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Abstract: Mathematical models and optimization problems can be a valuable tool to optimize the
operational design of bioreactors. In the present contribution a bioreactor model, implementing in-situ
product removal (ISPR) is presented and used to demonstrate potential real world operational strategies
that can be applied to the system. Different optimization objectives are formulated in order to find
strategies (i.e. operational designs) that maximize the yield and/or the productivity. The decision variables
reflect when feeding pulses should be introduced, how much feeding should be added and when the
extraction cycles should take place. The first optimization problem focuses on maximizing the yield of
the system by means of a single objective optimization. This solution is the most robust and easiest to
implement with no requirements for online measurements or control systems. The optimization problem
focusing on maximizing the productivity requires solving a stochastic optimization problem to ensure the
robustness of the solution, as trying to maximize the productivity was seen to be very sensitive to model
uncertainty. Despite the robustness of the proposed strategy online measurements, monitoring propionate,
is advised. Because both yield and productivity are important performance indexes, a multi-objective
optimization can be used to consider an acceptable performance of both objectives at the same time.
This strategy results in a set of solutions representing the potential compromises among the objectives.
However, these solutions certainly require online measurements and control systems to implement them
correctly.

Keywords: kinetic modeling, in-situ product removal, biotechnology, optimization problems,
operational design

1. INTRODUCTION

Currently, the economic feasibility of many fermentation pro-
cesses is limited due to low titers in the broth leading to high
downstream costs (Woodley et al., 2008). On top of this, many
fermentation processes have a limited yield and productivity. A
key problem associated with these limitations is the inhibition
of the microbial community from either the substrate or product
formation (Santos et al., 2021).

To alleviate the problem of product inhibition, in-situ product
removal (ISPR) can be applied during the fermentation pro-
cess. The goal of this technique is to separate the products,
during the fermentation, to lower the concentration of inhibit-
ing compounds thereby increasing the potential yield, produc-
tivity and titer (López-Garzón and Straathof, 2014). In many
cases applying ISPR is not straightforward due to challenges
like 1) ensuring long term stability due to longer operational
times (compared to batch reactors) resulting in higher risks for
contamination, 2) large energy consumption of the extraction
procedures and 3) attaining a maximum product recovery as
many ISPR techniques do not completely extract the targeted
product. As a result of these problems, many ISPR processes do
not reach the pilot phase (Woodley et al., 2008; Van Hecke et al.,
2014).

Attaining a maximum product recovery, for a batch process
applying ISPR discontinuously is not obvious and requires a
careful design of the operation. For example, how long should
an extraction cycle last, how many extraction cycles should there
be, when is the best moment to activate the extraction process
to avoid inhibition phenomena, when is the best moment to feed
the reactor etc... In other words, the schedule of extraction cycles
and external inputs such as spikes, needs to be defined in detail.

To answer these questions a closer look will be taken at a sys-
tem producing propionate from glucose and employing ISPR
discontinuously to enhance the propionate production. The de-
scribed system can be found in the experimental works of Selder
et al. (2020). The aim of this work is to demonstrate how the
operational design of a reactor, implementing ISPR can be rep-
resented by mathematical programming and solved, depending
on the process instrumentation and the user’s skills and objec-
tives. Aided by a dynamic model, three optimization techniques
will be demonstrated: single objective, stochastic and multi-
objective optimization that can lead to the proposal of different
operational strategies depending on the user’s objectives.



2. MODEL DESCRIPTION

2.1 Experimental system

A mathematical model was made to reproduce the experiments
reported by Selder et al. (2020). In this system, the main goal
is to produce propionate in a co-culture fermentation while
implementing ISPR to reduce potential inhibition caused by
organic acids. A stirred-tank bioreactor was fed with a glucose-
containing solution with mineral nutrients and yeast extract. The
two bacteria used in this co-culture were Bacillus coagulans,
which converts glucose into lactate (as intermediate) and Veil-
lonella criceti, which ferments lactate into propionate and ac-
etate in a 2:1 molar ratio (Fig. 1). Additionally, yeast extract was
found to be consumed by both bacteria transforming it into their
respective products. The bottleneck of this process lies with V.
criceti which is inhibited by lactate and propionate (Sabra et al.,
2013). It is for this reason that glucose is added in spikes to
reduce the accumulation of lactate that could otherwise inhibit
the process. Here, ISPR was implemented by means of reverse
electro-enhanced dialysis (REED), which selectively removes
monovalent organic acids (i.e., lactate, acetate and propionate)
through a membrane with an electrical field as driving force.
REED was applied discontinuously during the fermentation in
cycles of 2 hours because longer extraction cycles could place
V. criceti in a potentially substrate-deficient state (if the lactate
appears in low concentrations in the reactor). As a result, the
extraction intervals are set with a fixed duration of 2 hours.

Fig. 1. Schematic representation of the co-culture fermentation
in the work of Selder et al. (2020). The red dashes represent
the reported inhibition on V. criceti.

2.2 Mathematical model

The mathematical model consists of eight ordinary differential
equation describing the mass balances of the different compo-
nents i.e., glucose, yeast, lactate, propionate, acetate, biomass
of V. criceti, biomass of B. coagulans and inert dead biomass
in the reactor (Eq.1 -2). Considering the density of the feed and
reactor holdup as constant, the flow rate F (gCOD/h) 1 and the
mass balances of the different components can be defined by the
following equation:

𝑑𝐶(𝑡)
𝑑𝑡

= 𝐷(𝑡)(𝐶𝑠𝑝𝑖𝑘𝑒 − 𝐶(𝑡)) + 𝑅 − 𝑇 (1)

Where C(t) is the concentration of the different compounds in
the reactor, Cspike is the concentration of the spikes in gCOD/L,
R(t) is the reaction term in gCOD/L/h and T(t) is the transport
flow across the REED extraction membrane in gCOD/L/h. D(t)
represents the dilution rate and is zero except when the spike is

1 The mass of compounds is expressed in terms of the chemical oxygen demand
or gCOD to be able to perform accurate electron balances.

added to the fermentation reactor. It is calculated as function of
the reactor volume (V) and feed flowrate as:

𝐷(𝑡) =
𝐹 (𝑡)
𝑉 (𝑡)

𝑤𝑖𝑡ℎ 𝑉 (𝑡) = 𝑉 (0) + ∫

𝑡

0
𝐹 (𝑡′) d𝑡′ (2)

The reaction rate R is calculated by considering the following 5
processes: 1) glucose uptake by B. coagulans 2) uptake of yeast
extract by B. coagulans 3) uptake of yeast extract by V. criceti 4)
lactate uptake by V. criceti and 5) the decay of V. criceti (Table
1). These processes were formulated with Monod’s kinetics,
which are very suitable to describe microbial growth, physiol-
ogy, and biochemistry of microorganisms (González-Figueredo
et al., 2018). The decay of B. coagulans was not considered
because there was not enough data to accurately determine the
process. In Table 1 Sglu, Slac, Sace Sye Xba and Xve are the
concentrations, in gCOD/L, of glucose, lactate, acetate, yeast
extract, biomass of B. coagulans and biomass of V. criceti re-
spectively. The inhibition phenomena experienced by V. criceti
is expressed by Inh (Eq. 3).

𝐼𝑛ℎ =
(

1
1 + (𝑆𝑙𝑎𝑐∕𝐾𝐼𝑙𝑎𝑐)

)(

1
1 + (𝑆𝑝𝑟𝑜∕𝐾𝐼𝑝𝑟𝑜)

)

(3)

Where Spro is the concentration of propionate in gCOD/L and
KIlac/KIpro are the inhibition constants of lactate and propionate
in gCOD/L. Parameters q1 and q2 are reaction yields equal
to 0.78 gCODprop/gCODlac and 0.22 gCODace/gCODlac re-
spectively. By multiplying the kinetic equations, as an array of
equations, with the stoichiometric matrix the reaction term R in
Eq. 1 can be found for each compound. The values of the pa-
rameters in these equations can be found in Table 2 and were ei-
ther assumed or calibrated from experimental data. Robust cali-
brated parameters were achieved by embedding the Levenberg-
Marquardt and trust-region-reflective methods (using the built-
in solver lsqnonlin from MATLAB (version r2021a)) in a boot-
strap method, as described in the works of Regueira et al. (2021).
The mass balances of each component were implemented in
MATLAB and solved with built-in numerical solvers (ode45).

3. OPTIMIZATION OBJECTIVES

Depending on the objective of the operator, a certain perfor-
mance index of a bioreactor (such as final titer) can be pri-
oritized over others. Two typically important indexes are the
product yield and productivity. The yield is an especially impor-
tant metric when the substrate needs to be utilized in the most
efficient way possible because either the obtained product or the
used substrate is a very valuable resource. On the other hand,
productivity is favored in cases where the obtained product is
sold cheaply and large bulks of product needs to be sold to
ensure a healthy profit margin with respect to the capital invest-
ments. In reactions with product inhibition, high product yield
and productivity are often conflicting objectives. This is because
a high yield, in these cases, require long reaction (or residence)
times whereas quick reactor turnover (i.e., a high productivity)
is associated with incomplete substrate consumption. These two
objectives are defined as functions of the decision variables
as fyield(z) and fprod(z), expressed in gCODprop/gCODglu and
gCODprop/L/h respectively and are calculated by Eq. 4-5.

𝑓𝑦𝑖𝑒𝑙𝑑(𝑧) =
𝐶𝑟𝑒𝑠
𝑝𝑟𝑜 ⋅ 𝑉𝑟𝑒𝑠

𝐶𝑔𝑙𝑢,0 ⋅ 𝑉𝑟𝑒𝑎𝑐 + 𝑉𝑠𝑝𝑖𝑘𝑒𝑠 ⋅ 𝐶
𝑠𝑝𝑖𝑘𝑒
𝑔𝑙𝑢

(4)



Table 1. Stoichiometric matrix and the vector of kinetic expressions. 1) Glucose uptake 2) Yeast extract
consumption B. coagulans 3) Yeast extract consumption V. criceti 4) Lactate uptake 5) Decay of V. criceti

Process Compounds
Glucose Lactate Yeast Propionate Acetate Biomass B. Biomass V. Inert mass Kinetic equations

1) -1 (1-Yglu) 0 0 0 Yglu 0 0 𝜇𝑔𝑙𝑢 = 𝑘𝑚𝑏𝑎

(

𝑆𝑔𝑙𝑢
𝐾𝑠𝑔𝑙𝑢+𝑆𝑔𝑙𝑢

)

𝑋𝑏𝑎

2) 0 (1-Yyeb) -1 0 0 Yyeb 0 0 𝜇𝑦𝑒𝐵 = 𝑘𝑚𝑏𝑎

(

𝑆𝑌 𝑒
𝐾𝑆𝑌 𝑒𝑏+𝑆𝑌 𝑒

)

𝑋𝑏𝑎

3) 0 0 -1 (1-Yyev) 0 0 Yyev 0 𝜇𝑦𝑒𝑉 = 𝑘𝑚𝑙𝑎𝑐

(

𝑆𝑌 𝑒
𝐾𝑆𝑌 𝑒𝑣+𝑆𝑌 𝑒

)

𝐼𝑛ℎ ⋅𝑋𝑣𝑒

4) 0 -1 0 (1-Ylac)*q1 (1-Ylac)*q2 0 Ylac 0 𝜇𝑙𝑎𝑐 = 𝑘𝑚𝑙𝑎𝑐

(

𝑆𝑙𝑎𝑐
𝐾𝑆𝑙𝑎𝑐+𝑆𝑙𝑎𝑐

)

⋅ 𝐼ℎ𝑛 ⋅𝑋𝑣𝑒

5) 0 0 0 0 0 0 -1 1 𝜇𝑑𝑒𝑐 = 𝑘𝑑𝑒𝑐𝑋𝑙𝑎𝑐 ∗ 𝑋𝑣𝑒

Table 2. Parameter abbreviations, values, confi-
dence intervals, units and source of the parameters.

Abbreviation Value CI Units Source
kmba 3.41 [3.22, 3.84] h-1 Calibrated
kmlac 10.3 [9.11, 11.73] h-1 Calibrated
KSglu 0.10 / gCOD L-1 Assumed
KSlac 0.27 / gCOD L-1 Assumed
KSyeb 0.10 / gCOD L-1 Assumed
KSyev 0.50 / gCOD L-1 Assumed
kdecXlac 0.04 [0.04, 0.09] h-1 Calibrated
Yglu 0.07 [0.07, 0.08] gCODX gCOD-1 Calibrated
Ylac 0.03 [0.02, 0.04] gCODX gCOD-1 Calibrated
Yyeb 0.07 / gCODX gCOD-1 Assumed
Yyev 0.02 / gCODX gCOD-1 Assumed
KIlac 10.0 [8.42, 12.01] gCOD L-1 Calibrated
KIpro 7.34 [5.33, 10.67] gCOD L-1 Calibrated
q1 0.78 / gCODpro gCODlac-1 Calculated
q2 0.22 / gCODace gCODlac-1 Calculated

𝑓𝑝𝑟𝑜𝑑(𝑧) =
𝐶𝑟𝑒𝑠
𝑝𝑟𝑜 ⋅ 𝑉𝑟𝑒𝑠
𝑡𝑒𝑛𝑑

(5)

In these objective functions 𝐶𝑟𝑒𝑠
𝑝𝑟𝑜 is the concentration of pro-

pionate in the reservoir in gCOD/L, Vres is the volume of the
reservoir in L, Vreac the volume of the reactor in L, Vspike is
the total added volume of the spikes in L, 𝐶𝑠𝑝𝑖𝑘𝑒

𝑔𝑙𝑢 the concentra-
tion of the glucose spikes in gCOD/L, Cglu,0 the initial glucose
concentration in gCOD/L and tend the operation time in h. Both
objective functions are dependent on the decision variables z as
further elaborated in the following section.

4. OPTIMIZATION METHODS

4.1 Decision variables

To find optimal operational strategies regarding the scheduling
of the extraction cycles and spikes that maximize the objective
function, the following 9 decision variables where considered:
the concentration of the glucose spikes (z1), the time at which
V. criceti is inoculated (z2), the time at which the first extraction
cycle is activated (z3) and the 6 time intervals between the spikes
and the start of an extraction cycle (z4 to z9). For each spike
the same concentration (as determined by z1) and volume is
introduced to the system (24 ml). Fig. 2 illustrates the decision
variables in relation to a typical operation of the system. In
this system, the spikes are always introduced between extraction
cycles.

4.2 Single objective optimization

In the early stages of development, where detailed cost assess-
ment is often not available, single objective optimizations often

Fig. 2. Depiction of decision variables (zi) in a typical operation:
inoculation of V. criceti (★), extraction cycles (■) and
glucose spikes (⬥).

refer to maximizing the yield or productivity. The problem is
formulate as seen in Eq. 6-7:

max
𝑧∈Ω

𝑓 (𝑧) (6)

Ω = {𝑧 ∶ 𝑔(𝑧) ≤ 0, 𝑎 ≤ 𝑧 ≤ 𝑏} (7)

Where f(z) is the objective function andΩ represents the feasible
space of the decision variables z. In this case Ω is defined by
the (non-)linear inequality constraints g(z) and the lower and
upper variables bounds a and b, respectively. The inequality
constraints are put in place to ensure a minimum yield or pro-
ductivity is achieved. The bounds of the decision variables (a
and b) make sure that the spikes and extraction cycles always
follow each other up sequentially, that spikes are not added
during the extraction cycles and that the extraction cycles of
last for 2 hours. To solve these single objective problems the
built-in function of MATLAB patternsearch was used which
uses derivative-free methods, called generalized pattern search
(Conn et al., 2009). This algorithm was chosen due to its effi-
ciency at finding global optima where many local minima exist
and its relatively quick computational speed compared to other
derivative-free methods.

4.3 Stochastic optimization

The operational strategy attained by single objective optimiza-
tion might, in some cases, be very sensitive to uncertainty in
the model parameters which could cause issues to correctly im-
plement the solution. To design a process which is more robust
against uncertainty, a stochastic optimization problem can be
solved. In this case the Here and now algorithm form Diwekar
and Rubin (1991) was used to solve the optimization problem.

In this algorithm, the objective function and constraints are
expressed in terms of a probability distribution, which was ob-
tained by Monte Carlo simulations. During these simulations



the parameters of the model were varied according to their
uncertainty (parameter uncertainty was estimated during model
calibration from experimental data, not shown here). Differ-
ent percentiles or moments of the distribution can be taken
as the objective to maximize. Conservative solutions would
try to maximize low percentiles (“maximize worst cases”) or
minimize distribution variance (“minimize variability”). In this
work, the lower 10th percentile was taken as the objective to
maximize the productivity ensuring a more conservative and ro-
bust strategy. The optimization problem is defined as followed:

max
𝑧∈Ω

𝐹 (𝑧, 𝑢) = 𝑃1(𝑓 (𝑧)) (8)

Ω = {𝑧 ∶ 𝑃2(𝑔(𝑧), 𝑢) ≥ 0, 𝑎 ≤ 𝑧 ≤ 𝑏} (9)

Where u is the vector of uncertain parameters which were char-
acterized during the model calibration, while P1 and P2 repre-
sent the probabilistic representation of the objective and con-
straint function. I.e., the tenth percentile from the distribution
of Monte Carlo simulations.

4.4 Multi-objective optimization

Strategies can also be found using multi-objective optimization
and is especially interesting to apply if the various objectives
are conflicting. The solution to multi-objective optimization is
not a single solution but rather a whole set of solutions called the
nondominated set (also known as the Pareto set) representing the
potential compromise solutions among the objectives (Diwekar,
2020). For this specific case the multi-objective optimization
can be considered as a collection of single objective optimiza-
tions but where the second objective is an inequality constraint.
The advantage of a multi-objective optimization is that a com-
plete and unbiased (as the constraints do not need to be chosen)
search of possible solutions is carried out. This optimization
problem was solved in MATLAB using the built-in function
paretosearch. This algorithm uses the aforementioned general-
ized pattern search but instead of updating a single point per
iteration, it updates an iterate list of nondominated points (i.e.
the points that have the best rank and are closest to the Pareto
front) (Custódio et al., 2011). The multi-objective optimization
can be defined as followed:

max
𝑧∈Ω

𝐹 (𝑧) = (𝑓𝑦𝑖𝑒𝑙𝑑(𝑧), 𝑓𝑝𝑟𝑜𝑑(𝑧)) (10)

Ω = {𝑧 ∶ 𝑎 ≤ 𝑧 ≤ 𝑏} (11)

5. RESULTS

Different optimization problems are used to maximize different
performance indexes of the reactor. In the following section why
a certain optimization problem was chosen, the results of the
optimization and how best to implement them will be further
discussed.

5.1 Optimizing the yield

If only the yield is chosen to be optimized then the best opti-
mization problem to formulate would be a single objective op-
timization. This is because the resulting strategy from this opti-
mization (Fig. 3) can be implemented in a conservative way. The
obtained simulation results in a high yield (0.69 gCOD/gCOD)
which is close to the theoretical maximum of the system (0.72
gCOD/gCOD). In this optimization a constraint was placed so a

minimum productivity of 0.60 gCOD/L/h is achieved. The strat-
egy relies on the fact that lactate is almost completely depleted
during each extraction cycle and converted to propionate. This
strategy can thus be made very robust by simply taking more
time before activating the extraction cycles to ensure all the
lactate is depleted. This strategy is also the easiest to implement
as it does not require any sophisticated online monitoring to
carry out.

Fig. 3. Simulation of the concentration profiles in the reactor
(a-c) and the reservoir (d), from the single objective opti-
mization maximizing the yield. ★ is the inoculation of V.
criceti, ↓ indicates a spike and ■ indicates an extraction
cycles.

5.2 Optimizing the productivity

Excellent yields can be found using the solution found in the
previous section but for a relatively cheap commodity chemical
like propionate, the productivity is likely to be a more important
performance index to consider. A single optimization problem
could be used to find a strategy to maximize the productivity,
however the robustness of the solution can be put in to question.
The simulation resulting from a single objective optimization
schedules the extraction cycles and spikes very close to each
other and starts the first extraction cycle very early resulting
in a very high productivity of 1.13 gCOD/L/h (Fig. 4). In this
optimization a constraint was placed so a minimum yield of
0.60 gCOD/gCOD is achieved. Because of the uncertainty in
the model parameters and the inherent variability of biological
systems (e.g. variations in initial bacterial concentration, slight
changes in consumption rates, etc.), propionate might actually
not be present in the reactor when the first extraction cycle starts.
Only the intermediate (i.e., lactate) would then be extracted in
this case, resulting in a significant loss of yield and productivity.

To obtain a strategy that anticipates these types of uncertainties
a stochastic optimization problem was solved resulting in a sim-
ulation with a productivity of 0.97 gCOD/L/h (Fig. 5). In this
optimization a constraint was placed so that, from the resulting
distribution of yields from the Monte Carlo simulations, a min-
imum average yield of 0.63 gCOD/gCOD was achieved. Com-
pared to the deterministic optimization (Fig. 4), the stochastic
solution takes a bit more time to activate the first extraction
cycle and schedules the following cycles slightly more apart,
thus giving the reactor more time to form propionate.



Fig. 4. Simulation of the concentration profiles in the reactor (a-
c) and the reservoir (d), from the single objective optimiza-
tion maximizing the productivity. ★ is the inoculation of
V. criceti, ↓ indicates a spike and ■ indicates an extraction
cycle.

Fig. 5. Simulation of the concentration profiles in the reactor (a-
c) and the reservoir (d), from the stochastic optimization
maximizing the productivity. ★ is the inoculation of V.
criceti, ↓ indicates a spike and ■ indicates an extraction
cycle.

Although uncertainty is taken into account, online monitoring
is still advised so corrective actions can be taken if necessary
(e.g. delaying the extraction cycle if no propionate is formed).

5.3 Optimizing the productivity and yield simultaneously

As mentioned earlier the most desired solution is the one that
maximizes the productivity and yield simultaneously. How-
ever, for most biological reactions maximizing these two per-
formance indexes is conflicting: either the reactor is operated
with a quick turnover time to prioritize the productivity, which
leaves part of the substrate unconsumed, or the reactor operation
time is long to maximize substrate consumption, sacrificing
the productivity. In cases like these applying a multi-objective

optimization is useful as it allows us to see the potential com-
promises among the objectives (i.e., yield and productivity). In
Fig 6 these solutions can be seen and an example of a trade-off
solution from the Pareto front is shown in Fig. 7 resulting in a
yield of 0.67 gCOD/gCOD and a productivity of 0.85 gCOD/h.
If a trade-off solution is desired a careful economical evaluation
of the reactor should be performed to choose the correct com-
promise solution.

Fig. 6. The estimated nondominated set of solution form the
multi-objective optimization represented on the Pareto
front

These solutions are not optimized to consider the uncertainty of
the model or anticipate experimental variations, which means
that there is a possibility that the reactor does not behave as the
model solution. To effectively face the mismatch of the model
and the inherent variability of co-cultures during the batch op-
eration, online monitoring and control needs to be applied. For
example in Fig. 7, for the first extraction cycle, propionate must
be present in the reactor while for the following 3 extractions
lactate is almost completely depleted. If no monitoring or con-
trol mechanisms are put in place it is possible that no extraction
of propionate happens for the first extraction cycle or that lactate
is extracted in the following extraction cycles leading to a severe
loss in productivity and yield.

There are a few online sensors capable of selectively measur-
ing propionate, lactate and acetate. For example, Near-infrared
spectroscopy (NIR) has been reported as a suitable method
to follow carboxylic acids in aqueous solutions online (Jacobi
et al., 2009). Additionally, Cabaneros Lopez et al. (2021) have
demonstrated, in a real bench-scale reactor, how NIR probes
combined with state estimation (in this case the Extended
Kalman Filter) can effectively monitor such bioreactors. Future
works in this area should consider online monitoring possibili-
ties to improve the operational strategy.

6. CONCLUSION

In this contribution, three optimization techniques are success-
fully applied to find 3 different operational strategies to run
the described co-culture fermentation implementing ISPR. This
contribution demonstrates that the optimization problem needs
to be carefully chosen to fit the objective of the user but also
that the solution needs to be critically examined according to the
uncertainty of the solution and its practical implementation. E.g.



Fig. 7. Simulation of the concentration profiles in the reactor
(a-c) and the reservoir (d), from the multi-objective opti-
mization. ★ is the inoculation of V. criceti, ↓ indicates a
spike and ■ indicates an extraction cycle.

how real time monitoring is to be implemented. Furthermore,
future works should focus on developing monitoring strategies
to effectively apply control mechanisms in those cases where
the optimized solution is uncertain (i.e., for the solutions of the
multi-objective optimization).
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