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Abstract: An agricultural irrigation scheduler determines how much to irrigate and when
to irrigate for a field. The accurate and effective scheduler decision for large agricultural
fields is still an open research problem. In this work, we address the high dimensionality of
the agricultural field and propose a knowledge-based approach to provide optimal irrigation
amount and irrigation time for three-dimensional agro-hydrological systems. First, we introduce
a structure-preserving model reduction technique to decrease the dimension of the system.
Then, based on the reduced model, an optimization-based scheduler is designed. In the design
of the scheduler, empirical knowledge from farmers is considered to significantly reduce the
computational complexity. The proposed scheduler is designed in the framework of model
predictive control. The objective of the proposed scheduler is to maximize crop yield while
minimizing irrigation water consumption and the associated electricity usage. The proposed
approach is applied to a field to show the effectiveness and superiority of the proposed framework.
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1. INTRODUCTION

Freshwater scarcity is one of the most critical global
risks in the world due to mainly population growth, cli-
mate change and, environmental pollution (World Eco-
nomic Forum, 2015). Almost 70% of the total freshwater
(United Nations World Water Assessment Programme,
2017) is consumed in agricultural irrigation every year.
Moreover, the water use efficiency of the current irrigation
methods is around 50% to 60% (Lozoya et al., 2014), which
is not adequate to save water usage significantly. There-
fore, increasing water use efficiency is essential for feeding
the growing population and managing the water crisis.
The common irrigation practice includes open-loop control
with no real-time feedback. Moreover, it mostly depends
on the farmers’ observation and experience about the farm
instead of actual field conditions such as soil moisture,
which may lead to excessive or insufficient irrigation. The
closed-loop approach based on real-time feedback is the
key to increasing irrigation efficiency.

There are different control strategies based on closed-
loop irrigation. (Goodchild et al., 2015) proposed precision
irrigation using the modified PID loop. Model predictive
control (MPC) has also been studied to determine the opti-
mal irrigation amount (Park et al., 2009; Mao et al., 2018).
These studies focus on a short period of time (minutes
or hours). In these works, either a one-dimensional linear
model is used, or spatial moisture variability is calculated
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using the ordinary kriging method. The one-dimensional
models cannot efficiently represent the horizontal flow and
horizontal diversity of the soil and crops.

Irrigation scheduling is studied extensively in the past to
determine the appropriate time and quantity of water for
irrigation (Wardlaw and Barnes, 1999; Hassan-Esfahani
et al., 2015; Thorp et al., 2017). However, these studies
do not consider current field conditions in the optimiza-
tion decision and provide the solution only once at the
beginning of crop season. Recently, (Nahar et al., 2019)
and (Kassing et al., 2020) proposed two-level optimization-
based scheduling. The top-level calculates the water allo-
cation decision for the entire crop season, while the bottom
layer makes the decision for daily soil moisture regulations.
In these works, the simplified linear one-dimensional model
is considered. To handle the nonlinearity of the system,
(Agyeman et al., 2022) proposed a scheduling approach
based on a data-driven model in the framework of MPC
with discrete decision variables for one-dimensional agro-
hydrological systems.

In this work, we consider the scheduling of irrigation for
three-dimensional agro-hydrological systems. The direct
application of discretized model is computationally chal-
lenging if the states are the decision variables or state
constraints are present. Model reduction is one of the
efficient techniques to handle the problem by reducing
the dimension of states. Therefore, the number of decision
variables and the number of state constraints decrease.
A few popular classical model reduction techniques are
proper orthogonal decomposition (POD), optimal Hankel



Fig. 1. Schematic of an agro-hydrological system (Agye-
man et al., 2021)

norm reduction, balanced truncation methods, etc. (An-
toulas, 2005). The state constraints can not be applied
in the reduced-order dimension in the classical model
reduction techniques because the reduced states do not
preserve any structure. There are some recent researches
on the structure-preserving model reduction where states
preserve the structure (Cheng and Scherpen, 2019; Sahoo
et al., 2019, 2020). However, these methods are limited
to only linear systems or the projection matrix is con-
structed using linear dynamics. In this work, we first
propose a structure-preserving model reduction method
for the nonlinear agro-hydrological system. The proposed
model reduction method is based on state trajectories of
the system. To further reduce the computational complex-
ity of the proposed scheduler, we design the scheduler
based on the empirical knowledge of farmers. By using
the knowledge, we can remove integer decision variables
from the scheduling optimization problem which reduces
the computational complexity significantly. The proposed
scheduler is designed in the framework of MPC and max-
imizes the crop yield while minimizing the water amount
of irrigation. The effectiveness of the designed scheduler is
investigated using simulations.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

2.1 System description

We consider an agro-hydrological system that character-
izes the interaction between the soil, the water, the at-
mosphere, and the crop. The schematic of the considered
agro-hydrological system is shown in Fig 1. The dynamics
of the water flow in the agro-hydrological system can
be represented by Richards Equation (Richards, 1931) as
follows:

∂θ

∂t
= c(h)

∂h

∂t
= ∇ · (K(h)∇(h+ z)) + S(h, z) (1)

where h [m] is the field water pressure head, θ [m3m−3] is
the field water soil moisture content, c(h) [m−1] is the soil
water capacity, K(h) [ms−1] is the hydraulic conductivity,
z [m] is the vertical coordinate, S(h, z) [m3m−3s−1] is
the source and sink term consists of plant root water
extraction.

The details of the nonlinear relationship between hy-
draulic conductivity K(h), capillary capacity c(h) and soil
moisture content (θ) with pressure (h) can be found in
(Mualem, 1976; Van Genuchten, 1980; Sahoo et al., 2019).

The sink term S(h, z) in (1) characterizes the root water
extraction rate. The total root water uptake depends upon
transpiration rate, soil pressure head and root depth. The
mathematical formulation of root-water uptake based on
the Feddes model (Feddes, 1982) is expressed as follows:

S(h, z) = α(h)Smax(z) (2)

where Smax(z)[m
3m−3s−1] is the maximum possible water

extraction rate under optimal condition. α(h)[-] is the
dimensionless water stress factor.

The crop yield model is also important along with the
Richards equation. The relationship between the crop yield
and soil pressure head is expressed as follows (Doorenbos
and Kassam, 1979):(

1− Ya

Yp

)
=

T∑
k=1

Ky(k)

(
1− α(h)

)
(3)

where Ya is actual yield and Yp is potential yield. Ky(k)
is the crop sensitivity factor at time k. T is the total time
for growing seasons.

In this work, we consider that the agricultural field is
equipped with a center pivot irrigation system. A center
pivot irrigation system rotates across the field around a
fixed pivot at the center of the field and irrigates in a circu-
lar manner. In order to account for the circular movement
of the center pivot irrigation system, the Richards equation
in (1) is expressed in the cylindrical coordinates (Agyeman
et al., 2021).

The three-dimensional agro-hydrological model is a nonlin-
ear partial differential equation, which renders the problem
difficult to solve analytically. In this work, we apply the
explicit finite difference method to discretize the Richards
equation. Note that spatial discretization of the model is
performed, such that a continuous-time state-space model
is established as in the following form:

ẋ(t) = f(x(t), u(t)) (4)

where x(t) ∈ RNx denotes the states vector representing
the pressure head value at each discretized node of total
size Nx and u ∈ RNu represents the input vector contain-
ing Nu irrigation values applied at each surface discretized
node. As the input (irrigation amount) is applied to each
surface node, it is incorporated in the system surface
boundary condition. The surface boundary condition is
characterized by Neumann boundary condition. The bot-
tom boundary condition is specified as free drainage.

The central pivot rotates in a circular manner so the
central pivot can not put water everywhere at the same
time. So the nodes which align to the central pivot rotation
are non-zero and other surface nodes are zero. Thus this
imposes a time-varying constraint on u as follows:

Ulb(t) ≤ u(t) ≤ Uub(t) (5)

A continuous time state-space model with measurements
and disturbances is considered as follows:

ẋ(t) = f(x(t), u(t), d(t))

y(t) = Cx(t)
(6)

where y(t) ∈ RNy denotes the soil pressure head measure-
ments, d(t) ∈ RNd is the weather disturbances.

The objective is to calculate the optimal time and irri-
gation amount for maximum crop yield and water con-



Fig. 2. Illustration of structure-preserving model reduc-
tion.

servation for three-dimensional fields with central pivot
irrigation systems.

3. PROPOSED MODEL REDUCTION

As discussed in the introduction, the finer discretization
results in a large number of states. Thus the use of
the state-space model (4) is computationally expensive
for the optimization step in the scheduler design where
states are the decision variables in multiple shooting
and collocation based methods. Further, the optimization
cost increases if the state constraints are present. The
model reduction can deal with these issues. The states
do not preserve the structure in classical model reduction
techniques, so applying state constraints in a reduced
model is cumbersome. Hence, we propose a structure-
preserving model reduction technique. The calculation of a
linear model in a large-scale system is also computationally
expensive. So in this work, we propose the trajectory-based
model reduction techniques.

3.1 Step 1: Snapshot matrix generation

The first step is to generate the state snapshots. Based
on the prescribed input from the scheduler, simulate the
nonlinear system (4) and generate the state trajectories
from the initial time to the final time as follows:

X = [x(t0) x(t1) . . . x(tN )]

where X ∈ Rn×N is the snapshot matrix of the actual
system, n is the number of states, N is the total number
of the sampling intervals.

3.2 Step 2: Calculation of cluster sets

In this step, the cluster matrix sets are generated. The
main idea is to create clusters of states having similar dy-
namics based on the system trajectories. Then the projec-
tion matrix is generated using the clustering information
and using the projection matrix, the system is projected
from a higher dimensional system to a lower-dimensional
reduced system. In this work, agglomerative hierarchical
clustering (Steinbach et al., 2000) is used. We use the
Euclidean distance between trajectories as the distance
measure for states. The main reason to choose agglomera-
tive hierarchical clustering is because of the capability to
define the distance threshold between the clusters instead
of predefining the number of cluster sets. The distance

threshold is a tuning parameter for the accuracy of the
reduced model. There are three commonly used linkage
methods present in agglomerative hierarchical clustering
(e.g. single, average, complete linkage). In this work, we
use the average linkage, and it considers the average dis-
tance between each point in one cluster to every point in
other clusters.

d(p, q) =
1

npnq

np∑
i=1

nq∑
j=1

d(xpi, xqj)

where p and q are two clusters, i and j are data points
within the clusters, d is the euclidean distance between i
and j and np, nq are the size of the clusters of p and q
respectively.

Let us consider C = {C1,C2, . . . ,Cr} be the collection of
clusters after the hierarchical clustering and r is the order
of the resulted reduced model. The resulted clusters have
following properties: i) Ci ∩Cj = Φ and ii) C1 ∪C2 ∪ . . .∪
Cr = Nx, where Nx is the total number of states.

3.3 Step 3: Reduced model construction

In this step, reduced-order system is constructed based
on the Petrov-Galerkin projection framework (Antoulas,
2005). For the Petrov-Galerkin projection method, the
projection matrix is required. After the construction of
state clusters, the projection matrix U is generated. The
projection matrix is defined as U ∈ Rn×r, whose elements
are expressed as follows:

Ui,j =

{
wi, if vertex i ∈ Cj

0, otherwise

and wi is determined as follows:

wi = 1/||αi||
αi = ET

i α

where α = [1, . . . , 1]T ∈ Rn, ||αi|| is the L2 norm of αi,
Ei = eCi

∈ Rn×m, ej is the jth column of the identity
matrix of size Rn×n and m is the cardinality of Ci set.

The adaptive reduced model of (4) is expressed as:

ξ̇(t) = fr(ξ(t), u(t)) (7)

where fr(ξ(t), u(t)) = U T f(U ξ(t), u(t)) and ξ(t) =
U Tx(t). Note that the actual state x(t) can be approx-
imated based on mapping x̃(t) = U ξ. The discrete model
of (7) is expressed as follows:

ξ(k + 1) = frd(ξ(k), u(k)) (8)

4. PROPOSED CLOSED-LOOP SCHEDULING

This section proposes closed-loop scheduling to calculate
the time intervals between irrigation events and the water
amount for each event. The primary objective is to max-
imize the crop yield while reducing the total water use
and equipment operating cost. The scheduler considers
historical weather and weekly weather forecast, and soil
moisture measurements. The main idea is to irrigate the
field and calculate the time required to reach the lower
stress-free zone.

In this work, the iterative finite-horizon optimization is
considered like the classical MPC. However, the length
of the horizon is not fixed because the time is also



a decision variable in the optimization problem. The
maximum time can be added in the constraint as a higher
bound. The optimizer can make a prediction until the
higher bound of the time period and decide the optimal
time and irrigation amount within that limit. However,
the weather forecast until the higher bound of time may
not be accurate enough. So the receding horizon strategy
is implemented to handle the uncertainty in the weather
forecast. The optimization problem is resolved after a few
days interval with a more accurate weather forecast and
recent measurements.

Each horizon consists of three separate segments. In the
first segment, we irrigate the field, and the amount of
water to be irrigated is the primary decision variable.
In the second segment, the time is a decision variable
that calculates the time for the next irrigation event. The
time is calculated such that the plants will not experience
stress, and the yield will be maximized. The third segment
calculates the irrigation amount for the next horizon. The
third segment is added to the optimization problem to
give the optimizer some flexibility to see a few more
day future forecasts and make the irrigation time and
amount more robust. In all three segments, the yield
and the constraints are considered to keep the pressure
head within a stress-free zone. The slack variables are
introduced to relax the target zone. Note that the above
three-segment design is inspired by the common practice
used by farmers. This design can significantly reduce the
computational complexity of the scheduler and lead to
near-optimal solutions.

For each horizon, the optimization problem is formulated
as follows:

min
u(j),ϵr(j),
ϵr(j),T

Qy

(
1− Ya

Yp

)2

−QT

N1+N2∑
j=k+N1

T

Tub
+Qu

N−1∑
j=k

u(j)

+

k+N∑
j=k+1

(Qrϵr(j)
2 +Qr ϵr(j)

2)

(9a)

s.t.

(
1− Ya

Yp

)
=

k+N∑
j=k+1

Ky(j)(1−Ks(yr)) (9b)

ξ̃(j + 1) = U T f(U ξ̃(j), u(j), d),

j = k, ..., N − 1
(9c)

yr(j) = Cr ξ̃(j) (9d)

ulb < u(j) < uub, j = k, ..., k +N1 and

k +N1 +N2, ....k +N
(9e)

u(j) = 0, j = k +N1, ..., k +N1 +N2 (9f)

ξ̃(j) ∈ Z, j = k, ..., k +N − 1 (9g)

V − ϵr(j) < yr(j) < V̄ + ϵ̄r(j) (9h)

ϵ̄r(j) ≥ 0, ϵr(j) ≥ 0 (9i)

Tlb < T < Tub (9j)

N1 +N2 +N3 = N (9k)

where (9a) defines the cost function to be minimized and
the input (u), time (T ) and slack variables (ϵr, ϵr) are the
decision variables. In (9a), the first term is the crop yield
deficiency cost, the second term denotes the normalized
time cost which is active only in second segment, the third

term considers the irrigation water cost. The last term in
(9a) is the cost term of non-negative slack variables (ϵr, ϵr)
which is introduced to relax the bounds of target zones
V̄ , V in (9h). Qy, Qu, QT , Qr, Qr are the positive weighting
factors. Equation (9b) is the model used to evaluate the
yield deficiency. Equations (9c,9d) represent the discrete

time reduced-order model and the output function. ξ̃(k)
denotes current state estimates at time k. In this work, we
assume all the states can be estimated. N1 is the number
of sampling time for first segment, N2 is the sampling
time for second segment (∆T2 = T/N2). Things to note
that in segment 2, the time is unknown so the number
of sampling points (N2) is fixed and it is chosen based
on upper bound of Tub such that the model does not
experience numerical issues. N3 is the number of sampling
time for third segment. Equation (9k) shows the total
sampling time is N . Equation (9e) provides the bounds
of input for first segment and third segment. Equation
(9f) defines the input amount is zero for second segment.
Equation (9h) imposes the zone constraints with the slack
variables and Equation (9i) implies the slack variables are
non-negative. Equation (9j) defines the constraints for the
lower and upper bound of time.

As discussed before, the receding horizon strategy is im-
plemented to handle the weather uncertainty and use the
scheduler as a closed-loop system. The day (Ts) till which
we can predict the accurate weather prediction is selected.
In general, we predict the weather for 7 days. So if the
scheduler predicts the next irrigation event to more than
7 days then, we reevaluate the scheduler optimization after
7 days again with the current field condition as initial
condition and future 7 days weather prediction. If the
scheduler predicts the irrigation event less than 7 days, we
solve the optimization problem for the next horizon using
the recent day field condition as the initial condition. The
algorithms for the receding horizon is as follows:

(1) At the current time (k) solve the optimization prob-
lem (9), with initial condition ξ(k) and obtain the
optimum input (u) and time (T ).

(2) If the optimum time (T ) is greater than Ts (T > Ts)
then resolve the optimization problem (9) with initial
condition ξ(k + Ts) and obtain the optimum input
and time.

(3) Else (T < Ts) solve the optimization problem (9) with
initial condition ξ(k + T ) and obtain the input and
time.

5. RESULTS

In this section, the proposed algorithms are applied to
demonstrate the performance of the reduced-order model
and the scheduler. A field of radius 50 m and depth 30 cm
is considered. The field is equipped with a central pivot
irrigation system. The model of the farm is constructed
using finite difference discretization of the Richards equa-
tion. The entire system is discretized into 1920 nodes with
5 in radial, 64 in azimuthal, and 6 in the axial direction.
Each node corresponds to the states of the system. The
central pivot takes around 8 hours to irrigate the whole
field. Different types of crops and soil types are considered
in different scenarios.



Fig. 3. One selected soil parameter θs for the field

5.1 Results: model reduction

In this subsection, the proposed model reduction discussed
in section 3 is applied to the system. First, the effect of
reduced model order on the mean square error (MSE) of
the reduced model is discussed. Then the robustness of the
reduced model is discussed.

In this simulation, we consider the real soil properties of
the field located at Lethbridge, Canada. In summer 2019,
we collected soil samples at 20 points in the field and
estimated the soil types in the soil lab. We found three
different soil types present in the field: loam, sandy clay
loam, and clay loam. The kriging method is applied to get
the soil properties of all other nodes of the field. Fig. 3
shows one selected parameter (θs) of the surface nodes.
The other parameters also follow the same trend.

Fig. 4 shows the MSE values of the reduced model with
the number of reduced states. The number of reduced
states is obtained by changing the threshold values of the
agglomerative hierarchical clustering method starting from
0.3 to 3.5 by increasing 0.2. As discussed in section 2, we
can specify the threshold values in hierarchical clustering
instead of the number of reduced models. The MSE values
are calculated between the actual model and the reduced-
order model. From Fig. 4 it can be observed that after
56 reduced states, the error values are minimal. For this
simulation, we consider 30 reduced states.

Next, we study the robustness of the reduced model. In
optimization-based controller design, the input amount is
one of the important decision variables. So the reduced
model should be robust enough to handle different input
amounts. First, the projection matrix is calculated using
the initial condition -4.0 m and input amount 2e-06
m/s. Then using the same projection matrix, we simulate
the reduced-order model starting from different initial
condition (-3.0 m) and different input amounts (1e-06 m/s,
0.5e-06 m/s, 0.1e-06 m/s, 0.05e-06 m/s). Fig. 5 shows the
state trajectories of the actual system and the reduced-
order system randomly chosen state 77 (surface) and 1897
(depth 25 cm) for different input amounts. It can be
observed that reduced order trajectories are very close to
the actual order trajectories, which shows the robustness
of the proposed model reduction method.

5.2 Result: scheduler

In this subsection, the performance of the proposed sched-
uler design is demonstrated under uniform soil, lettuce
crop type, variable ET and rain.

Fig. 4. Values of MSE with different reduced order

Fig. 5. Selected state trajectories of the actual system and
reduced system for four different inputs

In the simulations, the variable ET and rain uncertainties
are considered. The uniform soil type of loam and crop
type of lettuce is chosen for the simulation. This scenario
is shown to check the efficacy of the scheduler in the
presence of weather disturbances and crop growth stages.
As discussed in the crop modeling, 85% root water is
extracted from the top 30 cm soil. For the high yield and
the crop not to experience any stress, keeping the top 30
cm in the stress-free zone is required. In this scenario,
the objective of the scheduler is to keep all the layers in
the zone. The values of the upper and lower bound for
the actual zone are -0.25 m and -3.1 m. The upper and
lower bound for the conservative zone is considered as -
0.5 m and -2.3 m. The values of the tuning parameters
Qy, Qu, QT , Qr, Qr are 1, 100, 1, 100, 0.01, 1 respectively.
Things to note are that the tuning parameter values can
be adjusted depending on the root growth with time. The
lower and upper bounds of the time are 30 mins and 12
days. The upper and lower bound of the input are 0 m/s
and 4e-07 m/s. In general, seven days rain predictions can
be 80% accurate. So for one horizon in the scheduler,
the accurate weather prediction of 7 days is used, and
for the rest of the days, the long-term prediction value is
used. The values of accurate weather prediction and long-
term weather prediction considered for this simulation are
shown in Fig. 6(a). Similarly, the reference ET value for
accurate and long-term weather prediction is shown in
Fig. 6(b). The crop coefficient (Kc) for lettuce crop type
for all the growing season is shown in 6(c).

Fig. 7(a) shows some selected state trajectories at different
depths. We can observe that for all the depths, the states
are in the stress-free zone. We can also see that around
50 days, state 60 (bottom node) goes outside of the
conservative zone. This happens because around day 50,
the crop is at the mature stage, and the ET values are high
6(c), and there is some delay between the water to reach
the bottom node. That is why we choose a conservative
zone of -2.3 m, So even if the bottom nodes go outside of



(a) (b)

(c)

Fig. 6. (a) Accurate rain prediction and long term rain
prediction; (b) Accurate ET prediction and long-term
ET prediction, (c) Crop coefficient for total growing
season for lettuce

(a) (b)

Fig. 7. (a) Selected state trajectories for all layers; (b)
Irrigation amount for 5 different sprinklers.

the conservative zone, it may have less chance to go outside
of the actual stress zone. 7(b) shows the input amount for
all five sprinklers. We can observe that there is frequent
irrigation at the beginning because the states are outside
of the zone. Moreover, around day 45-50, there is frequent
irrigation because of high ET values, and the crop needs
more water at that stage. For other days, because of the
rain, the crops don’t need much water.
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