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Abstract: Online scheduling requires frequent re-optimization to generate a schedule repeatedly accounting 
for updated information. However, if the time between re-optimizations is too short, then finding good, 
and in some cases even feasible, solutions can become challenging. This work proposed an approach, based 
on supervised learning techniques, to predict whether a given instance is feasible and, given that it is 
feasible, what is the computational requirement to solve the instance. Towards this goal, we introduce 
various types of features related to problem size, scheduling horizon, and processing times and costs that 
can be derived based on domain knowledge. Logistic regression and random forests models are trained as 
feasibility classifier and computational time regressor, respectively, using the dataset obtained from a wide 
variety of instances. Both show good predictive performances: F1 score ~0.90 and AUC ~0.98 for the 
feasibility classification and MSE ~0.5 for the computational time prediction. Finally, we discuss the 
features that are shown to be significant in the cases of makespan minimization and cost minimization. 
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1. INTRODUCTION 

Online scheduling, in which a schedule is re-optimized in real-
time with updated information, has received considerable 
attention in recent years (Gupta et al., 2016; Gupta and 
Maravelias, 2019) due to the increasing demand for smart 
manufacturing. These studies have revealed that frequent re-
optimization is key in achieving good closed-loop 
performance. Chemical production scheduling problem is 
often formulated as a mixed-integer programming (MIP) 
model, however, state-of-the-art algorithms for such 
combinatorial problems often exhibit high variation in 
computational time across instances even if their problem size 
are the same (Hitter et al., 2014). Moreover, some of these 
instances maybe infeasible if no model modifications are made 
(e.g., introduction of lost sales or lateness). Therefore, there is 
a need for developing methods that would allow us to predict, 
fast, whether an instance will be feasible and the 
computational requirements needed for its solution.  

Although instance characteristics (e.g., horizon length, batch-
unit ratio, load, etc.) can make a problem instance infeasible or 
hard to solve within a given time limit, our understanding of 
what problem and instance features make a MIP scheduling 
model computationally expensive is very limited. In the 
computer science community, empirical hardness refers to the 
required time to solve a given problem instance through a 
given algorithm. Several studies have developed empirical 
hardness models for combinatorial optimization problems 

such as propositional satisfiability (SAT), constraint 
programming (CSP), traveling salesperson (TSP), and 
combinatorial auction winner determination (Smith-Miles and 
Lopes, 2012; Hutter et al., 2014; Leyton-Brown et al., 2009; 
Leyton-Brown et al., 2014). Various supervised learning 
methods (e.g., Ridge regression, Gaussian process regression, 
regression trees, neural networks) have been used to predict 
how long an algorithm will take to solve an instance. Recently, 
(Muñoz and Capón-García, 2019) proposed a multi-label 
classification strategy for selecting a suitable scheduling 
model and solution approach to solve a certain production 
scheduling problem according to its objective function, 
decisions, and production and resource constraints. However, 
there are no methods establishing relationships between 
instance characteristics and model performance. 

Accordingly, we use supervised machine learning (ML) 
techniques to predict the feasibility and computational 
requirement for chemical production scheduling in this work. 
In particular, we study short-term scheduling in single-stage 
multiple-unit environment and consider two objective 
functions, i.e., makespan minimization and cost minimization. 
We use a large number of instances having different 
characteristics (e.g., number of batches and units, processing 
times and costs, horizon length, etc.). Then, using a specific 
model, we gather computational cost and solution quality for 
each instance. To obtain generalized supervised learning 
models, we introduce various problem-specific instance 
features, which we then utilize to build a logistic regression 
model that categorizes the feasibility of an instance, and a 



 
 

     

 

random forest model to predict the CPU time required by the 
solver to solve a feasible instance.  

2. BACKGROUND 

2.1  Problem Statement  

We study the short-term batch plant scheduling in the single-
stage with parallel-unit environment. Given production recipe 
(e.g., processing time and cost) and batching decisions (e.g., 
batch number and dates), we aim to find optimal assignment 
and sequencing/timing of given batches to units in terms of 
two objective functions: makespan minimization and cost 
minimization. We also make the following assumptions: (i) all 
batches can be carried out in any unit, (ii) preemption is not 
allowed, (iii) all processing parameters are integers, (iv) 
processing times/costs and release/due times are deterministic, 
and (v) changeover between batches, utility, and other shared 
resources are not considered. 

We introduce the following indices, sets, and parameters to 
describe the scheduling model and instance. We define a set of 
batches 𝑖𝑖 ∈ 𝐈𝐈 and a set of units 𝑗𝑗 ∈ 𝐉𝐉. The time and cost of 
batch 𝑖𝑖  processed in unit 𝑗𝑗  are denoted by 𝜏𝜏𝑖𝑖𝑖𝑖  and 𝛾𝛾𝑖𝑖𝑖𝑖 , 
respectively. Release/due time for batch 𝑖𝑖 are represented by 
𝜌𝜌𝑖𝑖/𝜀𝜀𝑖𝑖 and the scheduling horizon of an instance is given by 𝜂𝜂. 
For the supervised learning models, we use 𝑥𝑥𝑚𝑚 = [𝑥𝑥1, . . , 𝑥𝑥𝑛𝑛]𝑇𝑇 
and 𝑦𝑦𝑚𝑚  to denote the input vector including n features and 
output of instance sample 𝑚𝑚 ∈ 𝐌𝐌, respectively. 

2.2  Discrete-Time MIP Scheduling Model 

We adopt a discrete-time representation, in which 𝜂𝜂  is 
uniformly discretized with a period width of 𝛿𝛿, and use index 
𝑡𝑡 ∈ 𝐓𝐓 = {0, 1, 2, … , |𝐓𝐓|} to denote the time points and periods. 
𝛿𝛿 is typically chosen as the greatest common factor of all time-
related parameters. The converted parameters in terms of the 
discrete-time grid are obtained by dividing their original 
values by 𝛿𝛿. In this study, all the processing parameters are 
integers and 𝛿𝛿 = 1, so we use the original notations of time-
related parameters. 

We use the discrete-time MIP scheduling model (Maravelias, 
C.T., 2021) that consists of batch-unit assignment (1), unit 
utilization (2), and release/due times restriction (3). 

��𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
 𝑖𝑖∈𝐓𝐓𝑖𝑖∈𝐉𝐉

= 1     ∀𝑖𝑖 ∈ 𝐈𝐈 (1) 

� � 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖′
𝑖𝑖′=𝑖𝑖

𝑖𝑖′=𝑖𝑖−𝜏𝜏𝑖𝑖𝑖𝑖+1𝑖𝑖∈𝐈𝐈

≤ 1     ∀𝑗𝑗 ∈ 𝐉𝐉, 𝑡𝑡 ∈ 𝐓𝐓 (2) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 0     ∀𝑖𝑖 ∈ 𝐈𝐈, 𝑗𝑗 ∈ 𝐉𝐉, 𝑡𝑡 < 𝜌𝜌𝑖𝑖 , 𝑡𝑡 > 𝜀𝜀𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑖𝑖  (3) 

where binary variable 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖  implies batch 𝑖𝑖  starts in unit 𝑗𝑗  at 
time point 𝑡𝑡  when 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1 . We enforce that each batch is 

processed exactly once by (1), and the unit can process at most 
one batch at any time point by (2). 

We consider two objective functions: makespan minimization 
(4) and cost minimization (5). 

min𝑀𝑀𝑀𝑀 :𝑀𝑀𝑀𝑀 ≥��𝛿𝛿�𝑡𝑡 + 𝜏𝜏𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐓𝐓𝑖𝑖∈𝐉𝐉

   ∀ 𝑖𝑖 ∈ 𝐈𝐈 (4) 

min���𝛾𝛾𝑖𝑖𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐓𝐓

�
𝑖𝑖∈𝐉𝐉𝑖𝑖∈𝐈𝐈

 (5) 

where 𝑀𝑀𝑀𝑀 ∈ ℝ+  denotes the makespan which is the time 
required to finish all given batches. We ensure that the 𝑀𝑀𝑀𝑀 is 
greater than or equal to the finish times of every batch.  

2.3 Classification Model 

The general aim of supervised ML algorithms is to develop an 
empirical model from data to predict a given instance’s 
qualitative output (in classification) or quantitative output (in 
regression). To build the feasibility classification model, we 
employ logistic regression, one of the widely used statistical 
methods for the binary classification due to its simplicity and 
probabilistic interpretability (Komarek, P. 2004). If a given 
instance has any feasible integer solution, it belongs to the 
class labeled by 0 (i.e., 𝑦𝑦𝑚𝑚 =0). Otherwise, one belongs to the 
class labeled by 1 (i.e., 𝑦𝑦𝑚𝑚 = 1). We introduce 𝑧𝑧𝑚𝑚 to denote 
the net input of an instance sample 𝑚𝑚, calculated as a linear 
weighted combination of features: 𝑧𝑧𝑚𝑚 = 𝑤𝑤𝑇𝑇𝑥𝑥𝑚𝑚 + 𝑤𝑤0  where 
𝑤𝑤0 represents the constant term and 𝑤𝑤 = [𝑤𝑤1, … ,𝑤𝑤𝑛𝑛]𝑇𝑇 is the 
vector of the coefficients. The estimated coefficient (except for 
𝑤𝑤0) indicates the linear relationship between the log-odds and 
the corresponding feature. In the logistic regression, 𝑧𝑧𝑚𝑚  for 
each instance passes through the logistic function, i.e., sigmoid 
function: 𝜎𝜎(𝑧𝑧𝑚𝑚) = 1/(1 + 𝑒𝑒−𝑧𝑧𝑚𝑚), that converts the calculated 
𝑧𝑧𝑚𝑚 (any real value) into certain constant between [0, 1]. The 
converted value corresponds to the conditional probability that 
the given instance belongs to the class 1. Note that 𝜎𝜎(𝑧𝑧𝑚𝑚) 
becomes 1 as 𝑧𝑧𝑚𝑚 increases, and 𝜎𝜎(𝑧𝑧𝑚𝑚) tends towards 0 as 𝑧𝑧𝑚𝑚 
decreases. Finally, the threshold function such that 

�1 if 𝜎𝜎(𝑧𝑧𝑚𝑚) ≥ 𝜖𝜖
0 otherwise    

 (6) 

decides the class to where a given instance belongs.  

We use the penalized logistic regression that finds the optimal 
𝑤𝑤 minimizing the following negative log-likelihood with L1 
penalty term (Ravikumar et al., 2010): 

min
𝑤𝑤

��−𝑦𝑦𝑚𝑚 log�𝜎𝜎(𝑧𝑧𝑚𝑚)�
𝑚𝑚∈𝐌𝐌

− (1 − 𝑦𝑦𝑚𝑚) log�1 − 𝜎𝜎(𝑧𝑧𝑚𝑚)�� + 𝑐𝑐‖𝑤𝑤‖1 
(7) 

where 𝑐𝑐  is the hyperparameter that controls the number of 
nonzero weights (feature selection) and helps in retaining 



 
 

     

 

meaningful features and reducing overfitting. In this work, the 
logistic regression is solved by using “saga” solver in scikit-
learn Python library (Pedregosa et al., 2011), and 𝜖𝜖 = 0.5. 

We can evaluate the binary classification performance by 
various performance metrics based on the confusion matrix 
(Aggarwal, C.C., 2014). Such metrics are accuracy, precision, 
recall, F1 score, and area under receiver operating 
christianistic curve (AUC). Table 1 shows the confusion 
matrix for the binary classification, whose elements refer to the 
number of samples classified according to the actual and 
predicted classes. All instances correctly classified (i.e., TP 
and TN) are located in the diagonal of the confusion matrix.  

Accuracy, the fraction of the correct predictions, i.e., (TP +
TN)/(TP + FN + FP + TN), is the most intuitive performance 
measure but can be biased. Recall or precision is the ratio of 
the TP to the total actual positives (TP + FN) or to the total 
predicted positives (TP + FP), respectively. F1 score, one of 
the commonly used metrics, is defined as the harmonic mean 
of the precision and recall and thus accounts for both FP and 
FN errors. The higher F1 score, the better. The receiver 
operating christianistic (ROC) curve is generated by plotting 
the TP rate (i.e., recall) against the FP rate (i.e., FP/(TN +
FP)). AUC is widely used to assess the classifier’s ability to 
discriminate classes. A no skill classifier has an AUC score of 
0.5, whereas a perfect one has an AUC score of 1.0. The higher 
the AUC, the better the model is at distinguishing between the 
classes. 

Table 1. Confusion matrix for binary classification 

 Actual class = 1 Actual class = 0 
Predicted class 

= 1 
True positive  

(TP) 
False positive  

(FP) 
Predicted class 

= 0 
False negative  

(FN) 
True negative  

(TN) 

2.4 Regression Model 

Random forests (RF) yielded the best performance in 
predicting the required computational costs of SAT, TSP, and 
MIP among the different supervised ML methods in the 
previous work (Hutter et al., 2014). Thus, in this work, we 
employ the RF algorithm to build the model that can predict 
the computational time required for solving a given scheduling 
MIP instance. RF, developed by (Breiman, L., 2001), is an 
ensemble of randomly trained decision trees. A decision tree 
is a collection of leaf nodes that partition the input space into 
disjoint regions, 𝑅𝑅1, … ,𝑅𝑅𝐾𝐾  and approximates the output in 
each region as a constant. Starting from the root node, each 
internal node in a decision tree splits samples into two 
branches according to a decision rule. For instance, if a sample 
whose feature selected (split feature) is larger than its split 
point goes to the right branch of an internal node. Otherwise, 
a sample goes to the left branch. Consequently, the prediction 
by the trained regression tree 𝑦𝑦�𝑚𝑚 is given by  

𝑦𝑦�𝑚𝑚(𝑥𝑥𝑚𝑚) = �𝑦𝑦�𝑘𝑘𝐼𝐼𝑥𝑥𝑚𝑚∈𝑅𝑅𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 (8) 

where 𝑦𝑦�𝑘𝑘 represents the average output of training samples in 
𝑅𝑅𝑘𝑘And 𝐼𝐼 is the indicator function which takes 1 if given 𝑥𝑥𝑚𝑚 
belongs to region 𝑅𝑅𝑘𝑘  and 0 otherwise (James et al., 2013). 
Training of the decision tree is to learn the decision rule of 
each node, minimizing the sum of squared errors between the 
actual and predicted outputs. The decision tree is capable of 
modeling complex interactions with small bias but is likely to 
have high variance. We can overcome this limitation by 
combining multiple regression trees into an ensemble. Each 
tree is trained on subsamples of the training data, and RF 
provides the final prediction by averaging the predictions 
across the trees (Breiman, L., 2001). Therefore, RF is less 
prone to overfitting. In this work, we use CART (Classification 
and Regression Trees) algorithm in scikit-learn Python library 
(Pedregosa et al., 2011) to establish the regression trees, and 
decide the number of trees and tree depth through 5-fold cross 
validation. The performance of the trained regression model is 
evaluated in terms of mean squared error (MSE) between the 
computational time predicted by the model and its true value. 

3. PROBLEM INSTANCES AND DATA GENERATION 

We account for a wide range of instance attributes (i.e., batch 
number |𝐈𝐈|, unit number |𝐉𝐉|, processing times 𝜏𝜏𝑖𝑖𝑖𝑖, processing 
costs 𝛾𝛾𝑖𝑖𝑖𝑖, and due times 𝜌𝜌𝑖𝑖) to build the reliable classifier and 
regressor. Their investigated ranges are summarized in Table 
2. For each unit number, the maximum batch number tested 
has the ratio of the batch number to the unit number around (or 
above) 8. Other processing parameters are drawn from uniform 
distributions over respective considered ranges. More details 
are described in the subsequent subsections. 

Table 2. Summary of instance attributes for data 
generation 

 Range  Range 

|𝐉𝐉| {3, ..., 8} 

|𝐈𝐈| 

{10, …, 30} if |𝐉𝐉|= 3 or 4 
{10, …, 40} if |𝐉𝐉|= 5 
{10, …, 50} if |𝐉𝐉|= 6 
{10, …, 55} if |𝐉𝐉|= 7 
{10, …, 65} if |𝐉𝐉|= 8 

𝜏𝜏𝑖𝑖𝑖𝑖 {3, ..., 9} 

𝛾𝛾𝑖𝑖𝑖𝑖 {10, ..., 16} 

𝜌𝜌𝑖𝑖 Random  

We use the solver CPLEX 12.8.0 in GAMS 26.1.0 to solve the 
discrete-time MIP scheduling models with the generated 
problem instances. We set the absolute and relative optimality 
criteria as 0.999 and 0 for makespan minimization and cost 
minimization, respectively. The CPU time resource limit is 3 
hours (i.e., 10,800 seconds). All optimizations are executed on 
a cluster of 24 Intel Xeon machines running CentosOS 
operating system. 

We collect the qualitative and quantitative optimization results 
of each scheduling MIP instance. Model and solver statuses in 
GAMS solution report provide information on whether a given 



 
 

     

 

instance has any feasible solution and whether an optimal 
solution of the feasible instance can be found within the given 
time limit. We utilize such information to label a problem 
instance by 1 or 0 for the feasibility classification. Also, we 
measure CPU time in seconds that the solver takes to solve a 
given instance for the computational time prediction. 

3.1 Makespan Minimization 

For given unit and batch numbers ( |𝐉𝐉|  and |𝐈𝐈|), processing 
times 𝜏𝜏𝑖𝑖𝑖𝑖  are sampled from a discrete uniform distribution 
reported in Table 2. To generate a list of candidates for 𝜂𝜂 that 
will be tested, we introduce a base scheduling horizon 𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 as 
follow: 

𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �∑ 𝜏𝜏𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴

𝑖𝑖∈𝑰𝑰
|𝐉𝐉|

�  (9) 

where 𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴  is the average processing time of batch 𝑖𝑖, defined 
as ∑ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖∈𝐉𝐉 /|𝐉𝐉|. To analyze the effect of 𝜂𝜂  on the instance’s 
feasibility and computational time, we calculate horizon 
lengths, i.e., {⌈0.7𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ⌉, ⌈0.75𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  ⌉, … , ⌈1.3𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⌉}  and 
remove any duplicate values; all processing data except for 𝜂𝜂 
remain the same. In makespan minimization, we assume that 
the release and due times for all batches are 0 and 𝜂𝜂 , 
respectively. We generate 2,000 sets of the processing data for 
each combination of unit and batch numbers and explore at 
most 13 horizon lengths for each set. 

3.2  Cost Minimization 

For cost minimization, processing times 𝜏𝜏𝑖𝑖𝑖𝑖 and costs 𝛾𝛾𝑖𝑖𝑖𝑖 are 
uniformly drawn for given unit and batch numbers as 
presented in Table 2. In addition to this, 𝜌𝜌𝑖𝑖 = 0 for all batches 
whereas due times 𝜀𝜀𝑖𝑖  are sampled from a discrete uniform 
distribution, i.e., [⌈(0.9 − 𝑑𝑑)𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⌉, ⌈(0.9 + 𝑑𝑑)𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⌉]  where 
the parameter 𝑑𝑑 controls the variation of due times and 𝑑𝑑 = 
0.2, 0.3 or 0.4. Then, 𝜂𝜂 is given by the maximum value of 𝜀𝜀𝑖𝑖. 
We generate 5,000 sets of processing time, cost, and due time 
data for each combination of unit and batch numbers. 

4. PROBLEM-SPECIFIC FEATURES 

Feature engineering is the process of creating relevant features 
from raw data using domain knowledge which help improve 
the performance of supervised ML models. We introduce 
novel problem-specific features summarized in Table 3 and 
categorize them into size-, time-, cost- and due date-related 
features. Subscripts AVG and STD stand for the average and 
standard deviation of the corresponding parameter, 
respectively. For example, 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ ∑ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 |𝐉𝐉|⁄ |𝐈𝐈|  and 
𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝜀𝜀𝑖𝑖𝑖𝑖 /|𝐈𝐈|. 

4.1 Makespan Minimization 

For makespan minimization, we account for size- and time-
related features. Size-related features include the numbers of 

batch and unit, their product/ratio, the numbers of equations 
and variables, and sparsity of an instance. In this work, we 
define sparsity as the ratio of the number of nonzero elements 
to the total element numbers in the coefficient matrix, i.e., the 
product of the numbers of variables and constraints.  

Table 3. Summary of features 

Size-related features Time-related features 
Batch number 𝜂𝜂 
Unit number 𝜂𝜂/𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

Size I (|𝐈𝐈| × |𝐉𝐉|) Load 

Size II (|𝐈𝐈| × |𝐉𝐉| × 𝜂𝜂) max
𝑖𝑖,𝑖𝑖

�𝜏𝜏𝑖𝑖𝑖𝑖� /𝜂𝜂 

Batch-unit ratio  𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴  
Number of variables 𝜏𝜏𝑆𝑆𝑇𝑇𝑆𝑆 
Number of equations 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴/|𝐉𝐉| 

Sparsity 𝜋𝜋𝐴𝐴𝐴𝐴𝐴𝐴𝜏𝜏  
 𝜋𝜋𝑆𝑆𝑇𝑇𝑆𝑆𝜏𝜏  
 𝜑𝜑𝐴𝐴𝐴𝐴𝐴𝐴𝜏𝜏  
 𝜑𝜑𝑆𝑆𝑇𝑇𝑆𝑆𝜏𝜏  

Cost-related features Due date-related features 
𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴  𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴 
𝛾𝛾𝑆𝑆𝑇𝑇𝑆𝑆 𝜀𝜀𝑆𝑆𝑇𝑇𝑆𝑆 
𝜋𝜋𝐴𝐴𝐴𝐴𝐴𝐴
𝛾𝛾  𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴  
𝜋𝜋𝑆𝑆𝑇𝑇𝑆𝑆
𝛾𝛾  𝜇𝜇𝑆𝑆𝑇𝑇𝑆𝑆 

𝜑𝜑𝐴𝐴𝐴𝐴𝐴𝐴
𝛾𝛾  𝜆𝜆𝐴𝐴𝐴𝐴𝐴𝐴  

𝜑𝜑𝑆𝑆𝑇𝑇𝑆𝑆
𝛾𝛾  𝜆𝜆𝑆𝑆𝑇𝑇𝑆𝑆 

Next, time-related features derived from the scheduling 
horizon are 𝜂𝜂  and 𝜂𝜂/𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 .  Based on processing times 𝜏𝜏𝑖𝑖𝑖𝑖 , 
𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 , 𝜏𝜏𝑆𝑆𝑇𝑇𝑆𝑆 , 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴/|𝐉𝐉| and load are considered. The load 
represents how much units would be utilized for processing 
given batches in terms of time. It is defined as the ratio of the 
averaged time required for processing all batches and the 
production capacity with the given scheduling horizon, i.e., 
∑ 𝜏𝜏𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 /(|𝐉𝐉| × 𝜂𝜂). Besides, we introduce 𝜋𝜋𝑖𝑖𝑖𝑖′>𝑖𝑖

𝜏𝜏  and 𝜑𝜑𝑖𝑖𝑖𝑖′>𝑖𝑖
𝜏𝜏  to 

denote the inter-unit and inter-batch dissimilarity in processing 
times 𝜏𝜏𝑖𝑖𝑖𝑖, respectively. They are given by 

𝜋𝜋𝑖𝑖𝑖𝑖′>𝑖𝑖
𝜏𝜏 = ∑

�𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖𝑖𝑖′�− min
𝑖𝑖,𝑖𝑖,𝑖𝑖′>𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖𝑖𝑖′��

max
𝑖𝑖,𝑖𝑖,𝑖𝑖′>𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖𝑖𝑖′��− min
𝑖𝑖,𝑖𝑖,𝑖𝑖′>𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖𝑖𝑖′��
𝑖𝑖   (10) 

𝜑𝜑𝑖𝑖𝑖𝑖′>𝑖𝑖
𝜏𝜏 = ∑

�𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖′𝑖𝑖�− min
𝑖𝑖,𝑖𝑖′>𝑖𝑖,𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖′𝑖𝑖��

max
𝑖𝑖,𝑖𝑖′>𝑖𝑖,𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖′𝑖𝑖��− min
𝑖𝑖,𝑖𝑖′>𝑖𝑖,𝑖𝑖

��𝜏𝜏𝑖𝑖𝑖𝑖−𝜏𝜏𝑖𝑖′𝑖𝑖��
𝑖𝑖   (11) 

based on the normalized absolute similarity metric (also 
known as Manhattan distance). Their respective averages and 
standard deviations are considered as time-related features: 
𝜋𝜋𝐴𝐴𝐴𝐴𝐴𝐴𝜏𝜏 , 𝜋𝜋𝑆𝑆𝑇𝑇𝑆𝑆𝜏𝜏 , 𝜑𝜑𝐴𝐴𝐴𝐴𝐴𝐴𝜏𝜏 , and 𝜑𝜑𝑆𝑆𝑇𝑇𝑆𝑆𝜏𝜏 . 

4.2 Cost Minimization 



 
 

     

 

In addition to the previously introduced features, we consider 
cost- and due date-related features for cost minimization. Cost-
related features are based on processing costs 𝛾𝛾𝑖𝑖𝑖𝑖 : 𝛾𝛾𝐴𝐴𝐴𝐴𝐴𝐴  and 
𝛾𝛾𝑆𝑆𝑇𝑇𝑆𝑆. In a similar way to calculating the dissimilarity features 
in terms of  𝜏𝜏𝑖𝑖𝑖𝑖, we introduce 𝜋𝜋𝑖𝑖𝑖𝑖′>𝑖𝑖

𝛾𝛾  and 𝜑𝜑𝑖𝑖𝑖𝑖′>𝑖𝑖
𝛾𝛾  to denote the 

inter-unit and inter-batch dissimilarity in 𝛾𝛾𝑖𝑖𝑖𝑖, respectively, and 
account for their averages and standard deviations, i.e., 𝜋𝜋𝐴𝐴𝐴𝐴𝐴𝐴

𝛾𝛾 , 
𝜋𝜋𝑆𝑆𝑇𝑇𝑆𝑆
𝛾𝛾 , 𝜑𝜑𝐴𝐴𝐴𝐴𝐴𝐴

𝛾𝛾 , and 𝜑𝜑𝑆𝑆𝑇𝑇𝑆𝑆
𝛾𝛾 . 

As due date-related features, we basically consider 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴 and 
𝜀𝜀𝑆𝑆𝑇𝑇𝑆𝑆. Others are derived from the time window length of batch 
𝑖𝑖 defined as 𝜀𝜀𝑖𝑖 − 𝜌𝜌𝑖𝑖 indicating the allowable production time 
period for batch 𝑖𝑖. Note that 𝜌𝜌𝑖𝑖 = 0 in this study, but the due 
date-related features introduced here can be readily extended 
to the problem case where 𝜌𝜌𝑖𝑖 are nonzero. We introduce two 
parameters, i.e., 𝜇𝜇𝑖𝑖 and 𝜆𝜆𝑖𝑖; 𝜇𝜇𝑖𝑖 denotes the degree of overlap of 
the time windows of batches at time period 𝑡𝑡, implying the 
potential unit busyness at each period; 𝜆𝜆𝑖𝑖 is the ratio between 
the time window length and the average processing time of 
batch 𝑖𝑖, indicating the time window tightness for each batch. 
Smaller 𝜆𝜆𝑖𝑖  means that batch 𝑖𝑖  has a tighter time window. 
Finally, we account for their averages and standard deviations 
as due date-related features as presented in Table 3. 

5.  RESULTS AND DISCUSSION 

We train the classifier and regressor using scikit-learn Python 
library (Pedregosa et al., 2011) for instances with each 
objective function, and evaluate their performances on the test 
data. As the data preprocessing for the classification model, we 
perform a min-max normalization on feature data to make the 
model less sensitive to the scale of features and more accurate. 
Also, we make balanced data by under-sampling, i.e., reducing 
the size of the abundant class. For the regression model, we 
use a log-transformation for CPU time data to reduce its large 
variability and thus improve the model’s predictive 
performance.  

 

Fig. 1. ROC curves of classification models on test data 

5.1 Feasibility Classification 

Both trained logistic regression models (with c of 10) for 
makespan and cost minimization problems show good 
classification performances (see Fig. 1). In makespan 
minimization, F1 score and AUC on the test data are 0.90 and 
0.978, respectively. They are 0.90 and 0.985, respectively, in 
cost minimization. The developed classification models can 
potentially allow online scheduler to avoid online optimization 
executions that are (likely to be) infeasible. 

Table 4 presents 7 top-ranked features selected in the classifier 
and their estimated coefficients for each scheduling objective. 
The coefficient indicates the expected change in the log-odds 
of being in the class 1 (in which an instance has no feasible 
solution) when the corresponding normalized feature increases 
from 0 to 1 while fixing others. For makespan minimization, 
the load is the most significant feature, and an instance with a 
larger load has a higher possibility of having no feasible 
solution. Of course, in this case, we can find any feasible 
solution with a very long horizon, so 𝜂𝜂  has a negative 
coefficient. Lower 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴  and higher 𝜏𝜏𝑆𝑆𝑇𝑇𝑆𝑆  increase the 
possibility that an instance has any feasible solution. 
Increasing batch-unit ratio and size II negatively impacts the 
instance’s feasibility. The batch number has a negative 
coefficient since, in our data set, the instance with a very high 
number of batches has a high unit umber and exhibits less 
possibility that it belongs to class 1. For cost minimization, the 
due date-related features are significant. Scheduling MIP 
instance that has a less tight time window (i.e., larger 𝜆𝜆𝐴𝐴𝐴𝐴𝐴𝐴) 
and a higher 𝜀𝜀𝑆𝑆𝑇𝑇𝑆𝑆 is likely to be feasible. On the other hand, 
increasing 𝜆𝜆𝑆𝑆𝑇𝑇𝑆𝑆  and 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴 , and decreasing 𝜇𝜇𝑆𝑆𝑇𝑇𝑆𝑆  make an 
instance infeasible. Batch-unit ratio and 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴  have the same 
effect on the instance feasibility as in makespan minimization. 

Table 4. 7 top-ranked features from the classification 

Makespan minimization Cost minimization 
Feature Coefficient Feature Coefficient 
Load 25.8 𝜆𝜆𝐴𝐴𝐴𝐴𝐴𝐴  -137 

Batch number -22.4 Batch-unit ratio 73.0 
𝜂𝜂 -17.7 𝜀𝜀𝑆𝑆𝑇𝑇𝑆𝑆 -50.1 

𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴  16.3 𝜆𝜆𝑆𝑆𝑇𝑇𝑆𝑆 20.3 
Batch-unit ratio 16.16 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴  17.6 

Size II 14.3 𝜇𝜇𝑆𝑆𝑇𝑇𝑆𝑆 -13.6 
𝜏𝜏𝑆𝑆𝑇𝑇𝑆𝑆 -11.3 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴  7.79 

 5.2 Computational Time Prediction 

Fig. 2 and Fig. 3 show visual comparisons of the actual and 
predicted CPU times for two objective functions. 
Quantitatively, MSEs for predicting log10 CPU time are 0.482 
and 0.535 in makespan minimization and cost minimization, 
respectively; the average misprediction is less than 5.5. Note 
that the optimized tree-depth and number of trees are 25 and 
30, respectively. For makespan minimization, the batch-unit 
ratio has the highest feature importance, computed as the 



 
 

     

 

normalized total MSE decrease by the corresponding feature. 
Other significant features are 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 , 𝜏𝜏𝑆𝑆𝑇𝑇𝑆𝑆, and the inter-batch 
and inter-unit dissimilarity in 𝜏𝜏𝑖𝑖𝑖𝑖 . Without the dissimilarity 
features, MSE increases by 24 % in the case of makespan 
minimization. For cost minimization, 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴  is the most 
significant feature followed by 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴 , Size II, and 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴 . 
Increasing 𝜀𝜀𝐴𝐴𝐴𝐴𝐴𝐴  and 𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴  can lead to longer scheduling 
horizon 𝜂𝜂  while fixing the batch and unit numbers. Thus, 
without them, 𝜂𝜂 becomes the most important feature and MSE 
is slightly increased. Other supervised learning algorithms 
(e.g., a hybrid of linear regression and RF) can be tested to 
improve the regression model’s interpretability and 
performance, and it is our ongoing research. 

 

Fig. 2. Predictions on test instances for makespan 
minimization 

 

Fig. 3. Predictions on test instances for cost minimization 

6. CONCLUSIONS 

We employed supervised machine learning techniques to 
predict the performance of chemical production scheduling 

MIP models. We trained logistic regression and random forests 
models to predict model feasibility and computational time, 
respectively, for two objective functions (i.e., makespan 
minimization and cost minimization). The classifier and 
regressor, trained based on the features introduced in this work, 
yielded good predictive performances on the test instances for 
both objectives. We focused on single-stage multiple-unit 
environment, but this data-based approach can be extended to 
other scheduling objective functions or more complex 
production environments. Indeed, this work can support the 
development of an intelligent online scheduler for choosing 
adequate horizon and re-optimization time-step.  
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