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Abstract: The use of Fourier Transform Infrared (FTIR) spectroscopy for quantification of crude oil
properties was investigated using chemometric methods. Sample sets consisting of crude oil from seven
different Canadian fields were analyzed. Different methods such as PLS, PCA, iPLS, and PLS-GA were
used for model building and the results were compared. Evaluation of the models was conducted by
determination of the coefficient of determination (R2) and cross validation error. The best results for
quantification of density and viscosity were obtained by partial least squares (PLS) regression on FTIR
data. Data analysis on the total sample set of 82 samples yielded a prediction error (root mean square
error of cross validation) of 4.5 x 10-5 and 0.33 respectively for density and viscosity. Improvement in
prediction accuracy of viscosity was obtained by using Decision tree classification on samples before
applying PLS regression.
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1. INTRODUCTION

An accurate evaluation of physical properties for crude oil is
essential for addressing many reservoir engineering and
process operational problems. Since petroleum is a complex
mixture of organic compounds, its quality is mostly evaluated
by physicochemical properties. These properties are ideally
determined experimentally on actual fluid samples via
elaborate laboratory procedures. Crude oil from different
fields and wells come with different characteristics, hence
determination of their physicochemical properties is quite
valuable to production specialists as well as reservoir
engineers. Over the last few decades, several correlations
have been developed to estimate the crude oil properties.
However, these correlations may be useful only in regional
geological provinces and may not provide satisfactory results
when applied to crude oils from other regions (Hanafy. H,
1997). Among oil properties, density and viscosity are two
important parameters in crude oil specification – they are
normally measured in the laboratory, with procedures that can
last about hours and cost hundreds of dollars for viscosity
measurement of each sample, especially when dealing with
heavy oils, though density evaluation is quite faster and more
inexpensive.

Owing to rapid and significant advances in the fields of
multivariate statistics and machine learning techniques, it is
now possible to estimate many properties of interest (that are
difficult or costly to measure) using other measurements that
are relatively simpler, faster, and less costly. Analytical
procedures which are less dependent on sample size (Rocha
et al., 2016) are now available for mapping out the
relationship between the easily available measurements such
as spectra and the difficult to obtain measurements such as the
viscosity of crude oil.

Multivariate calibration methods, specifically partial least
squares (PLS) regression has become a standard tool in
chemometrics and used in chemistry and engineering (Wold
et al., 2001) for model building in the above context.
Techniques such as PLS allow the treatment of complex data
from a mathematical and statistical point of view by
correlating instrumental measurements and values with a
corresponding property of interest.

In recent years, infrared spectroscopy has shown to be a
promising tool in qualitative analysis of petroleum, diesel and
biodiesel. Santos et al., 2005 analyzed diesel samples by
FTIR and FT-Raman spectroscopy using PLS and artificial



neural networks (ANN). Filguerias et. al., 2014 estimated the
API gravity, kinematic viscosity and water content in
petroleum using ATR-FTIR spectroscopy measurements.
Rocha et al., 2016 used mid-infrared and near-infrared
spectroscopy and PLS to determine sulfur content in Brazilian
petroleum fractions.

Figure 1. FTIR spectra of eighty-two crude oil samples in the
range of 400 to 7000 cm-1

This study focuses on the usage of a combination of infrared
spectroscopy data with chemometric methods that have been
successfully applied by researchers and industry practitioners
in many applications. A reliable, fast and low-cost method is
developed for determination of density and viscosity of
Canadian crude oil samples based on decision tree
classification and linear PLS modeling.

2. MATERIALS AND METHODS

Eighty-two crude oil samples obtained from seven different
Canadian oil fields were supplied by a petroleum company in
Canada. They obtained the FTIR spectra corresponding to
these samples using a Thermo Fisher FTIR microscope. They
also have measured several physicochemical properties of
these crude oil samples using appropriate analytical
instruments. The company wants to develop robust models
that can provide accurate estimates of the physicochemical
properties utilizing FTIR data only thus avoiding the need for
elaborate, expensive and time-consuming laboratory
procedures. In this work, we focus only on the estimation of
density and viscosity of crude oil samples from their FTIR
data.

3. CHEMOMETRIC METHODS

3.1 Principal Component Analysis (PCA)

Principal Components Analysis (PCA) is a very popular
multivariate statistical technique for analyzing data samples
where there is a high collinearity between the variables. PCA
can be used to create a new set of orthogonal variable space

by creating optimal linear combinations of the original
variables. In the presence of collinear variables, the new
orthogonal variables (called principal components) form a
lower dimensional subspace that captures most of the
variability present in the original data space. Thus, PCA is
also a dimensionality reduction method that facilitates a
low-dimensional view of the original data set with minimal or
no loss of information content of the original dataset.
Mathematically, PCA decomposes the appropriately scaled
original data matrix (X; dimension n x c where n is the
number of samples and c is the number of variables) into two
matrices namely scores matrix (T) and loadings matrix (P)

such that . T (dimension n x c) represents the new𝑋 =  𝑇𝑃'

set of orthogonal variables (note: T = X P) and is referred to
as the scores matrix. The columns of the loadings matrix P
represent the weights given to the original X variables to form
the principal components (latent variables). Thus, elements of
the P matrix tell us how much an original X variable is loaded
into the corresponding principal component (latent variable).
Samples that are more alike and have close T values will
cluster together in the scores plot (where one column of T is
plotted against another). Likewise, variables that are highly
correlated tend to cluster together in the loadings plot (where
one column of P is plotted against another). Thus, the scores
and loadings plot have useful diagnostic value when
analyzing data sets with no a priori information making PCA
a versatile exploratory data analysis and visualization tool. In
practice, however, one recognizes that the measurement
matrix X has noise and redundancies and therefore X is
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signal portion of X and Ek represents the noise or
redundancies in the system (i.e., residual space). Symbol k
represents the number of latent variables retained to avoid
both underfitting and overfitting of the data. The value of k is
determined via methods such as eigenvalue 1 criterion,
percentage variance captured or by empirical methods such as
multi-fold cross validation (Wold, S. and Sjöström, M.,
1998). In this work, the optimal number of principal
components k was obtained via cross validation.

Once the PCA model is constructed, statistical measures such
as Hotelling’s T2 and squared prediction error (SPE) can be
constructed for the signal and residual spaces respectively.
These measures serve to identify outliers and abnormalities in
the process data in the spirit of statistical process control (i.e.,
like control charts).

3.2 Principal Component Regression (PCR)

Oftentimes, the need is to relate information related to two
sets of variables i.e., construction of a mapping relationship
(e.g. a linear regression model) between the process variables
X and the quality variables Y. If the X space is comprised of
correlated variables, the construction of a multiple linear
regression model using the least squares formulation becomes
difficult owing to ill-conditioning of the X space which makes



its inversion numerically unstable. One potential way to
construct the regression model in such situations is to get a
PCA model of the X space (as described above) and using the
latent variables (T space) as regressors and obtaining a
multiple linear regression model between T and Y. Thus,
when a new sample is obtained in the X-space, it is projected
into the lower dimensional orthogonal T-space and then the
linear regression model is used to get the estimated Y values.
Thus, PCR is able to circumvent the ill-conditioning problem
associated with the collinear X space and also permit its
lower dimensional representation and provide a regression
model with lesser number of parameters. (Keithley et al.,
2009)

3.3 Partial Least Squares (PLS)

PLS represents one of the most commonly used methods for
multivariate calibration. PLS determines the mapping
between the input space X (say FTIR measurements) and the
output space Y (say properties such as density and kinematic
viscosity) by identifying maximally related latent variables
(using covariance measure) of the X and Y spaces (called the
outer model) and relating them via a univariate regression
model component by component (called the inner model).
Conceptually, PLS constructs a multivariate regression model
relating the X and Y spaces (each of which may have highly
correlated variables) by decomposing it into several univariate
regression problems and finally putting them together to get
the multivariate regression model. In effect, the suitably
scaled X and Y matrices are decomposed as:
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where T and U are the scores matrices of the X and Y spaces
respectively and represent the latent variables of the X and Y
spaces (i.e. optimal linear combinations of the original
variables). Matrices P and Q represent the loadings matrices
of the X and Y spaces respectively and k represents the
optimal number of dimensions in the PLS model that is
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represent the signal component of the X and Y spaces while
Ek and Fk represent the residual (noise and redundancies)
component of the two spaces respectively.

The inner model relating each dimension (column) of the T
and U spaces are obtained via simple linear regression as:
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for i = 1, 2, …, k.

Equations (1) and (2) represent the PLS outer model and
equation (3) represents the PLS inner model (Mohammadi et
al., 2019).

3.4 Decision Trees (DT)

Classification (of class-labelled data) using DT has been
successfully deployed for a wide range of applications across
domains such as engineering, medicine, and business. The
DT is composed of a root node which consist of the entire
data, a set of internal nodes (splits), and a set of terminal
nodes (leaves). DT is a classification procedure that
recursively partitions a data set into smaller subdivisions
based on optimizing a measure such as entropy or purity
defined at each branch (or node) in the tree. The splitting is
continued until the terminal nodes are of sufficient purity or
the complexity of the tree (its depth and width) is acceptable.
Typically, a binary split is applied to a parent node by
choosing the best “split variable” and a value that is chosen
for the best “split variable” so that the total purity of the two
child nodes is better than the purity of the parent node. A
class label is assigned to each terminal node. When a new
sample is obtained, the rules can be checked starting from the
root node all the way into one of the terminal nodes and the
sample is classified as belonging to the class label assigned to
the terminal node (Friedl et al., 1997).

Despite the popularity and effectiveness of the DT method, its
use in the classification of crude oil samples based on
spectroscopy data has not been widely discussed. In this
paper, we employ the decision tree classification method for
classifying the Canadian crude oil samples and using the
result to determine the viscosity based on a multivariate
regression model.

4. RESULTS AND DISCUSSION

The Canadian oil company provided us with 103 crude oil
samples, which was reduced to 82 during the preprocessing
stage due to some outlier detection, duplicity and missing
crucial data. The remaining 82 crude oil samples investigated
in this study have density (at 25 ºC) ranging between 0.8 to
0.92 g/cm3, which means that the API gravity ranges between
21.84 to 44.84 ºAPI and includes both heavy/medium and
light oils. Figure 1 shows the FTIR spectra obtained for these
samples, from where it can be observed that the FTIR spectra
have considerable noise in the region between 400 and 860
cm-1 as compared to the other wavelength regions. This
prompted us to omit the spectral information between 400
and 860 cm-1 in some aspects of this work. However, after
more inspection we found that information in the
aforementioned interval was important in predicting viscosity
values.

4.1 Models for Density

Several chemometric methods such as PCR, PLS, PLS-GA,
iPLS and PCA were used to predict the density. Considering
the accepted prediction error to be in the range of 0.15, all
these methods were providing reliable results.
Principal Components Regression (PCR) was used to relate
the FTIR spectra to the density values. The optimum number
of principal components was found by iterating our algorithm



and changing the number of principal components to be
included in our regression. Figure 2 shows it was found that
the best results were obtained using 10 principal components
for the X (FTIR spectra) space. This optimal model returned
a root mean squared error cross validation (RMSECV) value
of 4.5 x 10-5 and R-squared value (between the actual and
model predicted densities) of 0.9795. The results of the
predictions of density were deemed to be very accurate and
valuable for industry implementation according to our
industry partner. Hence, we are not discussing density
prediction results in more detail here. Besides being useful,
the density predictions from the PCR model were useful as an
additional input in the viscosity prediction model as will be
explained below.

4.2 Models for Viscosity

Kinematic viscosity of the 82 studied samples were in the
range of 2.84 to 178 mm2/s (cSt) at 25ºC and it was aimed to
predict them with error values below 0.15. First of all, we
tried to find out a global model between the FTIR spectra and
viscosity values for all the 82 samples using different
chemometric methods. Shown in table 1, even the best results
of these models were not acceptable. Figure 3 shows that
there is a strong linear relationship between the density and
viscosity values, hence in the second approach we tried to use
the predicted values of density as the sole input variable to
estimate viscosity of samples. Despite this strong linear
relationship between density and viscosity values of
corresponding samples, using density as a single input did not
work out well. Although it was providing us with a good
match between current data with acceptable RMSECV
values, the problem of overfitting turned out to make huge
errors in the prediction of new samples’ viscosities due to R2

values in range of 0.2. As discussed in section 4.1, the
predictions for density were quite accurate which
emboldened us to consider the predicted values of density as
an input value in combination with the spectral data to predict
the viscosity of the crude oil samples as the third approach.
And the final approach, which was not a global one, consisted
of first identifying whether the sample belongs to heavy or
light oils based on the FTIR records, then predicting the
viscosity. All above approaches and some results are briefly
discussed here and indicated in table 1. All the results of
discussed models were evaluated by cross validation.

As can be seen in Table 1, PCR models were constructed
using the full spectra data as well as by augmenting the full
spectra data with the predicted density values. The results and
the stability of the models were verified by cross validating
them over over 100000 different subsets including 50 samples
of the dataset using random subsampling to create the
different test-train data splits. The PCR model coupled with
density as an input gave the best possible result on full
spectra models.

Two approaches that incorporated density predictions as an
additional input were tried. (i) The first one was to construct
the PCR model on a combined dataset where both the spectra

and the predicted density formed the X space and (ii) where
PCA was first applied on the spectral data and the regression
was done using an input space that contained the spectra
related latent variables and the predicted density as an
additional input. The latter approach gave considerably better
results. The RMSECV turned out to be 201.1 and 160.5
respectively for the two approaches. The R2 metric for the
first and second approaches were found to be 0.938 and
0.9507 respectively. Overall, with the incorporation of
predicted density as an input variable, the RMSECV in
viscosity prediction dropped by 41.5% (from 274.41 to
160.54). This shows the utility of making predicted density as
an input variable in the viscosity prediction model. PLS
models were constructed using the full spectra and full
spectra augmented with predicted density values (rows 3 and
4 in Table 1). While these PLS models (with k = 20 obtained
by cross-validation) substantially reduced the MSE compared
to those obtained with PCR, there was only a slight
improvement in MSE values when predicted density was
added as an input variable. (from 52.9 to 49.2).

In many applications (including those involving spectral
data), it is known that variable selection in conjunction with
regression gives better results. Many methods such as
stepwise regression, genetic algorithm (GA) and interval PLS
(iPLS) may be employed for variable selection. First, PLS
was combined with GA (PLS-GA) and was implemented
using the PLS-Genetic Algorithm Toolbox by Leardi (2000).
In Leardi (2000), it was suggested that the number of original
input variables be limited to less than 200 to reduce the risk
of overfitting. Hence, we grouped every 36 neighbor spectra
data (absorbance values) and used their average as a variable,
in this way the total number of 6842 variables were reduced
to 190. This modeling strategy led to a model that had 14
latent variables and RMSECV value of 21.45 that was
substantially lower than that obtained with full spectra and
density prediction as input variables. If the predicted density
was included as the 191st variable, a PLS model with 7 latent
variables emerged as the best model with RMSECV of 11.25.
Yet another method of variable selection, interval-PLS (iPLS)
was tried (Norgaard et al., 2000). The iToolbox available in
MATLAB (Leardi and Norgaard, 2004) was used to predict
the viscosity using the full FTIR spectra. The spectra were
split into 30 wavelength intervals and PLS models were
determined for each interval. With this procedure the optimal
number of PLS components was found to be 4 with a
RMSECV value of 26.14. Thus, variable selection procedures
in conjunction with PLS helps in better prediction of
viscosity values as does the inclusion of predicted density
values.

In Figure 3, the measured density and viscosity values for the
82 samples are plotted. It is apparent that there are two major
clusters of crude oil samples. Light oils which have lower
values of density (API higher than 31.1 ºAPI) and viscosity,
and heavy oils, having higher values of viscosity and density
(API lower than 31.1 ºAPI). These two classes are labeled as
class 1 and class 2 in this study. A decision tree model was
built for the dataset to classify the high and low viscosity



classes before passing them through the appropriate
regression model to predict the viscosity. When the decision
tree was constructed for the data set, it was seen that the
spectral measurements at two specific wavelengths
(corresponding to variable numbers 506 and 2610) are
enough to classify the samples as belonging to either class
with 100% accuracy (Figure 4).These selected variables and
their neighbors were in agreement with the often selected
variables by other methods such as PLS-GA and iPLS.
Separate PLS models were then constructed for each of the
two classes using only spectral data. As seen from the last
two rows of Table 1, the two models with 10 and 19 PLS
dimensions respectively resulted in considerably improved
MSE values for the two classes (0.33 and 0.11 respectively)
even without inclusion of the density estimates. Figure 5
shows the scatter plots for actual and model-predicted
viscosities for samples belonging to the two classes. The
agreement for heavy oils is very good while it is quite
acceptable for light oil samples.

Figure 2. PCR results for prediction of density of 82 crude oil
samples based on the FTIR data

Figure 3. Scatter plot of kinematic viscosity vs density of 82
crude oil samples and their linear relationship

Figure 4. Decision tree result  for classification of 82 crude oil
samples

In summary, partitioning the data set into different classes and
building different PLS models for the classes had the greatest
impact on prediction accuracy. Variable selection using GA or
a method such as interval PLS (iPLS) was also found to result
in improved prediction accuracy.

Table 1. Summary of PCR and PLS Models for Viscosity
Prediction for 82 Crude Oil Samples

Model Input Variables Number of
Components

RMSECV

PCR Full spectra 10 274.41

PCR Full spectra &
predicted
Density

11 160.54

PLS Full spectra 20 52.9

PLS Full spectra &
predicted
Density

20 49.2

PLS-GA Full spectra
pre-processed to

190 variables

14 21.45

PLS-GA Full spectra
pre-processed to
190 variables &

predicted
Density

7 11.25

iPLS Full spectra 4 26.14

PLS Light Oils
(Class 1)

10 0.33

PLS Heavy Oils
(Class 2)

19 0.11

6. CONCLUSIONS

Standard chemometric techniques such as Principal
Components Regression (PCR) and Partial Least Squares



(PLS) augmented by prior classification using Decision Trees
(DT) and variable selection procedures were found to predict
to sufficient accuracy (as required for industrial deployment)
the density and viscosity values from FTIR data. The best
results were obtained by firstly classifying the samples into a
specific class and then using the PLS regression model
developed for that class. Presently, we are developing models
to estimate the levels of industrially relevant contaminants in
crude oil from FTIR data.

Figure 5. Predicted kinematic viscosities of crude oil samples vs.
real kinematic viscosities a) Light crude oil samples (class 1) b)
Heavy crude oil samples (class 2)
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