

Data-based Approach to Predict Feasibility and Computational Requirement for
Chemical Production Scheduling

Boeun Kim* Christos T. Maravelias**

*Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
(e-mail: bk3460@princeton.edu).

** Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
(e-mail: maravelias@princeton.edu).

** Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA

Abstract: Online scheduling requires frequent re-optimization to generate a schedule repeatedly accounting
for updated information. However, if the time between re-optimizations is too short, then finding good,
and in some cases even feasible, solutions can become challenging. This work proposed an approach, based
on supervised learning techniques, to predict whether a given instance is feasible and, given that it is
feasible, what is the computational requirement to solve the instance. Towards this goal, we introduce
various types of features related to problem size, scheduling horizon, and processing times and costs that
can be derived based on domain knowledge. Logistic regression and random forests models are trained as
feasibility classifier and computational time regressor, respectively, using the dataset obtained from a wide
variety of instances. Both show good predictive performances: F1 score ~0.90 and AUC ~0.98 for the
feasibility classification and MSE ~0.5 for the computational time prediction. Finally, we discuss the
features that are shown to be significant in the cases of makespan minimization and cost minimization.

Keywords: Batch plant scheduling, mixed integer programming, supervised learning, feasibility
classification, algorithm performance prediction

1. INTRODUCTION

Online scheduling, in which a schedule is re-optimized in real-
time with updated information, has received considerable
attention in recent years (Gupta et al., 2016; Gupta and
Maravelias, 2019) due to the increasing demand for smart
manufacturing. These studies have revealed that frequent re-
optimization is key in achieving good closed-loop
performance. Chemical production scheduling problem is
often formulated as a mixed-integer programming (MIP)
model, however, state-of-the-art algorithms for such
combinatorial problems often exhibit high variation in
computational time across instances even if their problem size
are the same (Hitter et al., 2014). Moreover, some of these
instances maybe infeasible if no model modifications are made
(e.g., introduction of lost sales or lateness). Therefore, there is
a need for developing methods that would allow us to predict,
fast, whether an instance will be feasible and the
computational requirements needed for its solution.

Although instance characteristics (e.g., horizon length, batch-
unit ratio, load, etc.) can make a problem instance infeasible or
hard to solve within a given time limit, our understanding of
what problem and instance features make a MIP scheduling
model computationally expensive is very limited. In the
computer science community, empirical hardness refers to the
required time to solve a given problem instance through a
given algorithm. Several studies have developed empirical
hardness models for combinatorial optimization problems

such as propositional satisfiability (SAT), constraint
programming (CSP), traveling salesperson (TSP), and
combinatorial auction winner determination (Smith-Miles and
Lopes, 2012; Hutter et al., 2014; Leyton-Brown et al., 2009;
Leyton-Brown et al., 2014). Various supervised learning
methods (e.g., Ridge regression, Gaussian process regression,
regression trees, neural networks) have been used to predict
how long an algorithm will take to solve an instance. Recently,
(Muñoz and Capón-García, 2019) proposed a multi-label
classification strategy for selecting a suitable scheduling
model and solution approach to solve a certain production
scheduling problem according to its objective function,
decisions, and production and resource constraints. However,
there are no methods establishing relationships between
instance characteristics and model performance.

Accordingly, we use supervised machine learning (ML)
techniques to predict the feasibility and computational
requirement for chemical production scheduling in this work.
In particular, we study short-term scheduling in single-stage
multiple-unit environment and consider two objective
functions, i.e., makespan minimization and cost minimization.
We use a large number of instances having different
characteristics (e.g., number of batches and units, processing
times and costs, horizon length, etc.). Then, using a specific
model, we gather computational cost and solution quality for
each instance. To obtain generalized supervised learning
models, we introduce various problem-specific instance
features, which we then utilize to build a logistic regression
model that categorizes the feasibility of an instance, and a

random forest model to predict the CPU time required by the
solver to solve a feasible instance.

2. BACKGROUND

2.1 Problem Statement

We study the short-term batch plant scheduling in the single-
stage with parallel-unit environment. Given production recipe
(e.g., processing time and cost) and batching decisions (e.g.,
batch number and dates), we aim to find optimal assignment
and sequencing/timing of given batches to units in terms of
two objective functions: makespan minimization and cost
minimization. We also make the following assumptions: (i) all
batches can be carried out in any unit, (ii) preemption is not
allowed, (iii) all processing parameters are integers, (iv)
processing times/costs and release/due times are deterministic,
and (v) changeover between batches, utility, and other shared
resources are not considered.

We introduce the following indices, sets, and parameters to
describe the scheduling model and instance. We define a set of
batches 𝑖𝑖 ∈ 𝐈𝐈 and a set of units 𝑗𝑗 ∈ 𝐉𝐉. The time and cost of
batch 𝑖𝑖 processed in unit 𝑗𝑗 are denoted by 𝜏𝜏𝑖𝑖𝑖𝑖 and 𝛾𝛾𝑖𝑖𝑖𝑖 ,
respectively. Release/due time for batch 𝑖𝑖 are represented by
𝜌𝜌𝑖𝑖/𝜀𝜀𝑖𝑖 and the scheduling horizon of an instance is given by 𝜂𝜂.
For the supervised learning models, we use 𝑥𝑥𝑚𝑚 = [𝑥𝑥1, . . , 𝑥𝑥𝑛𝑛]𝑇𝑇
and 𝑦𝑦𝑚𝑚 to denote the input vector including n features and
output of instance sample 𝑚𝑚 ∈ 𝐌𝐌, respectively.

2.2 Discrete-Time MIP Scheduling Model

We adopt a discrete-time representation, in which 𝜂𝜂 is
uniformly discretized with a period width of 𝛿𝛿, and use index
𝑡𝑡 ∈ 𝐓𝐓 = {0, 1, 2, … , |𝐓𝐓|} to denote the time points and periods.
𝛿𝛿 is typically chosen as the greatest common factor of all time-
related parameters. The converted parameters in terms of the
discrete-time grid are obtained by dividing their original
values by 𝛿𝛿. In this study, all the processing parameters are
integers and 𝛿𝛿 = 1, so we use the original notations of time-
related parameters.

We use the discrete-time MIP scheduling model (Maravelias,
C.T., 2021) that consists of batch-unit assignment (1), unit
utilization (2), and release/due times restriction (3).

��𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
 𝑖𝑖∈𝐓𝐓𝑖𝑖∈𝐉𝐉

= 1 ∀𝑖𝑖 ∈ 𝐈𝐈 (1)

� � 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′
𝑖𝑖′=𝑖𝑖

𝑖𝑖′=𝑖𝑖−𝜏𝜏𝑖𝑖𝑖𝑖+1𝑖𝑖∈𝐈𝐈

≤ 1 ∀𝑗𝑗 ∈ 𝐉𝐉, 𝑡𝑡 ∈ 𝐓𝐓 (2)

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 0 ∀𝑖𝑖 ∈ 𝐈𝐈, 𝑗𝑗 ∈ 𝐉𝐉, 𝑡𝑡 < 𝜌𝜌𝑖𝑖 , 𝑡𝑡 > 𝜀𝜀𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑖𝑖 (3)

where binary variable 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 implies batch 𝑖𝑖 starts in unit 𝑗𝑗 at
time point 𝑡𝑡 when 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1 . We enforce that each batch is

processed exactly once by (1), and the unit can process at most
one batch at any time point by (2).

We consider two objective functions: makespan minimization
(4) and cost minimization (5).

min𝑀𝑀𝑀𝑀 :𝑀𝑀𝑀𝑀 ≥��𝛿𝛿�𝑡𝑡 + 𝜏𝜏𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐓𝐓𝑖𝑖∈𝐉𝐉

 ∀ 𝑖𝑖 ∈ 𝐈𝐈 (4)

min���𝛾𝛾𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐓𝐓

�
𝑖𝑖∈𝐉𝐉𝑖𝑖∈𝐈𝐈

 (5)

where 𝑀𝑀𝑀𝑀 ∈ ℝ+ denotes the makespan which is the time
required to finish all given batches. We ensure that the 𝑀𝑀𝑀𝑀 is
greater than or equal to the finish times of every batch.

2.3 Classification Model

The general aim of supervised ML algorithms is to develop an
empirical model from data to predict a given instance’s
qualitative output (in classification) or quantitative output (in
regression). To build the feasibility classification model, we
employ logistic regression, one of the widely used statistical
methods for the binary classification due to its simplicity and
probabilistic interpretability (Komarek, P. 2004). If a given
instance has any feasible integer solution, it belongs to the
class labeled by 0 (i.e., 𝑦𝑦𝑚𝑚 =0). Otherwise, one belongs to the
class labeled by 1 (i.e., 𝑦𝑦𝑚𝑚 = 1). We introduce 𝑧𝑧𝑚𝑚 to denote
the net input of an instance sample 𝑚𝑚, calculated as a linear
weighted combination of features: 𝑧𝑧𝑚𝑚 = 𝑤𝑤𝑇𝑇𝑥𝑥𝑚𝑚 + 𝑤𝑤0 where
𝑤𝑤0 represents the constant term and 𝑤𝑤 = [𝑤𝑤1, … ,𝑤𝑤𝑛𝑛]𝑇𝑇 is the
vector of the coefficients. The estimated coefficient (except for
𝑤𝑤0) indicates the linear relationship between the log-odds and
the corresponding feature. In the logistic regression, 𝑧𝑧𝑚𝑚 for
each instance passes through the logistic function, i.e., sigmoid
function: 𝜎𝜎(𝑧𝑧𝑚𝑚) = 1/(1 + 𝑒𝑒−𝑧𝑧𝑚𝑚), that converts the calculated
𝑧𝑧𝑚𝑚 (any real value) into certain constant between [0, 1]. The
converted value corresponds to the conditional probability that
the given instance belongs to the class 1. Note that 𝜎𝜎(𝑧𝑧𝑚𝑚)
becomes 1 as 𝑧𝑧𝑚𝑚 increases, and 𝜎𝜎(𝑧𝑧𝑚𝑚) tends towards 0 as 𝑧𝑧𝑚𝑚
decreases. Finally, the threshold function such that

�1 if 𝜎𝜎(𝑧𝑧𝑚𝑚) ≥ 𝜖𝜖
0 otherwise

 (6)

decides the class to where a given instance belongs.

We use the penalized logistic regression that finds the optimal
𝑤𝑤 minimizing the following negative log-likelihood with L1
penalty term (Ravikumar et al., 2010):

min
𝑤𝑤

��−𝑦𝑦𝑚𝑚 log�𝜎𝜎(𝑧𝑧𝑚𝑚)�
𝑚𝑚∈𝐌𝐌

− (1 − 𝑦𝑦𝑚𝑚) log�1 − 𝜎𝜎(𝑧𝑧𝑚𝑚)�� + 𝑐𝑐‖𝑤𝑤‖1
(7)

where 𝑐𝑐 is the hyperparameter that controls the number of
nonzero weights (feature selection) and helps in retaining

meaningful features and reducing overfitting. In this work, the
logistic regression is solved by using “saga” solver in scikit-
learn Python library (Pedregosa et al., 2011), and 𝜖𝜖 = 0.5.

We can evaluate the binary classification performance by
various performance metrics based on the confusion matrix
(Aggarwal, C.C., 2014). Such metrics are accuracy, precision,
recall, F1 score, and area under receiver operating
christianistic curve (AUC). Table 1 shows the confusion
matrix for the binary classification, whose elements refer to the
number of samples classified according to the actual and
predicted classes. All instances correctly classified (i.e., TP
and TN) are located in the diagonal of the confusion matrix.

Accuracy, the fraction of the correct predictions, i.e., (TP +
TN)/(TP + FN + FP + TN), is the most intuitive performance
measure but can be biased. Recall or precision is the ratio of
the TP to the total actual positives (TP + FN) or to the total
predicted positives (TP + FP), respectively. F1 score, one of
the commonly used metrics, is defined as the harmonic mean
of the precision and recall and thus accounts for both FP and
FN errors. The higher F1 score, the better. The receiver
operating christianistic (ROC) curve is generated by plotting
the TP rate (i.e., recall) against the FP rate (i.e., FP/(TN +
FP)). AUC is widely used to assess the classifier’s ability to
discriminate classes. A no skill classifier has an AUC score of
0.5, whereas a perfect one has an AUC score of 1.0. The higher
the AUC, the better the model is at distinguishing between the
classes.

Table 1. Confusion matrix for binary classification

 Actual class = 1 Actual class = 0
Predicted class

= 1
True positive

(TP)
False positive

(FP)
Predicted class

= 0
False negative

(FN)
True negative

(TN)

2.4 Regression Model

Random forests (RF) yielded the best performance in
predicting the required computational costs of SAT, TSP, and
MIP among the different supervised ML methods in the
previous work (Hutter et al., 2014). Thus, in this work, we
employ the RF algorithm to build the model that can predict
the computational time required for solving a given scheduling
MIP instance. RF, developed by (Breiman, L., 2001), is an
ensemble of randomly trained decision trees. A decision tree
is a collection of leaf nodes that partition the input space into
disjoint regions, 𝑅𝑅1, … ,𝑅𝑅𝐾𝐾 and approximates the output in
each region as a constant. Starting from the root node, each
internal node in a decision tree splits samples into two
branches according to a decision rule. For instance, if a sample
whose feature selected (split feature) is larger than its split
point goes to the right branch of an internal node. Otherwise,
a sample goes to the left branch. Consequently, the prediction
by the trained regression tree 𝑦𝑦�𝑚𝑚 is given by

𝑦𝑦�𝑚𝑚(𝑥𝑥𝑚𝑚) = �𝑦𝑦�𝑘𝑘𝐼𝐼𝑥𝑥𝑚𝑚∈𝑅𝑅𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 (8)

where 𝑦𝑦�𝑘𝑘 represents the average output of training samples in
𝑅𝑅𝑘𝑘And 𝐼𝐼 is the indicator function which takes 1 if given 𝑥𝑥𝑚𝑚
belongs to region 𝑅𝑅𝑘𝑘 and 0 otherwise (James et al., 2013).
Training of the decision tree is to learn the decision rule of
each node, minimizing the sum of squared errors between the
actual and predicted outputs. The decision tree is capable of
modeling complex interactions with small bias but is likely to
have high variance. We can overcome this limitation by
combining multiple regression trees into an ensemble. Each
tree is trained on subsamples of the training data, and RF
provides the final prediction by averaging the predictions
across the trees (Breiman, L., 2001). Therefore, RF is less
prone to overfitting. In this work, we use CART (Classification
and Regression Trees) algorithm in scikit-learn Python library
(Pedregosa et al., 2011) to establish the regression trees, and
decide the number of trees and tree depth through 5-fold cross
validation. The performance of the trained regression model is
evaluated in terms of mean squared error (MSE) between the
computational time predicted by the model and its true value.

3. PROBLEM INSTANCES AND DATA GENERATION

We account for a wide range of instance attributes (i.e., batch
number |𝐈𝐈|, unit number |𝐉𝐉|, processing times 𝜏𝜏𝑖𝑖𝑖𝑖, processing
costs 𝛾𝛾𝑖𝑖𝑖𝑖, and due times 𝜌𝜌𝑖𝑖) to build the reliable classifier and
regressor. Their investigated ranges are summarized in Table
2. For each unit number, the maximum batch number tested
has the ratio of the batch number to the unit number around (or
above) 8. Other processing parameters are drawn from uniform
distributions over respective considered ranges. More details
are described in the subsequent subsections.

Table 2. Summary of instance attributes for data
generation

 Range Range

|𝐉𝐉| {3, ..., 8}

|𝐈𝐈|

{10, …, 30} if |𝐉𝐉|= 3 or 4
{10, …, 40} if |𝐉𝐉|= 5
{10, …, 50} if |𝐉𝐉|= 6
{10, …, 55} if |𝐉𝐉|= 7
{10, …, 65} if |𝐉𝐉|= 8

𝜏𝜏𝑖𝑖𝑖𝑖 {3, ..., 9}

𝛾𝛾𝑖𝑖𝑖𝑖 {10, ..., 16}

𝜌𝜌𝑖𝑖 Random

We use the solver CPLEX 12.8.0 in GAMS 26.1.0 to solve the
discrete-time MIP scheduling models with the generated
problem instances. We set the absolute and relative optimality
criteria as 0.999 and 0 for makespan minimization and cost
minimization, respectively. The CPU time resource limit is 3
hours (i.e., 10,800 seconds). All optimizations are executed on
a cluster of 24 Intel Xeon machines running CentosOS
operating system.

We collect the qualitative and quantitative optimization results
of each scheduling MIP instance. Model and solver statuses in
GAMS solution report provide information on whether a given

instance has any feasible solution and whether an optimal
solution of the feasible instance can be found within the given
time limit. We utilize such information to label a problem
instance by 1 or 0 for the feasibility classification. Also, we
measure CPU time in seconds that the solver takes to solve a
given instance for the computational time prediction.

3.1 Makespan Minimization

For given unit and batch numbers (|𝐉𝐉| and |𝐈𝐈|), processing
times 𝜏𝜏𝑖𝑖𝑖𝑖 are sampled from a discrete uniform distribution
reported in Table 2. To generate a list of candidates for 𝜂𝜂 that
will be tested, we introduce a base scheduling horizon 𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 as
follow:

𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �∑ 𝜏𝜏𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴

𝑖𝑖∈𝑰𝑰
|𝐉𝐉|

� (9)

where 𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴 is the average processing time of batch 𝑖𝑖, defined
as ∑ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖∈𝐉𝐉 /|𝐉𝐉|. To analyze the effect of 𝜂𝜂 on the instance’s
feasibility and computational time, we calculate horizon
lengths, i.e., {⌈0.7𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ⌉, ⌈0.75𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ⌉, … , ⌈1.3𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⌉} and
remove any duplicate values; all processing data except for 𝜂𝜂
remain the same. In makespan minimization, we assume that
the release and due times for all batches are 0 and 𝜂𝜂 ,
respectively. We generate 2,000 sets of the processing data for
each combination of unit and batch numbers and explore at
most 13 horizon lengths for each set.

3.2 Cost Minimization

For cost minimization, processing times 𝜏𝜏𝑖𝑖𝑖𝑖 and costs 𝛾𝛾𝑖𝑖𝑖𝑖 are
uniformly drawn for given unit and batch numbers as
presented in Table 2. In addition to this, 𝜌𝜌𝑖𝑖 = 0 for all batches
whereas due times 𝜀𝜀𝑖𝑖 are sampled from a discrete uniform
distribution, i.e., [⌈(0.9 − 𝑑𝑑)𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⌉, ⌈(0.9 + 𝑑𝑑)𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⌉] where
the parameter 𝑑𝑑 controls the variation of due times and 𝑑𝑑 =
0.2, 0.3 or 0.4. Then, 𝜂𝜂 is given by the maximum value of 𝜀𝜀𝑖𝑖.
We generate 5,000 sets of processing time, cost, and due time
data for each combination of unit and batch numbers.

4. PROBLEM-SPECIFIC FEATURES

Feature engineering is the process of creating relevant features
from raw data using domain knowledge which help improve
the performance of supervised ML models. We introduce
novel problem-specific features summarized in Table 3 and
categorize them into size-, time-, cost- and due date-related
features. Subscripts AVG and STD stand for the average and
standard deviation of the corresponding parameter,
respectively. For example, 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ ∑ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 |𝐉𝐉|⁄ |𝐈𝐈| and
𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝜀𝜀𝑖𝑖𝑖𝑖 /|𝐈𝐈|.

4.1 Makespan Minimization

For makespan minimization, we account for size- and time-
related features. Size-related features include the numbers of

batch and unit, their product/ratio, the numbers of equations
and variables, and sparsity of an instance. In this work, we
define sparsity as the ratio of the number of nonzero elements
to the total element numbers in the coefficient matrix, i.e., the
product of the numbers of variables and constraints.

Table 3. Summary of features

Size-related features Time-related features
Batch number 𝜂𝜂
Unit number 𝜂𝜂/𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

Size I (|𝐈𝐈| × |𝐉𝐉|) Load

Size II (|𝐈𝐈| × |𝐉𝐉| × 𝜂𝜂) max
𝑖𝑖,𝑖𝑖

�𝜏𝜏𝑖𝑖𝑖𝑖� /𝜂𝜂

Batch-unit ratio 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴
Number of variables 𝜏𝜏𝑆𝑆𝑇𝑇𝑆𝑆
Number of equations 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴/|𝐉𝐉|

Sparsity 𝜋𝜋𝐴𝐴𝐴𝐴𝐴𝐴𝜏𝜏
 𝜋𝜋𝑆𝑆𝑇𝑇𝑆𝑆𝜏𝜏
 𝜑𝜑𝐴𝐴𝐴𝐴𝐴𝐴𝜏𝜏
 𝜑𝜑𝑆𝑆𝑇𝑇𝑆𝑆𝜏𝜏

Cost-related features Due date-related features
𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴
𝛾𝛾𝑆𝑆𝑇𝑇𝑆𝑆 𝜀𝜀𝑆𝑆𝑇𝑇𝑆𝑆
𝜋𝜋𝐴𝐴𝐴𝐴𝐴𝐴
𝛾𝛾 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴
𝜋𝜋𝑆𝑆𝑇𝑇𝑆𝑆
𝛾𝛾 𝜇𝜇𝑆𝑆𝑇𝑇𝑆𝑆

𝜑𝜑𝐴𝐴𝐴𝐴𝐴𝐴
𝛾𝛾 𝜆𝜆𝐴𝐴𝐴𝐴𝐴𝐴

𝜑𝜑𝑆𝑆𝑇𝑇𝑆𝑆
𝛾𝛾 𝜆𝜆𝑆𝑆𝑇𝑇𝑆𝑆

Next, time-related features derived from the scheduling
horizon are 𝜂𝜂 and 𝜂𝜂/𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . Based on processing times 𝜏𝜏𝑖𝑖𝑖𝑖 ,
𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 , 𝜏𝜏𝑆𝑆𝑇𝑇𝑆𝑆 , 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴/|𝐉𝐉| and load are considered. The load
represents how much units would be utilized for processing
given batches in terms of time. It is defined as the ratio of the
averaged time required for processing all batches and the
production capacity with the given scheduling horizon, i.e.,
∑ 𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 /(|𝐉𝐉| × 𝜂𝜂). Besides, we introduce 𝜋𝜋𝑖𝑖𝑖𝑖′>𝑖𝑖

𝜏𝜏 and 𝜑𝜑𝑖𝑖𝑖𝑖′>𝑖𝑖
𝜏𝜏 to

denote the inter-unit and inter-batch dissimilarity in processing
times 𝜏𝜏𝑖𝑖𝑖𝑖, respectively. They are given by

𝜋𝜋𝑖𝑖𝑖𝑖′>𝑖𝑖
𝜏𝜏 = ∑

�𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖𝑖𝑖′�− min
𝑖𝑖,𝑖𝑖,𝑖𝑖′>𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖𝑖𝑖′��

max
𝑖𝑖,𝑖𝑖,𝑖𝑖′>𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖𝑖𝑖′��− min
𝑖𝑖,𝑖𝑖,𝑖𝑖′>𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖𝑖𝑖′��
𝑖𝑖 (10)

𝜑𝜑𝑖𝑖𝑖𝑖′>𝑖𝑖
𝜏𝜏 = ∑

�𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖′𝑖𝑖�− min
𝑖𝑖,𝑖𝑖′>𝑖𝑖,𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖′𝑖𝑖��

max
𝑖𝑖,𝑖𝑖′>𝑖𝑖,𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖′𝑖𝑖��− min
𝑖𝑖,𝑖𝑖′>𝑖𝑖,𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖′𝑖𝑖��
𝑖𝑖 (11)

based on the normalized absolute similarity metric (also
known as Manhattan distance). Their respective averages and
standard deviations are considered as time-related features:
𝜋𝜋𝐴𝐴𝐴𝐴𝐴𝐴𝜏𝜏 , 𝜋𝜋𝑆𝑆𝑇𝑇𝑆𝑆𝜏𝜏 , 𝜑𝜑𝐴𝐴𝐴𝐴𝐴𝐴𝜏𝜏 , and 𝜑𝜑𝑆𝑆𝑇𝑇𝑆𝑆𝜏𝜏 .

4.2 Cost Minimization

In addition to the previously introduced features, we consider
cost- and due date-related features for cost minimization. Cost-
related features are based on processing costs 𝛾𝛾𝑖𝑖𝑖𝑖 : 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴 and
𝛾𝛾𝑆𝑆𝑇𝑇𝑆𝑆. In a similar way to calculating the dissimilarity features
in terms of 𝜏𝜏𝑖𝑖𝑖𝑖, we introduce 𝜋𝜋𝑖𝑖𝑖𝑖′>𝑖𝑖

𝛾𝛾 and 𝜑𝜑𝑖𝑖𝑖𝑖′>𝑖𝑖
𝛾𝛾 to denote the

inter-unit and inter-batch dissimilarity in 𝛾𝛾𝑖𝑖𝑖𝑖, respectively, and
account for their averages and standard deviations, i.e., 𝜋𝜋𝐴𝐴𝐴𝐴𝐴𝐴

𝛾𝛾 ,
𝜋𝜋𝑆𝑆𝑇𝑇𝑆𝑆
𝛾𝛾 , 𝜑𝜑𝐴𝐴𝐴𝐴𝐴𝐴

𝛾𝛾 , and 𝜑𝜑𝑆𝑆𝑇𝑇𝑆𝑆
𝛾𝛾 .

As due date-related features, we basically consider 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴 and
𝜀𝜀𝑆𝑆𝑇𝑇𝑆𝑆. Others are derived from the time window length of batch
𝑖𝑖 defined as 𝜀𝜀𝑖𝑖 − 𝜌𝜌𝑖𝑖 indicating the allowable production time
period for batch 𝑖𝑖. Note that 𝜌𝜌𝑖𝑖 = 0 in this study, but the due
date-related features introduced here can be readily extended
to the problem case where 𝜌𝜌𝑖𝑖 are nonzero. We introduce two
parameters, i.e., 𝜇𝜇𝑖𝑖 and 𝜆𝜆𝑖𝑖; 𝜇𝜇𝑖𝑖 denotes the degree of overlap of
the time windows of batches at time period 𝑡𝑡, implying the
potential unit busyness at each period; 𝜆𝜆𝑖𝑖 is the ratio between
the time window length and the average processing time of
batch 𝑖𝑖, indicating the time window tightness for each batch.
Smaller 𝜆𝜆𝑖𝑖 means that batch 𝑖𝑖 has a tighter time window.
Finally, we account for their averages and standard deviations
as due date-related features as presented in Table 3.

5. RESULTS AND DISCUSSION

We train the classifier and regressor using scikit-learn Python
library (Pedregosa et al., 2011) for instances with each
objective function, and evaluate their performances on the test
data. As the data preprocessing for the classification model, we
perform a min-max normalization on feature data to make the
model less sensitive to the scale of features and more accurate.
Also, we make balanced data by under-sampling, i.e., reducing
the size of the abundant class. For the regression model, we
use a log-transformation for CPU time data to reduce its large
variability and thus improve the model’s predictive
performance.

Fig. 1. ROC curves of classification models on test data

5.1 Feasibility Classification

Both trained logistic regression models (with c of 10) for
makespan and cost minimization problems show good
classification performances (see Fig. 1). In makespan
minimization, F1 score and AUC on the test data are 0.90 and
0.978, respectively. They are 0.90 and 0.985, respectively, in
cost minimization. The developed classification models can
potentially allow online scheduler to avoid online optimization
executions that are (likely to be) infeasible.

Table 4 presents 7 top-ranked features selected in the classifier
and their estimated coefficients for each scheduling objective.
The coefficient indicates the expected change in the log-odds
of being in the class 1 (in which an instance has no feasible
solution) when the corresponding normalized feature increases
from 0 to 1 while fixing others. For makespan minimization,
the load is the most significant feature, and an instance with a
larger load has a higher possibility of having no feasible
solution. Of course, in this case, we can find any feasible
solution with a very long horizon, so 𝜂𝜂 has a negative
coefficient. Lower 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 and higher 𝜏𝜏𝑆𝑆𝑇𝑇𝑆𝑆 increase the
possibility that an instance has any feasible solution.
Increasing batch-unit ratio and size II negatively impacts the
instance’s feasibility. The batch number has a negative
coefficient since, in our data set, the instance with a very high
number of batches has a high unit umber and exhibits less
possibility that it belongs to class 1. For cost minimization, the
due date-related features are significant. Scheduling MIP
instance that has a less tight time window (i.e., larger 𝜆𝜆𝐴𝐴𝐴𝐴𝐴𝐴)
and a higher 𝜀𝜀𝑆𝑆𝑇𝑇𝑆𝑆 is likely to be feasible. On the other hand,
increasing 𝜆𝜆𝑆𝑆𝑇𝑇𝑆𝑆 and 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴 , and decreasing 𝜇𝜇𝑆𝑆𝑇𝑇𝑆𝑆 make an
instance infeasible. Batch-unit ratio and 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 have the same
effect on the instance feasibility as in makespan minimization.

Table 4. 7 top-ranked features from the classification

Makespan minimization Cost minimization
Feature Coefficient Feature Coefficient
Load 25.8 𝜆𝜆𝐴𝐴𝐴𝐴𝐴𝐴 -137

Batch number -22.4 Batch-unit ratio 73.0
𝜂𝜂 -17.7 𝜀𝜀𝑆𝑆𝑇𝑇𝑆𝑆 -50.1

𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 16.3 𝜆𝜆𝑆𝑆𝑇𝑇𝑆𝑆 20.3
Batch-unit ratio 16.16 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴 17.6

Size II 14.3 𝜇𝜇𝑆𝑆𝑇𝑇𝑆𝑆 -13.6
𝜏𝜏𝑆𝑆𝑇𝑇𝑆𝑆 -11.3 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 7.79

 5.2 Computational Time Prediction

Fig. 2 and Fig. 3 show visual comparisons of the actual and
predicted CPU times for two objective functions.
Quantitatively, MSEs for predicting log10 CPU time are 0.482
and 0.535 in makespan minimization and cost minimization,
respectively; the average misprediction is less than 5.5. Note
that the optimized tree-depth and number of trees are 25 and
30, respectively. For makespan minimization, the batch-unit
ratio has the highest feature importance, computed as the

normalized total MSE decrease by the corresponding feature.
Other significant features are 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 , 𝜏𝜏𝑆𝑆𝑇𝑇𝑆𝑆, and the inter-batch
and inter-unit dissimilarity in 𝜏𝜏𝑖𝑖𝑖𝑖 . Without the dissimilarity
features, MSE increases by 24 % in the case of makespan
minimization. For cost minimization, 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴 is the most
significant feature followed by 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 , Size II, and 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴 .
Increasing 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴 and 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 can lead to longer scheduling
horizon 𝜂𝜂 while fixing the batch and unit numbers. Thus,
without them, 𝜂𝜂 becomes the most important feature and MSE
is slightly increased. Other supervised learning algorithms
(e.g., a hybrid of linear regression and RF) can be tested to
improve the regression model’s interpretability and
performance, and it is our ongoing research.

Fig. 2. Predictions on test instances for makespan
minimization

Fig. 3. Predictions on test instances for cost minimization

6. CONCLUSIONS

We employed supervised machine learning techniques to
predict the performance of chemical production scheduling

MIP models. We trained logistic regression and random forests
models to predict model feasibility and computational time,
respectively, for two objective functions (i.e., makespan
minimization and cost minimization). The classifier and
regressor, trained based on the features introduced in this work,
yielded good predictive performances on the test instances for
both objectives. We focused on single-stage multiple-unit
environment, but this data-based approach can be extended to
other scheduling objective functions or more complex
production environments. Indeed, this work can support the
development of an intelligent online scheduler for choosing
adequate horizon and re-optimization time-step.

REFERENCES

Aggarwal, C.C. (2014). Data classification: Algorithms and
Applications, CRC Press, United States.

Breiman, L. (2001). Random forests. Machine Learning, 45(1),
5–32.

Gupta, D., Maravelias, C.T., and Wassick, J.M. (2016). From
rescheduling to online scheduling, Chemical Engineering
Research and Design, 116, 83–97.

Gupta, D., and Maravelias, C.T. (2019). On the design of
online production scheduling algorithms, Computers and
Chemical Engineering, 129, 106517.

Hutter, F., Xu, L., Hoos, H.H., and Leyton-Brown, K. (2014).
Algorithm runtime prediction: Methods & evaluation.
Artificial Intelligence, 206(1), 79–111.

James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An
introduction to statistical learning: With applications in
R, New York: Springer.

Komarek, P. (2004). Logistic regression for data mining and
high-dimensional classification, Carnegie Mellon
University.

Leyton-Brown, K., Nudelman, E. and Shoham, Y. (2009).
Empirical hardness models: Methodology and a case
study on combinatorial auctions. Journal of the ACM
(JACM), 56(4), 1–52.

Leyton-Brown, K., Hoos, H.H., Hutter, F., and Xu, L. (2014).
Understanding the empirical hardness of NP-complete
problems, Communications of the ACM, 57(5), 98–107.

Maravelias, C.T. (2021). Chemical Production Scheduling:
Mixed-Integer Programming Models and Methods,
Cambridge University Press.

Muñoz, E. and Capón-García, E. (2019). Systematic approach
of multi-label classification for production scheduling,
Computers & Chemical Engineering, 122, 238–246.

Smith-Miles, K., and Lopes, L. (2012). Measuring instance
difficulty for combinatorial optimization problems.
Computers and Operations Research, 39(5), 875–889.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,
É. (2011). Scikit-learn: machine learning in python,
Journal of Machine Learning Research, 12, 2825–2830.

Ravikumar, P., Wainwright, M.J. and Lafferty, J.D. (2010).
High-dimensional Ising model selection using ℓ1 -
regularized logistic regression. The Annals of Statistics,
38(3), 1287–1319.

