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Abstract:
In this paper, a two-step sparse learning approach is proposed for variable selection and model
parameter estimation with optimally tuned hyperparameters in each step. In Step one, a sparse
learning algorithm is applied on all data to produce a sequence of candidate subsets of selected
variables by varying the hyperparameter value. In Step two, for each subset of the selected
variables from Step one, Lasso, ridge regression, elastic-net, or adaptive Lasso is employed to
find the optimal hyperparameters with the best cross-validation error. Among all subsets, the one
with the overall minimum cross-validation error is selected as globally optimal. The effectiveness
of the proposed approach is demonstrated using an industrial NOx emission dataset and the
Dow challenge dataset to predict product impurity.
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1. INTRODUCTION

Inferential sensors have been studied and practiced in
process industries for over three decades to predict hard-
to-measure quality variables from easy-to-measure process
variables (Tham et al. (1991); Qin and McAvoy (1992);
Qin et al. (1997); Galicia et al. (2011); Khatibisepehr
et al. (2013); Shang et al. (2014)). Not only are infer-
ential sensors useful for product quality prediction and
monitoring, they are also integrated into model predictive
control systems to provide feedback control (Zhao (2021);
Kano et al. (1998)). Zhao (2021) reported that Aspen
Technology has deployed over 16,000 inferential sensors
in the manufacturing plants of their clients world-wide.

One of the critical tasks in developing data-driven infer-
ential sensors is to select relevant variables to build the
best predictive model. In practice, variable selection for
inferential sensors has largely relied on experience or trial-
and-errors. Recently, sparse statistical learning methods
such as the least absolute shrinkage and selection opera-
tor (Lasso) family of algorithms have provided promising
solutions to select relevant variables (Hastie et al. (2015)).
Lasso introduces an l1 norm penalty on the magnitude
of the model coefficients with a tuning hyperparameter
to suppress the coefficients of irrelevant variables. The
Lasso uses cross-validation (CV) to select an optimal hy-
perparameter for the best generalization. After the optimal
hyperparameter is determined, a final model is re-trained
on all training data. The sparse methods introduce a bias
in the model, but they often outperform unbiased models
by achieving a favorable reduction in the variance.

Although the Lasso can lead to zero coefficients for some
variables, they suffer from several potential drawbacks
when applied to process data, which are usually collinear
due to material and energy balances. One of the problems
is that the selected set of variables can be sensitive to
the data samples used in determining the hyperparameter.
Minor changes in the training data can change the selected
variables from one subset to another without a sensible im-
provement in the model quality. This is more pronounced
for process variables with collinearity. This problem has
been reported in Kamkar et al. (2015); Arora and Kaur
(2020); Meinshausen and Bühlmann (2010); Sun et al.
(2013); Qin and Liu (2021), where stable Lasso solutions
have been proposed.

Another drawback of Lasso is its acclaimed advantage, in
that Lasso finds zero coefficients and non-zero coefficients
in one step with one hyperparameter value. It is clear that
Lasso can drive the coefficients of some variables to zero by
tuning the hyperparameter, but the same hyperparameter
value does not necessarily yield optimal estimates for the
non-zero coefficients of the remaining variables. This issue
is pointed out in Meinshausen (2007), where a relaxed
solution was proposed.

In this paper, we propose a two-step approach to predic-
tive modeling using regularization methods including the
Lasso family and the ridge regression (Hoerl and Kennard
(1970)). In Step one, the Lasso algorithm is applied on
all training data to produce a sequence of subsets of
selected variables by varying the hyperparameter value.
In Step two, for each subset of the selected variables from



Step one, the Lasso, elastic-net (Zou and Hastie (2005)),
adaptive Lasso (Zou (2006)), or ridge regression is carried
out with cross-validation to find the optimal model among
all subsets of selected variables. We demonstrate using
industrial datasets that the two-step methods can yield
significantly better models than the standard Lasso and
other one-step methods.

2. SPARSE LEARNING METHODS AND
REGULARIZATION

2.1 The Lasso and ridge regression

Let xk = [x1, x2, · · · , xp]> ∈ <p be the process variables
to be selected and yk be the response variable to be
predicted. For convenience these variables are scaled to
zero mean and unit variance based on N samples in the
training set. We try to estimate the regression coefficients
based on

yk = β0 + x>k β + εk, (1)

where εk is the zero-mean random noise and β0 = 0 if
the training data xk and yk are scaled to zero mean. The
Lasso approach adopts the least squares objective with an
l1 norm penalty of the coefficients as

β̂
La

λ = arg min
β,β0

1

2N

N∑
k=1

(yk − β0 − x>k β)2 + λ‖β‖1 (2)

where λ is the hyperparameter to be tuned optimally based
on cross validation.

The typical cross validation process consists of three steps:
i) divide the training data into multiple folds with similar
distributions and build Lasso models on all but one fold
of the data for a grid of λ values; ii) use the trained model
to calculate the mean squares error predicted (MSEP) on
the fold of data not used for training. Average the MSEPs
of all folds for each λ value to generate a sequence of MSEP
vs. λ; and iii) select the optimal λ value that yields the
minimum MSEP and use it to re-run Lasso on all training
data to obtain the final model, which gives the estimates
of non-zero coefficients and zero coefficients that enable
variable selection.

The Lasso objective (2) is a variant of the well-known ridge
regression (RR) objective which uses an l2 norm penalty
as

β̂
RR

λ = arg min
β,β0

1

2N

N∑
k=1

(yk − β0 − x>k β)2 +
1

2
λ‖β‖22 (3)

As explained in James et al. (2013), the difference between
the Lasso and ridge regression solutions can be illustrated
in Figure 1, where the elliptic contours represent the least
squares error surface, while the diamond and circle rep-
resent the effects of the Lasso l1 and ridge l2 constraints,
respectively. The elongated ellipses illustrate the presence
of collinearity among the process variables. The optimal
solution is where the constraint regions are tangent to one
of the ellipses. It is clear that the Lasso solution makes one

coefficient β̂2 = 0, which effectively eliminates Variable 2
from the model. On the other hand, the ridge regression

solution gives both coefficients β̂1 6= 0 and β̂2 6= 0, which
does not eliminate any variables.

Fig. 1. (a) Lasso and (b) ridge regression least squares
error surface with a diamond shape constraint from
an l1 norm and a circle shape constraint from an l2
norm. The elongated ellipses represent the effect of
collinearity among the process variables.

Some drawbacks of the Lasso solution can be explained
with the figure, especially in the case of collinear variables.
In Figure 1(a), a minor change in the training data can
make the ellipses less tilted so that the optimal solution
switches to the vertex at the top of the diamond region,

which leads to β̂1 = 0 and thus Variable 1 to be eliminated.
This is the instability issue of the Lasso discussed in Qin
and Liu (2021). On the other hand, the ridge regression
solution shown in Figure 1(b) is little changed and thus
robust to such a perturbation.

The sub-optimality of the Lasso which uses one hyper-
parameter value to yield zero coefficients and estimates of
the non-zero coefficients can also be illustrated with Figure

1(a). Under the condition that β̂2 = 0 and thus Variable 2

is eliminated from the model, a better estimate of β̂1 can
exist that achieves a lower error value, which is indicated

as the β̂1 re-estimate in Figure 1(a). The β̂1 re-estimate
finds the lowest error value along the β1 direction, which
is a relaxed solution.

2.2 Relaxed Lasso

A relaxed Lasso (Relaxo) approach is proposed by Mein-
shausen (2007) to overcome the above problem. The Re-
laxo first uses the Lasso to perform variable selection by
specifying λ = λi in (2), then it relaxes the l1 penalty by
introducing a parameter 0 < φ ≤ 1 and solves a Lasso
problem with the selected variables in the first step as

β̂
RL

i,φ = arg min
β,β0

1

2N

N∑
k=1

(yk−β0−β>x(i)
k )2 +λiφ‖β‖1 (4)

where x
(i)
k is the subset of variables selected by the

standard Lasso. When φ = 1, both Lasso and Relaxo
are the same. For φ < 1, a solution with less penalty is
implemented on the selected variables from the first step.
This is a kind of de-biasing which makes the solution closer
to the unbiased least squares solution.

2.3 Elastic-net

Zou and Hastie (2005) proposed the elastic-net which uses
a combination of the Lasso and ridge penalties to improve
the stability in selecting variables. The method applies



both l1 and l2 norms to minimize the following objective
function

min
β,β0

1

2N

N∑
k=1

(yk − β0 − x>k β)2 + λ

(
1− α

2
‖β‖22 + α‖β‖1

)
(5)

For a given λ, the elastic-net penalty hybridizes the
diamond and circular shaped constraints in Figure 1
to form quadratic arcs, which retain vertices to select
variables and are strictly convex. The second parameter α
tunes the convexity of the arcs to make it difficult to switch
between vertices, thus, alleviating the stability issue.

2.4 Adaptive Lasso

One desirable property for variable selection is its consis-
tency. The consistency in variable selection is concerned
with whether the estimated zero coefficients are indeed
zero in the true model that generates the data. Zou (2006)
shows that the Lasso can be inconsistent in variable selec-
tion under certain conditions. To make the Lasso consis-
tent, an adaptive Lasso (AdaLasso) algorithm is proposed,
which uses the following objective

min
β,β0

1

2N

N∑
k=1

(yk − β0 − x>k β)2 + λ

p∑
j=1

ŵj |βj |1 (6)

where β = [β1 · · · βp]
> the weight ŵj is adaptive for

each variable. AdaLasso suggests that ŵj = |β̂−1j (ols)|
is a good choice, where β̂j(ols) is the solution for the
jth variable from the ordinary least squares. The adaptive
weights effectively apply more penalty on coefficients that
have smaller magnitudes from the least squares estimates.

3. TWO-STEP SPARSE LEARNING FOR VARIABLE
SELECTION AND ESTIMATION

In Lasso, the λ value that drives the appropriate variable
selection is the same λ value that regularizes the estimates
of the nonzero model coefficients. However, the two tasks
do not necessarily share the same optimal λ value. First,
there is the λ for the l1 penalty that leads to the opti-
mal selection of variables. Once the subset of variables
is selected, one should re-tune the hyperparameter to
achieve optimally regularized estimates for the non-zero
coefficients. This second step can be achieved with other
regularization methods, such as the Lasso, ridge regression,
elastic-net, or AdaLasso, which leads to the following two-
step approach. The two-step sparse learning can be viewed
as a generalization of the Relaxo, which goes beyond the
l1 penalty.

Algorithm 1. Two-Step Sparse Learning with Cross Vali-
dation

(1) Scale all training data {xk, yk}Nk=1 to zero mean and
unit variance.

(2) Step One. Use all training data to estimate β̂
N

λ
in (2) for a grid of λ values to generate a regu-
larization path (Hastie et al. (2015)). The selected
subsets of variables along the path are denoted as

x
(1)
k ,x

(2)
k , · · · ,x(m)

k without repetition, where x
(i)
k

contains the selected variables with nonzero coeffi-
cients.

(3) Step Two. Divide the training data into s fold to
perform a regularized regression algorithm with cross-
validation, such as the Lasso, ridge regression, elastic-
net, or AdaLasso. Estimate the jth CV model using
the training set Tj with Nj observations and the rest
as the jth validation set Vj , where Tj includes all
observations except for Vj . For example, if the Lasso
is adopted in the second step, the modified Lasso

objective for x
(i)
k , i = 1, 2, · · · ,m is

β̂i,j,µ = arg min
β

1

2Nj

∑
k∈Tj

(yk−β0−β>x(i)
k )2 +µ‖β‖1

(7)
For each i tune µ for a grid of values to find the
µ = µ∗i that yields the best mean squared error
predicted (MSEP) by s-fold cross-validation. Denote
the optimal MSEP as MSEPi,µ∗

i
.

(4) Let i∗ = arg mini MSEPi,µ∗
i

among i = 1, 2, · · · ,m.

The i∗-th subset of variables x
(i∗)
k is the optimally

selected variables. The corresponding final model
coefficients β̂i∗,µ∗

i
is re-estimated using all training

data with the sparse learning method used in Step
Two.

Step One of the Algorithm uses the l1 penalty to find a
sequence of subsets of selected variables along the regu-
larization path, then Step Two determines which subset
of variables among all is the optimal one by another
regularization method with cross-validation. Since variable
selection is not an ultimate concern in Step Two, ridge re-
gression among other regularization methods can be used
to estimate the non-zero coefficients. The two-step meth-
ods are referred to as Lasso-Lasso, Lasso-ridge , Lasso-
AdaLasso, or Lasso-AdaRidge, where Lasso-AdaRidge uses
the AdaLasso weights in the second Ridge step to im-
plement adaptive ridge regression. Note that the regular-
ization adopted in the second step can handle potential
collinearity among the selected subsets of variables.

4. EXPERIMENTAL RESULTS ON A NOX EMISSION
DATASET

The industrial boiler data has nine process variables and
one output variable, which is the NOx concentration near
the top of the stack. The dataset used for this study
has 390 observations sampled at a 5-minute interval, of
which the detail can be found in Qin and Liu (2021). This
boiler operation data are highly collinear, which can be
interpreted with the physical process knowledge.

We perform seven-fold cross validation to select optimal
hyperparameters. We choose to divide the data into 14
consecutive blocks and then split the blocks into seven
folds. The model quality is measured by the overall MSEP
and Q2, which are calculated as follows.

(1) Calculate the sum of squared errors predicted, SSEPj ,
for the j-th fold.

(2) Sum up SSEPj to obtain the SSEP and divide it by the
total number of samples to obtain the overall MSEP.

(3) This overall SSEP is used to calculate the overall cross-
validated R2, which is denoted as Q2 and given as
follows,



Q2 = 1− SSEP∑N
k=1(yk − ȳ)2

where ȳ is the mean of the training data, which is
zero after the data is scaled to zero mean.

4.1 NOx emission predictions with Lasso

We first establish the baseline modeling result using the
standard Lasso Tibshirani (1996). Figure 2 shows two
results in one chart. One is the MSEP of the seven-fold cross
validation with the Lasso algorithm, shown in circles. The
minimum MSEP achieved by the Lasso model establishes a
baseline for comparison with the proposed methods. The
other one, shown in solids dots, is the number of nonzero
coefficients as λ varies by fitting the Lasso model to all
data. A set of unique model structures is results along
the regularization path. For each of the candidate model
structures we search for the optimal µ∗(λi) with cross-
validation in a subsequent Lasso or ridge regression step.

The Lasso model with the cross-validated MSEP in Figure
2 yields two local minimum solutions, which are denoted
as λ∗1 and λ∗2. λ∗1 picks eight variables, while λ∗2 picks four
variables. It is well known that the Lasso tends to pick
excessive number of variables.

Fig. 2. Cross validated MSEP, shown in circles, with the
Lasso algorithm. Two local minima, λ∗1 and λ∗2, are
picked. Solid dots show the number of non-zero coef-
ficients for the selected variables along the regulariza-
tion path.

To help visualize the unique model structures along the
Lasso regularization path, we show in Figure 3 the selected
variables as λ varies from small to large, by fitting the
Lasso model to all data. It is observed that in some regions
the model structure is stable for a wide region of λ, while in
a few regions the structures change quickly. The smallest
λi that leads to a new model structure will be useful for
subsequent Lasso-Lasso and Lasso-ridge modeling.

4.2 NOx emission predictions with Lasso-Lasso

To perform Lasso-Lasso modeling, we begin with a subset
of selected variables obtained by varying λi along the Lasso
regularization path. Then we perform cross validation
with the second Lasso step by varying the regularization
parameter µ(λi) between 0 and λi. We end up with an

Fig. 3. The selected variables as λ varies from small to
large, by fitting the Lasso model to all data. The
color bar indicates the signs and magnitude of the
coefficients.

MSEP curve for each λi, which is depicted in the top panel
of Figure 4. We find the µ∗(λi) that leads to the minimum
MSEP among all curves, which is shown in the bottom panel
of Figure 4. In both panels the MSEP of Lasso is shown as
blue lines for comparison. From the bottom panel of Figure
4 we see that i) the cross-validated MSEPs obtained by the
Lasso-Lasso is much smaller than that obtained by the
Lasso; ii) the minimum MSEP reached by the Lasso-Lasso
uses λi that selects one predictor only, which is Windbox
Pressure. The optimal µ∗(λi), being much smaller than
the λi, indicates that the Lasso-Lasso method unleashes
the potential of achieving a much smaller MSEP.

Fig. 4. The cross-validated MSEP’s of the Lasso-Lasso:
(Top) MSEP’s vs. µ(λi) for the model structures de-
termined by λi in Step 1 of Lasso-Lasso; (Bottom)
MSEP’s for the λi that yield the optimal µ∗(λi). The
legends show the number of variables in each unique
subset of selected variables.

We show in Figure 5 the predictions of the validation
subsets of the data during cross validation. The top
two panels are for the Lasso with optimal λ∗1 and λ∗2,
respectively. The third panel is the prediction of using one
variable, which leads to much better predictions with the
optimized µ∗(λi) from the second Lasso.



Fig. 5. Predictions of the validation folds of the data during
cross validation. The top two panels are from the
two Lasso solutions, while the bottom panel is the
result using one selected variable in the Lasso-Lasso
solution.

4.3 NOx emission predictions with Lasso-ridge

The Lasso-ridge modeling procedure uses ridge regression
in the second regularization step to find the optimal
parameter µ∗(λi). The ridge regression uses the selected
variables in a candidate subset determined along the Lasso
regularization path. The multiple MSEP curves due to
multiple λi are depicted in the top panel of Figure 6.
The µ∗(λi) that yields the minimum MSEP is shown in the
bottom panel of Figure 6. In both panels the MSEP of the
Lasso is shown for comparison. From the bottom panel of
Figure 6 we see that the MSEPs obtained by Lasso-ridge
is much smaller than those obtained by Lasso.

Fig. 6. The MSEP’s of Lasso-ridge: (Top) MSEP curves of
Lasso-ridge vs. µ(λi); (Bottom) Lasso-ridge MSEP’s by
the λi that leads to the optimal µ∗(λi). The legends
show the number of variables in each unique subset of
selected variables.

Table 1. MSEPs and Q2 indices of the optimal
Lasso models, the Lasso-Lasso, and the Lasso-

ridge

Lasso, λ∗1 Lasso, λ∗2 Lasso-Lasso Lasso-ridge

MSEP 0.1523 0.1629 0.1485 0.1485

Q2 0.847 0.837 0.851 0.851

Figure 7 shows the Lasso-ridge predictions of the valida-
tion subsets of the data during cross validation. The top
panel shows the predictions with the optimal Lasso model,
while the bottom panel shows the optimized Lasso-ridge
result of using that one predictor. Lasso prevents itself
from reaching a much better model that is achieved by
Lasso-ridge method. The cross-validated MSEPs will be
summarized in the next subsection for comparison.

Fig. 7. Predictions of the validation folds of the data during
cross validation. The top and bottom panels show the
predictions of the Lasso and Step Two of the Lasso-
ridge, respectively.

4.4 Comparing Lasso-Lasso and Lasso-ridge on the NOx
emission data

The MSEP’s and Q2 indices of the optimal Lasso models
with λ∗1 and λ∗2, the Lasso-Lasso model and the Lasso-
ridge model are shown in Table 1. The results show the
Lasso-Lasso and Lasso-ridge models give the best cross-
validation errors, which selects Windbox Pressure as the
only predictor. The other variables are highly correlated
with Windbox Pressure for the boiler process.

To examine the difference between the Lasso-Lasso and
the Lasso-ridge models, we show in Figure 8 the minimum
MSEP’s achieved by the Lasso-Lasso models and the
Lasso-ridge models from the candidate model structures
selected by the Lasso. It is observed that the Lasso-ridge
models achieve lower MSEP than the Lasso-Lasso models
for the same candidate model structure.

The regression coefficients from the Lasso with λ∗1, the
Lasso with λ∗2, the Lasso-Lasso, and the Lasso-ridge mod-
els are given in Table 2. It is observed from the table that
the Lasso model with λ∗1 yields negative coefficients for two
variables, Air Flow and Stack Pressure. Since most of the
variables are positively correlated, it contradicts the first
principles that these coefficients are negative. Therefore,
the Lasso model with λ∗1 is not physically interpretable.

In some works it is suggested to determine the optimal
subset of variables via the Lasso as Step One, and then



Fig. 8. Minimum MSEP’s achieved by Lasso-Lasso and
Lasso-ridge based on the subsets of selected variables
by the Lasso.

Table 2. Regression coefficients of the two
optimal Lasso models, the Lasso-Lasso, and

the Lasso-ridge models

Lasso, λ∗1 Lasso, λ∗2 Lasso- Lasso-
Lasso ridge

(Intercept) 0 0 0 0
Air Flow -1.5203 0 0 0
Fuel Flow 0 0 0 0

Stack Oxygen -0.1160 0 0 0
Steam Flow 1.7624 0 0 0
Inlet Temp 0.1390 0.1889 0 0
Stack Press -0.7095 0 0 0

Windbox Press 1.1855 0.3657 0.9216 0.9184
Feedwater Flow 0.0687 0.3345 0 0
Ambient Temp -0.0577 -0.0086 0 0

use ordinary least squares to estimate the non-zero pa-
rameters. One question is in order: could such an approach
find the optimal solutions that are found by Lasso-ridge
and Lasso-Lasso? The answer is no. As illustrated in Table
2, the optimal model structure by the Lasso has either 8
or 4 variables, whereas both Lasso-ridge and Lasso-Lasso
find one predictor to be optimal.

4.5 Monte-Carlo simulation of various sparse learning
methods

To test how the various sparse learning methods perform
on the NOx emission data, we perform 20 Monte-Carlo
simulations by randomly selecting the 14 segments of data
into seven-fold. The randomness allows us to see the vari-
ations among the modeling results. We test all eight meth-
ods, Lasso, elastic-net, AdaLasso, Relaxo, Lasso-Lasso,
Lasso-ridge, Lasso-AdaLasso, and Lasso-AdaRidge and
depict the MSEPs and Q2 results in Figure 9. For the
simple NOx data the adaptive Lasso and Lasso-AdaLasso
outperform others. The Lasso and elastic-net incur the
largest MSEPs, while the Lasso-ridge reduces the MSEP
of the Lasso with the second ridge step. We next apply
the methods to the Dow challenge dataset to compare the
effectiveness of the methods.

Fig. 9. Boxplots of 20 Monte-Carlo MSEP and Q2 for each
method.

5. TEST ON THE DOW DATA CHALLENGE
PROBLEM

The Dow data challenge problem was posted by Dow
Braun et al. (2020) to help academia test their algorithms
with an industrially relevant problem. Measurements of
44 process variables are available for variable selection to
build the best model to predict impurity in the product
stream. In this paper, we use the training dataset that
was pre-processed by Joe Qin et al. (2021), where interpo-
lated impurity data were removed and the impurity was
transformed by a softplus function to guarantee positive
impurity predictions.

Due to limited space allowed for this paper, we only
show the cross-validation results in Step Two. Figure 10
shows the predictions of the validation folds of the data
during cross validation. The panels show the predictions
vs. actual data for each fold when it is used as a validation
fold with the Lasso, elastic-net, AdaLasso, Relaxo, Lasso-
Lasso, Lasso-ridge, Lasso-AdaLasso, and Lasso-AdaRidge,
respectively, from top to bottom. It is easy to observe in
the first and last two folds, some methods fail to predict
the impurity accurately.

The Lasso-ridge and Lasso-AdaRidge seem to give the best
cross-validated predictions compared to the actual data.

The cross-validated MSEPs and Q2 indices of the optimal
models by the eight methods are shown in Figure 11, which
clearly shows that the Lasso-ridge and Lasso-AdaRidge
give the best models with smallest cross-validation errors.
While adaptive Lasso does well for the NOx data, ridge
regression based methods are the winner for the Dow
impurity dataset.

More observations from Figure 10 are in order. The elastic-
net includes all variables, which finds α = 0.001 to be
optimal. This is essentially a ridge regression model. The
AdaLasso and Lasso-AdaLasso estimate of the coefficients
are very large magnitudes, which can inflate the prediction
variance. The Lasso-Lasso uses the fewest number of
variables. Finally, the Lasso-AdaRidge is not better than
Lasso-ridge, even with its adaptive weight scheme.



Fig. 10. Predictions of the validation folds of data during cross validation from the Lasso, elastic-net, AdaLasso, Relaxo,
Lasso-Lasso, Lasso-ridge, Lasso-AdaLasso, and Lasso-AdaRidge, respectively.

Fig. 11. Dow impurity MSEPs and Q2 indices achieved
by the optimal models of the various sparse learning
methods.

6. CONCLUSIONS

A novel two-step sparse learning approach is proposed in
this paper to select variables and estimate model parame-
ters optimally. The proposed algorithms, including Lasso-
Lasso, Lasso-ridge, Lasso-AdaLasso, and Lasso-AdaRidge,
can be viewed as extensions of the relaxed Lasso proposed
by Meinshausen (2007). The paper reveals that the Lasso

tends to over constrain itself from reaching a better es-
timate of the non-zero coefficients due to the use of one
hyperparameter for the two problems. This observation
is demonstrated with industrial datasets of the Dow data
challenge problem and a boiler NOx prediction problem.
The elastic-net does outperform other methods for the
NOx emission data, while for the Dow data it does not
remove variables, leading to essential a ridge regression
solution.

It is further observed with the two industrial application
studies that the adaptive Lasso, Lasso-ridge and Lasso-
AdaRidge give better predictions than other methods that
use l1 norm in the second step. One evidence of using the
Lasso l1 norm penalty is that it tends to remove all but
one variable that has a marginally higher correlation with
the output than other variables.
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Fig. 12. Estimated coefficients for the Dow impurity data with various sparse learning methods.
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