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Abstract: Process monitoring has attracted extensive interest for real-time operating evaluation due to 

the expectation of a safe and higher-quality production in chemical industry. Principal component 

analysis (PCA), an effective method for data dimensionality reduction, has been widely utilized in static 

process monitoring. However, industrial process data generally show dynamic characteristics because 

certain sequences of process variables are autocorrelated due to internal mechanisms. Recently, slow 

feature analysis (SFA) has been proved to have a good performance in extracting the slowly changing 

features in dynamic processes. To monitor both static and dynamic relations, a novel dynamic process 

monitoring method based on integrated statistic of PCA and SFA is proposed by extracting data feature 

of static and dynamic variables respectively. Variables are first grouped into static and dynamic 

categories according to their autocorrelation. For static part, PCA is applied to extract static variable 

features and calculate T2 and SPE statistics, while SFA is adopted in dynamic part for the extraction of 

dynamic variable features, and T2, Te
2, S2 and Se

2 statistics can be calculated accordingly. At last, these 

statistics can be integrated by a support vector data description (SVDD) to give a final process 

monitoring result. The performance of the proposed method is compared with other dynamic process 

monitoring methods on the benchmark Tennessee Eastman process (TEP). 

Keywords: Process dynamics, Feature extraction, Mutual information, Fault detection, Support vector 

data description. 

 

1. INTRODUCTION 

Early detection of abnormal process deviations in chemical 

production plays an important role in process monitoring to 

guarantee product quality and production safety. With the 

wide application of distributed control system (DCS), 

massive historical operating data that contains process 

internal mechanism information can be obtained, which 

significantly accelerates the development of data-driven 

process monitoring methods, especially multivariate 

statistical methods. As a commonly used multivariate 

statistical method, principal component analysis (PCA) has 

been well adopted for process monitoring due to its 

extraordinary ability on dimensionality reduction. However, 

only static information on variable cross-correlation is 

considered by PCA, while the dynamic characteristics 

reflected in certain sequences of process variables due to 

process internal mechanism are neglected.  The monitoring 

performance will be compromised if only static model is built 

for a dynamic process (Li and Yan, 2019). 

Aiming at the time dependence of process data, numerous 

researches have been developed for dynamic data processing. 

Among them, the simplest way is to reduce sequence 

autocorrelation by increasing the sampling interval, but it 

may lead to the loss of critical process information and thus 

cannot achieve a desired monitoring effect. For dynamic 

modelling, dynamic principal component analysis (DPCA) 

was first introduced for process monitoring by Ku et al. (Ku 

et al., 1995). By introducing time lags to construct an 

augmented matrix, the time-varying dynamic characteristics 

can be further extracted by traditional PCA decomposition. 

This dynamic data processing idea with the application of 

augmented matrix has been combined with various process 

monitoring algorithms, such as dynamic independent 

component analysis (Lee et al., 2004) and dynamic canonical 

correlation analysis (Jiang and Yan, 2018). However, for a 

high dimensional process, the dimensions of data will 

increase significantly even though only the first-order 

autocorrelation is considered. On the other hand, all variables 

are handled with the same time lag in these dynamic methods, 

while the dynamic characteristics could have different effects 

on different variables (Li and Yan, 2019). In addition, the 

autocorrelation extracted by dynamic PCA is hard to interpret 

by just using time-lagged variables. To improve the dynamic 

feature extraction, dynamic latent variable models have been 

proposed and well developed. Li proposed a dynamic latent 

variable (DLV) based process monitoring method using PCA 

and vector autoregressive (VAR) model, by which the 

autoregressive PCA is first applied to extract dynamic latent 

variables, and then the VAR model is adopted to obtain 

residues of latent variables for process monitoring (Li et al., 

2011). In comparison with previous techniques, DLV based 



 

 

     

 

methods have an advantage in extracting dynamic 

characteristics, but part of static information is ignored in the 

meantime. Recently, slow feature analysis (SFA) has begun 

to attract attention to dynamic process monitoring by 

extracting the slowly varying features in dynamic process 

data. Unlike traditional latent variable models, SFA enables 

separate descriptions of both static and dynamic variations in 

normal operation. According to the paper reported by Shao et 

al., SFA has been proved to have a better performance on 

dynamic process monitoring for the Tennessee Eastman 

process (TEP) than traditional dynamic multivariate 

statistical methods (Shang et al., 2015). However, few studies 

have been presented by separating static variables from 

dynamic variables and applying proper algorithms to extract 

static and dynamic feature respectively, which should be 

beneficial for monitoring both static and dynamic relations. 

In this work, a dynamic process monitoring method is 

proposed based on integrated statistic of PCA and SFA. 

According to autocorrelation analysis, process variables are 

first grouped into static and dynamic categories. For these 

two categories, PCA is applied to extract data feature of static 

variables and calculate T2 and SPE statistics, while SFA is 

adopted to extract dynamic variable features and obtain T2, 

Te
2, S2 and Se

2 statistics. Then the obtained statistics are 

integrated as an input of a support vector data description 

(SVDD) model for feature fusion and obtain a final process 

monitoring decisions. Although different statistics are used to 

describe a process from different perspectives, a fault usually 

can be detected in various statistics. The SVDD is used to 

comprehensively consider the changes of each statistic, by 

which the sensitivity to fault detection of the method can be 

improved. The novel dynamic process monitoring method is 

employed to TEP and compared with related methods, 

including PCA, DPCA and SFA.  The results show that most 

faults in TEP can be earlier detected by the proposed method.  

The remaining part of this paper is organized as follows. In 

section 2, a brief introduction to mutual information (MI), 

PCA, SFA and SVDD are provided. In section 3, the 

procedures of the proposed dynamic process monitoring 

model based on integrated statistic of PCA and SFA are 

described. In section 4, the performance of proposed method 

is illustrated and compared through a case study on TEP. In 

section 5, the paper is concluded. 

2. PRELIMINARIES 

In this section, the algorithms of MI, PCA, SFA and SVDD 

applied in the proposed process monitoring method are 

introduced. 

2.1 Mutual information 

MI is an index to measure the correlation between two 

random variables from the aspect of information theory. 

Given two random variables X and Y, the calculation of MI is 

given as follows (Vastano and Swinney, 1988), 

,
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where ( )p   is the marginal distribution probability density 

and ( , )p x y  is the joint probability density, which can be 

calculated through kernel density estimation. According to 

Equation 1, ( ),I X Y  is equal to zero when X  and Y are 

completely independent, and the stronger the correlation of a 

pairvariables, the greater the MI value.  

Similar to autocorrelation function, the MI can also be 

applied to measure the autocorrelation of a variable sequence 

by measuring the correlation between original sequence and 

the sequence with different time lag orders. The calculation is 

given by introducing a time lag parameter τ to MI, 
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where )  ,( t tp x x + is the joint distribution probability of the 

original sequence and the sequence with a time lag order. 

Considering that MI is always larger than zero, it’s necessary 

to determine a confidence interval. In this work, massive 

random normally distributed sequences are generated to 

estimate the distribution of variable autocorrelation under 

static conditions using kernel density estimation. The 

threshold is determined under a 99% confidence level.   

2.2 Principal component analysis 

PCA is a classic method in data dimensionality reduction and 

feature extraction, which is widely utilized for static process 

monitoring (Kresta et al., 1991). Given a data matrix 

n mZ  containing n sampling points of m variables after data 

normalization. The covariance matrix of n mZ  is first 

calculated as follows, 

1

1

TS Z Z
n

=
−

                                                                          (3) 

Then the projection directions of PCA can be obtained 

through the singular value decomposition of the covariance 

matrix. On this basis, n mZ  can be decomposed as follows, 

TZ TP E= +                                                                            (4) 

where n dT R  , m dP R  are the score matrix and the load 

matrix of principal components respectively. n mE R  is the 

residual matrix and d  is the number of selected principal 

components. Original data space is grouped into the principal 

subspace and the residual subspace, and then 2T and SPE 

statistics are constructed in corresponding principal space and 

residual subspace for process monitoring. PCA is selected in 

this work to monitor the static variables for its satisfying 

performance in the extraction of static information. 

2.3 Slow feature analysis 

The core idea of SFA is to extract the slowest changing 

components from dynamic data as fundamental features 

(Wiskott and Sejnowski, 2002). Given a p-dimensional input 

signal  1 2, ,..., pL l l l= . After processed by a q-dimensional 



 

 

     

 

transformation function  1 2, ,..., qG g g g= , a q-dimensional 

output signal  1 2, ,..., qS s s s=  is obtained. where 

( ), [1,2,..., ]j j js g l j q=  . The ultimate optimization goal of 

SFA is to determine the optimal function G and the 

corresponding optimization objective is given as follows, 
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where js  is the first derivative of S . represents the 

variable average over a period of time. The first zero mean 

constraint is added to simplify the solution process, while the 

addition of the second constraint can prevent the numerical 

solution. The last constraint ensures the independence of each 

component in the output signal, thus avoiding redundant 

output. When adopting a linear transformation function, each 

slow feature js is a linear combination of input variables, 

which is given as follows, 

( )j j jS g L Lw= =                                                                    (6) 

where jw is the load matrix. Thus, Equation (5) can be 

rewritten as follows, 
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And then Equation (6) can be solved by the following 

generalized eigenvalue decomposition, 

T TL L W L L W=                                                                (8) 

where 1 2 1 2( , ,..., ),q q      =    is the generalized 

eigenvalue matrix and 1 2( , ,..., )qW w w w= is the generalized 

eigenvector matrix. The optimization goal of Equation (5) is 

exactly the main diagonal element of  . 

2.4 Support vector data description 

As a one-class grouping method, SVDD is applied in this 

work for a fusion of multiple monitoring statistics. The basic 

idea of SVDD is to build a minimal hypersphere region, 

which can accept target samples but reject non-targets. Given 

a training data set  1 2, ,..., kH h h h= , the optimization 

objective is given as follows (Tax and Duin, 2004), 
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where R  and a  are the radius and centre of the hypersphere. 

The relaxation factor   and the penalty weight C  are 

introduced to improve model robustness. To solve this 

optimization problem, a Lagrange multiplier e is introduced 

and the duality problem of Equation (9) is given as follows, 
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where ( , )e fK h h is the kernel function. In this study, Gaussian 

kernel is selected, which is given as follows, 
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Based on the above calculations, the final radius of the 

hypersphere is given as follows, 
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e e f

k e k e e f e f

h H h H h H

R h K h h K h h  
  

= − +              (12) 

Then the distance between a new test sample point and the 

hypersphere centre is given as follows, 
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is e e e f e f
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If isD R , it indicates the sample point is normal. Otherwise, 

the point will be rejected as an outlier. 

3. PROCESS MONITORING METHOD BASED ON 

INTEGRATED STATISTIC OF PCA AND SFA 

To better monitor the static and dynamic relations, a dynamic 

process monitoring method is proposed by separating static 

variables from dynamic variables. In this section, the 

framework of the proposed dynamic process monitoring 

based on integrated static of PCA and SFA and its 

implementation procedures are presented. 

3.1 Dynamic and static variable grouping  

As mentioned before, the main idea of the proposed method 

is to classify process variables into static part and dynamic 

part and employ proper algorithms to achieve better feature 

extraction. Therefore, the variable group according to their 

dynamic characteristics is implemented before establishing 

the process monitoring model. As shown in Figure 1, MI 

between each original variable sequence and the sequence 

with different time lag orders is introduced to measure the 

autocorrelation of each variable, and further represent its 

process dynamic characteristic. Regarding the acquisition of 

thresholds, a thousand Gaussian random sequences are 

generated to calculate the MI between independent sequences 

and kernel density estimation is employed to estimate its 

distribution. A threshold is determined under a 99% 

confidence level. For variable grouping, if the maximum MI 

value between a variable and its sequence with different time 



 

 

     

 

lag orders exceeds its corresponding threshold, it is grouped 

into the dynamic variable category, otherwise, it is grouped 

into the static variable category.  

Random Normally 

distributed sequences

(x1, ,xn)

Kernel density 

estimation of mutual 

inforamtion

Training data

(y1, ,ym)

Variable y1 Variable ym

Calculate MI between yi 

and yi with different 

time lag orders 

Maximal MI

Exceed the 

thresholds?

Dynamic variable  Static variable 

Yes
No

Calculate MI 

between random 

sequences

Determine 

thresholds under 

99% confidence

...

 

Fig. 1.  Flowchart of the dynamic and static variable grouping 

method. 

3.2 The framework of the dynamic process monitoring 

method based on integrated Statistic of PCA and SFA 

After the variable grouping mentioned in last section, the 

proposed process monitoring model can be established in 

static part and dynamic part respectively. The flowchart of 

the proposed dynamic process monitoring method is shown 

in Figure 2, which contains offline modelling and online 

monitoring. 

Offline modelling: 

(1) Select historical data under normal conditions and 

normalize the selected data. 

(2) Group the selected data into static and dynamic variables 

on the basis of the previous variable grouping method. 

(3) Input the grouped static variables into a PCA model to 

construct T2 and SPE statistics, while the dynamic 

variables are input into an SFA model to construct T2, Te
2, 

S2 and Se
2 statistics. 

(4) Integrate the constructed statistics into a SVDD model to 

determine the hypersphere range under normal 

conditions. 

Online monitoring: 

(1) Normalize the real-time data with parameters obtained 

from historical data. 

(2) Group real-time data into static and dynamic variables 

according to the grouping mode during offline modelling. 

(3) Input static variable into the constructed PCA model and 

dynamic variable into the SFA model respectively to 

obtain real-time statistics. 

(4) Input the real-time statistics into the trained SVDD 

fusion model to obtain a process monitoring result. 

By considering static and dynamic characteristics 

respectively through variable grouping, PCA and SFA are 

employed for both static and dynamic feature extraction to 

achieve a better dynamic process monitoring. Finally, an 

integrated statistic by SVDD can be used to comprehensively 

measure the changes in each feature space. The performance 

of the proposed method will be introduced in the following 

section. 

Historical data

Variable grouping

SFA model PCA model

T
2
 statistic Te

2
 statistic

S
2
 statistic Se

2
 statistic

Dynamic feature extraction

T
2
 statistic SPE statistic

Static feature extraction

SVDD fusion model

Real-time data

Data normalization

Data normalization

Dynamic variables Static variables Dynamic variables Static variables

SFA model PCA model

T
2
 statistic Te

2
 statistic

S
2
 statistic Se

2
 statistic

T
2
 statistic SPE statistic

SVDD fusion model

Integrated statistic 

exceeds the threshold?

Fault detected

Yes

No

 

Fig. 2.  Flowchart of the proposed process monitoring 

framework. 

4. CASE STUDY 

In this section, the proposed process monitoring method 

based on integrated statistic of PCA and SFA is applied to the 

TEP, and the results are compared with related methods. 

4.1 Tennessee Eastman process  

TEP is a widely used chemical benchmark process simulated 

by Eastman Chemical Company (Downs and Vogel, 1993), 

which has been well adopted to test newly proposed process 

control and monitoring methods. The data sets employed in 

this work are downloaded from the website provided by the 

Braatz research group (Braatz, 2002). The process contains 5 

chemical operation units and a total of 52 variables. The 

variables used in this work are shown in Table 1, including 

11 manipulated variables and 22 continuous process 

variables, and 19 composition variables are excluded for their 

long sampling periods. One data set obtained from normal 



 

 

     

 

operating conditions is applied to train the process 

monitoring model, and 18 fault data sets excluding fault 3, 9 

and 15, which are difficult to monitor for their subtle 

deviations, are applied for online monitoring. The sampling 

frequency is 3 minutes and all the faults are introduced at the 

160th sample. Detailed information about these faults can be 

obtained from Downs and Vogel’s paper.  

Table 1.  Process variables in TEP 

No.  Description No. Description 

1 A feed 18 Stripper temperature 

2 D feed 19 Stripper steam flow 

3 E feed 20 Compressor work 

4 A and C feed 21 Reactor cooling water 

outlet temperature 

5 Recycle flow 22 Separator cooling 

water outlet 

temperature 

6 Reactor feed rate 23 D feed flow 

7 Reactor pressure 24 E feed flow 

8 Reactor level 25 A feed flow 

9 Reactor temperature 26 A and C feed flow 

10 Purge rate 27 Compressor recycle 

valve 

11 Product separator 

temperature 

28 Purge valve 

12 Product separator level 29 Separator pot liquid 

flow 

13 Product separator 

pressure 

30 Stripper liquid prod 

flow 

14 Product separator 

underflow 

31 Stripper steam valve 

15 Stripper level 32 Reactor cooling water 

flow 

16 Stripper pressure 33 Condenser cooling 

water flow 

17 Stripper underflow   

4.2 Grouping of dynamic and static variables 

As mentioned in previous section, the first step of the 

proposed method is to group process variables into static part 

and dynamic part according to autocorrelation analysis. 

Mutual information between original sequence and sequence 

with different time lag orders is applied to measure variable 

autocorrelation. In order to determine a confidence interval, a 

thousand sets of random normally distributed data are 

generated and applied to estimate the distribution of variable 

autocorrelation under static conditions using kernel density 

estimation with a 99% confidence level. As shown in Figure 

3, the mutual information between the reactor level and its 

sequence with different time lag orders is small, which means 

the sequence of reactor level is not autocorrelated, and 

therefore it can be regarded as a static variable. For the 

stripper temperature, the mutual information is at a large 

value under different time lag orders, indicating a strong 

autocorrelation of this variable. Mutual information between 

each variable sequence and its sequence with different time 

lag orders is calculated and compared with the thresholds for 

variable grouping. The results are shown in Table 2. The 33 

variables are grouped into 13 static variables and 20 dynamic 

variables. 

 

                Fig. 3. (a)                                 Fig. 3. (b) 

Fig. 3.  Autocorrelation analysis of variables in TEP: (a) 

Reactor level; (b) Stripper temperature. 

Table 2.  Variable groups in TEP 

Static variables 4,5,6,8,10,12,14,15,17,26,29,30,33 

Dynamic 

variables 

1,2,3,7,9,11,13,16,18,19,20,21,22,23,24, 

25,27,28,31,32 

4.3 Process monitoring with the integrated statistic 

Since the variables have been grouped into static part and 

dynamic part, PCA and SFA are employed to extract static 

and dynamic data feature respectively and calculate statistics 

under normal operating conditions. The T2, SPE statistics 

obtained from PCA and T2, Te
2, S2 and Se

2 statistics obtained 

from SFA are integrated into the SVDD model for process 

monitoring.  The fault data sets in TEP are input into the 

method to obtain the monitoring results. The results are 

compared with related methods, PCA, DPCA and SFA.  

As shown in Figure 4, the proposed method is applied to 

monitor fault 10, which is a random variation fault that 

happened in the temperature of C feed. The statistic that first 

identifies the fault is displayed. For PCA and DPCA, this 

fault is difficult to detect at its early stage because the 

magnitude of this abnormal deviation is small. For SFA, the 

fault can be detected at the 182nd sample, and the fault is 

detected at the 180th sample by the proposed method. The 

results show that the proposed method has a better 

performance on dynamic process monitoring than traditional 

PCA and other dynamic process monitoring methods. 

Although several statistics exceed the threshold before the 

fault has been introduced in DPCA and the proposed method, 

they will not be considered as faults because they do not 

continuously exceed the threshold. 

The fault alarm time of all 18 faults in TEP obtained by PCA, 

DPCA, SFA and the proposed method is shown in Table 3. 

The fault alarm time of a method is obtained when one of its 

statistics exceeds its threshold. It can be obviously obtained 

that almost all faults can be earlier detected by the proposed 

method. It can be concluded that the idea of separating static 

variables from dynamic variables and applying proper 



 

 

     

 

algorithms to extract static and dynamic feature respectively 

is beneficial for dynamic process monitoring. 

 

                Fig. 4. (a)                              Fig. 4. (b) 

 

                Fig. 4. (c)                              Fig. 4. (d) 

Fig. 4. Process monitoring results for fault 10 in TEP: (a) 

PCA; (b) DPCA; (c) SFA; (d) The proposed method. 

Table 3.  Fault alarm time of PCA, DPCA, SFA and the 

proposed method for TEP 

 Fault 

No. 

PCA DPCA SFA  Proposed 

method 

1 163 163 161 161 

2 175 173 174 170 

4 161 161 161 161 

5 161 161 161 161 

6 161 161 161 161 

7 161 161 161 161 

8 180 181 180 175 

10 209 194 182 180 

11 166 166 166 165 

12 163 162 162 163 

13 201 198 201 197 

14 161 162 161 161 

16 182 177 167 166 

17 182 180 180 180 

18 244 240 239 238 

19 346 171 170 170 

20 246 241 223 223 

21 417 420 402 400 

5. CONCLUSIONS 

In this work, a novel idea to solve dynamic process 

monitoring is proposed by considering the feature extraction 

of dynamic variables and static variables separately. Since the 

variables are grouped into static part and dynamic part by 

mutual information according to their autocorrelation, PCA is 

used to extract static variable feature and SFA is employed to 

extract dynamic variable feature. In order to comprehensively 

measure the changes of each feature space in the dynamic 

and static parts, the statistics are integrated by a SVDD 

model to give a final process monitoring decision. Case study 

on TEP shows the superiority of the proposed method 

compared with related methods. The proposed method 

provides an effective way to monitor both static and dynamic 

relations in dynamic processes, especially for large-scale 

industrial processes, as the operation of variable grouping is 

also helpful to reduce the calculation loads.    
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