions for the model and controller
design is an essential step in the process of evaluating a
case study with a dynamic model.

The contributions of this work are the development of a
partial differential-algebraic equation (PDAE) model of a
chemical looping combustion reduction reactor operating
in a moving-bed regime, an NMPC study that achieves
a setpoint transition while respecting a bound on out-
let conversion, and validation of two important proper-
ties of the model: the numerical stability of the PDAE
discretization and the index-1 property of the spatially
discretized differential-algebraic equation (DAE) model.
The code used to produce these results may be found at
github.com/idaes/publications.



2. MOVING BED CLC REACTOR MODEL

We model a chemical looping combustion reduction reactor
in which methane reacts with an iron oxide oxygen carrier
on an aluminum oxide support to produce carbon dioxide
and steam. The reduction reaction in this process is

CH4 + 12Fe2O3→ 2H2O + CO2 + 8Fe3O4, (1)

and the reactor is assumed to operate in a moving bed
regime. We assume that the contents of the reactor are
radially well-mixed, axial diffusion may be ignored, the
solid phase moves with a uniform velocity, an Ergun
equation is sufficient to calculate pressure change, and the
gas phase behaves like an ideal gas. Degrees of freedom are
inlet flow rates, temperatures, compositions, and gas phase
pressure. Inlet flow rates are manipulated inputs, while
other inputs may be treated as disturbances. Nominal inlet
operating conditions are a gas flow rate of 128 mol/s,
a solid flow rate of 591 kg/s, a gas temperature of 298
K, a solid temperature of 1,183 K, a gas composition of
97.5% CH4 and 2.5% CO2 by mole, a solid composition of
45% Fe2O3 and 55% Al2O3 by mass, and a pressure of 2.0
bar. This process has been modeled at steady state in a
previous study by Okoli et al. (2020).

2.1 PDAE Model

The process is modeled as a system of nonlinear partial
differential-algebraic equations (PDAE). Our assumptions
lead to a system with differential equations in time t
and along the normalized length of the reactor z. The
differential equations are the gas phase mass balances (2),
the gas phase energy balance (3), the solid phase mass
balances (4), the solid phase energy balance (5), and the
Ergun equation (6).
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In these equations, l = 5 m is the length of the reactor, Mi

is the material holdup of species i, fi is the flow rate of i,
Ni,g is the rate of transport of i into the gas phase, Ni,s

is the rate of transport of i into the solid phase, MWi is
the molecular weight of i, Hg is the gas phase enthalpy
holdup, Hs is the solid phase enthalpy holdup, fH,g is
the gas phase enthalpy flow rate, fH,s is the solid phase
enthalpy flow rate, Qg is the rate of heat transfer into
the gas phase, ∆Hrxn is the enthalpy of reaction (1), ξ is
the extent of reaction (1), P is pressure, ε is the bed void
fraction, µ is kinematic viscosity, vg is gas phase velocity,
vs is solid phase velocity, ρg,mass is gas phase mass density,
and dp = 1.5 mm is the particle diameter.

Initial conditions are provided in terms of material and
enthalpy holdups and consist of a profile of these vari-
ables along the length of the reactor. Boundary conditions

relating to inlet flow rates, temperatures, mole fractions,
and pressure are imposed at every point in time. Algebraic
equations calculate reaction rate, thermodynamic proper-
ties, and rates of mass and heat transfer. Selected algebraic
equations that are relevant for the index analysis of Sec-
tion 4 are the Nusselt number equation (7), the Shomate
equations (8) and (9), the enthalpy mixture equations (10)
and (11), the density equations (12) and (13), and the
summation equations (14) and (15).
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where Nup is the particle Nusselt number, Rep is the

particle Reynolds number, Pr is the Prandtl number, Ĥg,i

is the specific enthalpy of species i, AH,i . . . FH,i are the

Shomate equation coefficients for species i, Ĥg is the gas

phase specific enthalpy, Ĥs is the solid phase specific
enthalpy, ρi is the density of species i, yi is the gas phase
mole fraction of species i, xi is the solid phase mass
fraction of species i, ρg is the total gas phase density, and
ρs is the total solid phase density. Additional important
algebraic variables are the solid conversion XOC, the
fraction of iron in the oxygen carrier that is reduced, and
the reaction rate rrxn. These are calculated by Equations
(16) and (17).
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Here, rp is the particle radius, avol is the fraction of
particle volume available for reaction, krxn is a reaction
coefficient defined by an Arrhenius rule, and xFe2O3,mol is
the mole fraction of Fe2O3 in the particle. This reaction
rate is given by Abad et al. (2007) and assumes that
diffusion through the particle grain is the dominating
resistance to mass transfer. Further reduction of Fe3O4

to FeO and Fe may occur, but we defer modeling of this
more complicated reaction sequence to future work. It is
desirable to maintain a high oxygen carrier conversion so
the subsequent exothermic oxidation reaction produces the
maximum amount of thermal energy per unit of oxygen
carrier cycled.



The model is implemented using the IDAES process mod-
eling framework (Lee et al. (2021)). IDAES is a process
modeling framework built on top of the Pyomo (Bynum
et al. (2021)) algebraic modeling environment that pro-
vides a streamlined interface for constructing chemical
process models in optimization-ready algebraic systems.
The full set of algebraic equations for the PDAE model, as
well as the values of all parameters used, may be accessed
via IDAES repository at github.com/idaes/idaes-pse.

2.2 Spatially discretized DAE model

To use our PDAE model in a nonlinear model predictive
control (NMPC) study, we first convert our system into
an initial value problem. To do this, we discretize the
spatial domain, leaving us with a system of differential and
algebraic equations (DAE) subject to initial conditions.
The DAE representing our system after spatial discretiza-
tion has the form given by the following DAE and initial
condition:

da

dt

∣∣∣∣
t

= f(at, bt, ut), a0 = ā0 (18a)

0 = g(at, bt, ut) , (18b)

where a is the vector of time-differential variables, b is
the vector of algebraic variables, and u is the vector of
manipulated inputs. The differential equations are the
reactor mass and energy balances and algebraic equations
are all other equations, including the Ergun equation,
which contains a spatial derivative but no time derivative.

Motivated by countercurrent flow, we choose an upwind
derivative discretization in the spatial domain, with gas
phase flows (qg) in the positive direction and the solid
phase flows (qs) in the negative direction, as shown by
Equation (19a) and Equation (19b), respectively.
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We also note that this discretization is different from the
backward discretization used for both solid and gas phase
states in Okoli et al. (2020).

2.3 Fully discretized model

Our approach to model predictive control uses the fully
discretized formulation of Cuthrell and Biegler (1987). We
solve the finite horizon optimal control problem as a non-
linear program (NLP) with the dynamic model represented
by a system of nonlinear algebraic equations, derived from
an implicit Euler discretization of the DAE system (18).
Moreover, because of the index-1 property, Equation (18b)
and the algebraic states can be implicitly eliminated to
form an ODE. Temporal implicit Euler discretization of
this ODE then leads to the concise representation of Equa-
tion (20).

ati+1 = f̄(ati , uti) for all i 6= 0

a0 = ā0
(20)

The PDAE system thus becomes a system of nonlinear
equality constraints in an optimization problem sent to a
standard NLP solver.

3. DISCRETIZATION STABILITY

Because this PDAE model has not been used in a pre-
vious simulation or optimization case study, we need to
ensure that our chosen time and space discretization is
stable in the sense that solutions satisfying the discretized
PDAE converge as the discretization grid is refined. Dis-
cretization stability is necessary for our algebraic model
to accurately approximate the continuous time and space
system it is based on. For a linear PDE describing counter-
current flow, stability of an upwind discretization is well
established (LeVeque (2002)). In contrast, our discretized
moving bed model is nonlinear and also contains the Ergun
equation with a spatial derivative but no time derivative.
Since we are not aware of a general stability result for our
PDAE model, we demonstrate stability for a particular
simulation that represents a range of operating conditions
of interest. The simulation begins with the model at its
nominal steady state and considers a perturbation in inlet
gas flow rate from 97.5% methane to 50% methane. The
inlet flow rates start at their nominal values and iterate
through every combination of low, medium, and high val-
ues for gas and solid flow rates, shifting every 60 s. The
values applied are 100, 128, and 200 mol/s for gas flow
rate and 500, 591, and 700 kg/s for solid flow rate. The
sequence of inlet flow rates applied is shown in Figure 1.

Fig. 1. Sequence of gas and solid inlet flow rates for
validation of numerical stability

To verify numerical stability, we simulate the model on a
sequence of discretization grids and evaluate approxima-
tion errors as the grids are refined. We use a sequence of
discretization grids with equally spaced time and space dis-
cretization points in which the number of discretization el-
ements increases geometrically, where the ith discretization
grid has 2i discretization elements in the spatial domain
and 2i discretization elements per 60 s of simulation time
in the time domain. As the number of discretization points
increases, the discretization grid approximates the contin-
uous domain. Here, we simulate the PDAE model for the
first seven discretization grids in this sequence. Because
our model does not have an analytic solution, we compute
error as the difference between simulation solutions on
adjacent discretization grids in our sequence. The first six
such errors are computed from the first seven discretization
grids, and we compute the error for each state variable
independently. The chosen state variables (gas and solid
total flow rates, mole and mass fractions, temperatures,
and pressure) are a subset that is sufficient to calculate
all variables in the PDAE model. The computed error for
each variable is an approximation of integrated squared
error, denoted by εi in Equation (21), where qi is one of
the PDAE variables above on the ith discretization grid.
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The difference between qi+1 and qi, solutions for variable
q on the (i + 1)th and ith grids, is computed by taking
the difference between the variable values at each point
in time and space. We approximate this integral using a
trapezoidal approximation with the discretization points
of the more refined discretization grid. Because the coarser
discretization will not have discretization points at all the
points of the finer grid, we linearly interpolate the coarse-
grid solution onto the more refined grid.

The errors in each variable for the six pairs of discretization
grids compared are shown in Figure 2. The results indicate
that our PDAE model is stable with the chosen discretiza-
tion and simulation. This simulation represents a range of
operating conditions of interest and justifies our use of the
discretized model for simulation and optimization studies.

4. DAE INDEX-1 VERIFICATION

To use the DAE model of Section 2.2 for nonlinear model
predictive control, we require the index-1 property to hold.
For our semi-explicit DAE, the index-1 property is given
by Criterion 1. If a semi-explicit DAE is index-1 according
to this criterion, then for fixed differential variables and
control inputs, the algebraic equations are always sufficient
to solve for the algebraic variables. More information the
index of a DAE is given by Ascher and Petzold (1998).

Criterion 1. A semi-explicit DAE is index-1 if, for all
values of differential variables and inputs, the algebraic
Jacobian (i.e., Jacobian of algebraic equations with respect
to algebraic variables) is nonsingular.

Rigorously verifying that a DAE is index-1 requires global
analysis that is beyond the scope of this work. Instead,
we perform an analysis of the algebraic Jacobian to show
under what conditions it becomes singular, then show that
it is nonsingular by computing condition numbers over the
course of a simulation.

4.1 Structural analysis

To identify conditions under which the algebraic Jacobian
matrix may become nonsingular, it is useful to permute
it to block triangular form via the approach of Duff
and Reid (1978).The sparsity structure of this matrix is
shown in Figure 3. This matrix has 785 rows and columns
and consists of 665 diagonal blocks as well as a sparse
lower triangle. (Rows correspond to equations and columns
correspond to variables.) If all diagonal blocks of this
matrix are constant and nonsingular, the entire matrix
is always nonsingular. In this instance of the DAE model,
only 72 out of 665 diagonal blocks are non-constant. These
blocks are Jacobians of

(1) Nusselt number equations with respect to Nusselt
numbers,

(2) Solid and gas phase enthalpy Shomate equations and
enthalpy mixture equations with respect to tempera-
ture and component enthalpies,

(3) Solid and gas phase density and sum equations with
respect to overall densities and mass/mole fractions,

(4) Ergun equations with respect to gas velocities.

Blocks (1) and (4) each contain a single cubic or quadratic
nonlinearity and therefore are nonsingular when their vari-
ables do not approach zero. Blocks (3) contain bilinearities
and are nonsingular when overall densities do not approach
zero and mole/mass fractions do not all approach zero.
Only blocks (2) contain general nonlinearities. For the
operating conditions of our process, we expect blocks (1),
(3), and (4) to be nonsingular at feasible points. While the
global analysis of the system in blocks (2) is beyond the
scope of this work, the experiment in Section 4.2 suggests
that it is nonsingular for many operating points of interest.

4.2 Numerical analysis

To verify that the algebraic Jacobian is nonsingular at a
range of feasible operating points, we simulate our DAE
following a perturbation from its initial steady state and
assemble the algebraic Jacobian at each point in time
of the simulation. We permute this Jacobian to block
triangular form, and compute the condition number of
each diagonal block. Blocks (2) and (3) above have non-
linearities, are larger than 1×1, and are repeated at every
spatial discretization point. Figure 4 shows the maximum
condition numbers over the spatial discretization for each
of these types of blocks at each point in time.

Over this simulation, the nonlinear diagonal blocks of
the algebraic Jacobian are nonsingular and have approx-
imately constant condition numbers as shown by Figure
4. This suggests that, near the region encountered by
variables in this simulation, the algebraic Jacobian is non-
singular and our DAE model is suitable for NMPC.

5. NONLINEAR MODEL PREDICTIVE CONTROL

Model predictive control is an optimization-based control
strategy in which a finite-horizon dynamic optimization
problem is solved to calculate a sequence of control inputs,
the first of which is sent to the plant. The control input
is held constant for one sampling period, after which a
measurement from the plant is loaded into the controller
in the form of initial condition parameters ā0, and the
control problem is re-solved with this new data (Rawlings
et al. (2017)). Points at which measurements are taken
and control inputs are applied are referred to as sample
points. The NMPC dynamic optimization problem is given
by Equation (22), where a∗ is a vector of setpoint values
for each state variable, and A and U are bounds on states
and controls. The expression ||at − a∗||22 is referred to as
the tracking cost at time t.

min
a,u

Ns∑
i=1

||ati − a∗||22

ati+1
= f̄(ati , uti) for all ti 6= 0

a0 = ā0, a ∈ A, u ∈ U

(22)

In contrast to Equation (20), t now represents a sample
point rather than a general time discretization point and i
takes values between zero and Ns, the number of samples
in a controller horizon.



Fig. 2. Discretization error with increasing number of discretization elements. The x-axes contain the number of spatial
discretization points and number of temporal discretization points per 60 s, which are the same.

Fig. 3. Sparsity structure of algebraic Jacobian for the
DAE model with 10 spatial discretization points

Fig. 4. Maximum diagonal block condition number in each
of four categories at each time point

5.1 Control problem

Our control objective is the transition between steady
state setpoints induced by a known disturbance to inlet gas
composition, and an increase in the outlet solid conversion
specification. The initial steady state is that of the nominal
operating conditions given in Section 2. The perturbation
is a sharp drop in inlet methane concentration from 97.5
% to 50 % and a corresponding increase in inlet CO2

concentration to 50 %. The outlet conversion of the target
steady state is 0.95, compared to 0.90 for the initial steady
state. The setpoint values for state variables and inputs are
computed by solving a steady state optimization problem
with these conditions in which inlet gas flow rate is a
degree of freedom that is adjusted to meet the target
conversion of 95 %. The gas inlet flow rate needed to meet
this target is 273 mol/s.

5.2 NMPC results

The PDE model and Problem (22) is implemented in
Pyomo DAE (Nicholson et al. (2018)). The instance used
for model predictive control simulation has 10 spatial dis-
cretization points, one time discretization point every 60
s, and applies piecewise-constant control action on 180 s
intervals. The controller considers ten sampling periods for
a horizon of 1,800 s. This discretization spacing is chosen
to achieve the relatively fast solve times required for an
online application. We initialize the dynamic optimization
problem with the results of a previous solve followed by a
simulation to ensure a feasible starting point for the opti-
mization. We solve the optimization problem with IPOPT
(Wächter and Biegler (2006)). The plant is modeled with
the PDAE model presented in this work. The state tra-
jectories from a 6,000 s NMPC simulation are shown in
Figure 5, and input trajectories for this NMPC simulation
are shown in Figure 6. The optimization problem solved at
each sample has 29,623 variables and 29,603 constraints.
The plot of tracking cost over time shows a large spike
when the setpoint changes and the controller is activated,
after 600 s of simulation, then quickly decays to zero as
the control action takes effect. This result indicates that
our NMPC strategy is sufficient to control this process
model to steady state. Tracking cost reaches zero within
tolerance after approximately 3,000 s. However, individual
states reach their setpoints on very different timescales.
Gas phase compositions reach their target steady state
values very quickly, in approximately 120 s, while pressure
and solid phase compositions do not reach their target
steady state values for more than 4,000 s. These results
indicate a timescale multiplicity that could be the source
of ill-conditioning in our DAE and PDAE models. A faster
response in solid phase compositions could be achieved by
adjusting weights in the optimization problem (22), but
we do not attempt to tune the response in this study.

The outlet solid conversion drops sharply following the
decrease in inlet methane composition, but is prevented
from violating its lower bound of 0.89 by a sharp increase
in inlet gas flow rate and a sharp decrease in inlet solid
flow rate that are shown in Figure 6.

In this simulation, the average time spent initializing and
solving the dynamic optimization problem is 39 CPU
s. However, the longest dynamic optimization problem
takes 201 s to initialize and solve. In model predictive
control, the dynamic optimization problem is solved online
and needs to be completed before the next set of initial
conditions from the plant are made available. In this
simulation, this means that the optimization problem
should be initialized and solved within 180 s. While the
average solve time is well within this margin, the maximum



Fig. 5. Selected state trajectories for NMPC simulation
over 6,000 s of simulation. Solid lines are plant sim-
ulation data, dashed lines are setpoint values. Solid
markers indicate sample points.

Fig. 6. NMPC input trajectories. Solid lines are applied
inputs and dashed lines values at the setpoint.

solve time, which occurs for the first dynamic optimization
problem, is slightly too long. Future work will focus on
decreasing this dynamic optimization solve time.

6. CONCLUSION

In this work, we have presented a PDAE model of a
moving bed chemical looping reduction reactor, validated
discretization stability and the DAE index-1 property, and
performed an NMPC simulation using the fully discretized
PDAE model. Future work will focus on reducing the
solve times for the dynamic optimization in our NMPC
simulation either via reduced-order modeling strategies
or parallel approaches to nonlinear optimization with
discretized dynamic systems.
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