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Abstract: This work develops a framework for building machine learning models and machine
learning-based predictive control schemes for batch crystallization processes. We consider a
seeded fesoterodine fumarate cooling crystallization and dissolution in a batch reactor and
present the methodology and implementation of simulation, modeling, and controller design.
Specifically, to address the experimental data scarcity problem, we first develop a population
balance model (PBM) based on published kinetic parameters to describe the formation of
crystals via nucleation, growth, and agglomeration. Then, recurrent neural network (RNN)
models are developed using data from extensive simulations of the semi-empirical PBM under
various operating conditions to capture the process dynamic behavior. The model predictive
control (MPC) scheme using RNN models is developed to optimize the crystallization process in
terms of product yield, crystal size, and energy consumption, while accounting for the constraints
on the manipulated inputs. Through open- and closed-loop simulations, it is demonstrated that
the RNN models well capture the process dynamics, and the RNN-based MPC achieves desired
product yield and crystal size with significantly improved computational efficiency.

Keywords: Batch crystallization processes; Model predictive control; Machine learning;
Recurrent neural networks

1. INTRODUCTION

In the pharma industry, batch crystallization is commonly
regarded as an indispensable component of most pharma-
ceutical processes as more than 90% of active pharmaceu-
tical ingredients are synthesized in the form of crystals (Al-
varez and Myerson, 2010). The physicochemical properties
of the crystalline product (e.g., crystal size distribution
(CSD), purity, shape) are primarily determined by the
intricate interplay between the crystallization kinetics of
growth, nucleation, agglomeration, and breakage, which
are in turn heavily influenced by the crystallization operat-
ing conditions. Therefore, selecting the optimal operating
and control strategies is of great interest to pharmaceutical
manufacturers in attaining a more efficient and greener
achievement of the specification targets.

Modern pharmaceutical development approaches leverage
the quality-by-control (QbC) methodology for enhanced
process understanding and product assurance. QbC em-
phasizes the use of mathematical and knowledge-based
modeling and is widely recognized as a valuable tool for
improved mechanistic understanding, process optimization
and control (Simone et al., 2015). However, while recent

⋆ Financial support from the Pfizer Asia Manufacturing PTE. LTD.
under Data-Driven Knowledge Discovery in Pharmaceutical Manu-
facturing through Batch Process Optimization (R-279-000-624-592)
and NUS Start-up grant (R-279-000-656-731) is gratefully acknowl-
edged.

studies have sought to elucidate the optimization and
control of crystallization processes (Liu et al., 2020), a ma-
jority has adopted the first-principles modeling approach
(e.g., population balance model (PBM)), which is suscep-
tible to high computation complexity and is hence less
amenable for real-time optimization and control. Attribut-
ing to the burgeoning research and development in many
process analytical technologies (PATs) and the pervasive
nature of data in modern pharmaceutical enterprises, ma-
chine learning model-based predictive control (MPC) has
emerged as the state-of-the-art optimal control strategy
for cooling crystallization processes.

MPC is an optimization-based advanced control method
that solves for the optimal control actions based on a
predictive model of the process while accounting for inher-
ent process characteristics. The development of accurate
and computationally efficient process models has been a
long-standing research problem in predictive control of
dynamic processes. Recently, recurrent neural networks
(RNNs) have received considerable attention in model
identification of chemical processes due to their ability in
modeling multi-dimensional, nonlinear dynamic systems
using process time-series data. Additionally, RNNs have
been utilized in MPC in many recent works to control
chemical plants in real time and optimize process per-
formance accounting for closed-loop stability, safety and
control actuator constraints (Wu et al., 2019a,c). However,
RNN-based predictive control of batch crystallization pro-



cesses, using data generated from discretized PBM, has
not been studied yet.

Motivated by the above considerations, in this manuscript,
we develop a general framework for building machine
learning models and developing machine-learning-based
predictive control schemes for batch crystallization pro-
cesses. Specifically, we consider a seeded fesoterodine fu-
marate (FF) cooling crystallization and dissolution in a
batch reactor and first develop a process model based
on published kinetic parameters and experimental data
reported in Trampuž et al. (2019). Subsequently, an RNN-
based MPC scheme is proposed to optimize product yield,
crystal size, and energy consumption while accounting for
the physical constraints on cooling jacket temperature.
The simulation results demonstrate that the proposed
RNN-based MPC achieves the desired closed-loop perfor-
mance at a significantly improved computation time.

2. MODELING OF BATCH CRYSTALLIZER FOR
FESOTERODINE FUMARATE CRYSTALLIZATION

2.1 Population balance

Fesoterodine fumarate (FF) is a muscarinic antagonist
indicated for the treatment of overactive bladder. Its crys-
talline state of form I, which resembles a cubic structure,
may be produced by seeded cooling crystallization from
solutions in 2-butanone, where its mechanisms and kinetics
have been well investigated by Trampuž et al. (2019) and
summarized in the discretized population balance models
(PBM), as shown in Eqs. 1 - 6:
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The system of Eqs. 1 - 6 can be solved numerically using
standard integration methods (e.g., Runge-Kutta meth-
ods). Eqs. 1 - 3 collectively describe nucleation N , crystal
growth G, and agglomeration A in a supersaturated sys-
tem, whereas Eqs. 4 - 6 account for crystal dissolution
D in an undersaturated system. Specifically, following the
same discretization employed in Trampuž et al. (2019),
the number of size classes r = 40 is divided between
0.1 and 1000 µm with logarithmic progression of class
borders. Ni denotes the number of crystals in size class
i, wi denotes the width of size class i, Gi and Di denote
the size-dependent crystal growth rate and dissolution
rate, respectively. AB,i and AD,i denote the size-dependent
crystal agglomeration birth rate and disappearance rate,
respectively. Interested readers are referred to Trampuž

et al. (2019) for a detailed discussion on the PBM formu-
lation and the computation of the various crystallization
kinetics in seeded batch cooling crystallization of form I
FF.

2.2 Energy balance

It is assumed that the enthalpy of crystallization is negli-
gible and the batch crystallizer is perfectly mixed with an
uniform temperature distribution. Temperature change in
the crystallizer can be estimated by the following ordinary
differential equation:

dTr

dt
=

UA(Tj − Tr)

mrcp,r
(7)

where the change in crystallizer temperature is determined
by the overall heat transfer coefficient U , the area of
crystallizer wall A available for heat transfer, the difference
between jacket temperature Tj and crystallizer tempera-
ture Tr, the mass of crystallization mixture mr, and the
specific heat capacity of the crystallization mixture cp,r.

2.3 Mass balance

Total mass of the crystals formed is computed as the sum
of masses of crystals within each class:

mcr = kνρcr

r∑
i=1

NiS
3
i (8)

where kν is the crystal volume factor, ρcr is the density
of crystals, and the total volume of the crystals formed is
determined as the sum of product between the number of
crystals Ni and the average crystal size Si in each class.

The bulk solute concentration C(t) at a certain time
instance during the crystallization process is calculated by
subtracting the mass of crystalsmcr(t) formed at that time
from the initial mass of dissolved solute m0 and the mass
of seed crystals mseed, divided by the mass of solvent msol.

C(t) =
m0 +mseed −mcr(t)

msol
(9)

2.4 Model validation

The PBM comprising Eqs. 1 - 6 is developed based
on published kinetic parameters and validated against
the experimental data reported (Trampuž et al., 2019).
Fig. 1 demonstrates the validity of the model developed
in this work for describing the general trends of the
dynamic behavior of the batch system of interest. We
also compared the PBM developed in this work with the
one by Trampuž et al. (2019), and found the two models
are in close agreement with each other. The discrepancy
can be attributed to the different techniques and values
adopted in estimating the physicochemical properties of
the crystallization system.

3. RECURRENT NEURAL NETWORK (RNN)
DEVELOPMENT

Due to the complexity of PBM, it is computationally im-
practical to solve it in real-time optimization and control
of the process operation. In this section, we propose a
machine learning modeling approach for capturing the
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Fig. 1. Validating the PBM developed in this work against
the experimental data reported in Trampuž et al.
(2019).

dynamic behavior of a batch crystallization process us-
ing the data from experiments and simulations. We will
demonstrate that the machine learning model significantly
improves computational efficiency while maintaining a de-
sired prediction accuracy compared to the semi-empirical
PBM.

3.1 RNN formulation

RNN is utilized to model the batch crystallization of FF
using the simulation data generated from the PBM in the
previous section. RNN is the preferred choice of surrogate
model as other deep neural networks such as conventional
feedforward artificial neural networks are usually incapable
of capturing the full dynamics provided by the PBM, and
the use of RNN overcomes this limitation since the entire
dynamics accounting for all the intermediate time steps of
the PBM can be modeled using RNN.

Specifically, the RNN is constructed with input, hidden
and output layers (Fig. 2), where the states in the hidden
layers x ∈ Rdx are represented as follows:

xt = σh(Uxt−1 +Wut) (10)

where ut ∈ Rdu are the RNN inputs at time t, and the
weight matrices W ∈ Rdx×du , U ∈ Rdx×dx are associated
with the input and hidden state vectors, respectively. The
element-wise nonlinear activation function is denoted by
σh (e.g., ReLU). The output layer yt is calculated using
the following equation:

yt = σy(V xt) (11)

where the activation function σy and the weight matrix
V ∈ Rdy×dx are associated with the output layer. In
regression problems, a linear unit is generally used as the
activation function in the output layer. To simplify the
notation, the RNN model of Eqs. 10-11 can be collectively
represented as the following continuous-time nonlinear
system (Wu et al., 2019b).

ẋ = Fnn(x,u) := Ax+ΘT z (12)

where x ∈ Rdx is the RNN state vector and u ∈ Rdu is
the RNN input vector. z = [z1, . . . , zdx , zdx+1, . . . , zdx+du ]

= [σ(x1), . . . , σ(xdx
), u1, . . . , udu

] ∈ Rdx+du is a vector of
both the network state x and the input u, and σ(·) is the
nonlinear activation function. A and Θ are the coefficient
matrices consisting of RNN weights.

Contrary to the one-way connectivity between units in a
feedforward neural networks (FNNs), one dominant advan-

Fig. 2. Recurrent neural network structure.

tage of RNNs is that RNNs have signals traveling in both
directions (i.e., forward and backward) by introducing
loops in the network. This enables feedback of informa-
tion derived from earlier inputs into the network, thereby
exhibiting a dynamic behavior. Furthermore, based on the
universal approximation theorem for FNNs, it is shown
in Billings (2013) that an RNN model with sufficient num-
ber of neurons is capable of approximating any dynamic
nonlinear system on compact subsets of the state-space
for finite time. This makes RNN an ideal candidate for
approximating the continuous-time nonlinear systems of
Eqs. 1 - 6.

3.2 Data generation

To construct an RNN model with a desired accuracy,
extensive open-loop simulations are first conducted to
obtain a rich data set that captures the system dynamics
of the batch crystallization process. The system of Eqs.
1 - 9 is solved numerically using the explicit Runge-
Kutta method of order 5(4) with an integration time
step hc = 1 min. The simulation was performed using
similar initial conditions reported in Trampuž et al. (2019):
msol = 0.482 kg, m0 = 0.1 kg, mseed = 5 × 10−3 kg,
and Tr = 35 ◦C, and subject to a sequence of varying
jacket temperatures in a sample-and-hold fashion (i.e., the
jacket temperature is fed into the system of Eqs. 1 - 9 as
a piecewise constant function, Tj(t) ∈ [−10, 30]◦C, and
Tj(t) = Tj(tk), ∀t ∈ [tk, tk+1), where tk+1 := tk + ∆
with ∆ = 30 mins indicating one sampling period). As the
PBM formulation in Trampuž et al. (2019) incorporates
Tj as the only manipulated input, other variables (e.g.,
stirring rate) could not be considered. It should be noted
that the proposed RNN modeling approach in this work
can be generalized to more comprehensive mechanistic
models that account for all other operating conditions as
manipulated inputs.

With the aforementioned configuration, dynamic state
trajectories (C, Tr, Ni) are sampled at an integration
time step hc = 1 min within each sampling period.
Simulation data from a total of 600 batch runs (each
lasts for 15 hrs) are collected. The state trajectories
from each batch run are then discretized, where the
time-series data are separated into 30 time-series samples
with a period of ∆ = 30 mins, which represents the
prediction horizon of the RNN model. As a result, 18,000
datasets are obtained, and are partitioned into training
(60%), validation (10%), and testing (30%) datasets. It
is essential to obtain such a large amount of simulation
data in order to guarantee a comprehensive representation



of the dynamic batch process under different operating
conditions (e.g., Tr, C, Ni).

3.3 Open-loop simulation results

Next, the RNN model Fnn(x,u) is developed using the
state-of-the-art application programming interface (API)
Keras Chollet et al. (2015) to predict future states (i.e.,
C, Tr, Ni) for one sampling period ∆ = 30 mins given
the current state measurements and the manipulated input
(i.e., Tj). As shown in Fig. 2, in each prediction period, the
time interval between two consecutive internal states xt−1

and xt for the unfolded RNN is chosen to be the integration
time step hc used in open-loop simulations. Therefore, all
the states between t = 0 and t = ∆ with a step size of
hc are treated as the internal states and can be predicted
by the RNN model. Finally, the RNN model is designed
with two hidden recurrent layers consisting of 630 and 600
recurrent units regularized with dropouts of 0.25 and 0.15,
respectively. The activation function is chosen to be the
rectified linear activation function (ReLU). Furthermore,
to facilitate more efficient training of the RNN, both input
and output data are normalized to values between 0 and
1. The resulting RNN model is trained for 500 epochs
with the Adam optimizer, and has attained mean squared
errors (MSE) of 1.45× 10−5 and 1.29× 10−5 on validation
and testing datasets, respectively. Fig. 3 compares the
crystallizer temperature Tr, solute concentration C, and
crystal number N16 of size class 16 predicted by the
RNN model, and the PBM of Eqs. 1-9, respectively, under
the same pseudo-random jacket temperature profile. The
RNN model is developed to predict one sampling period
forward, and thus, it is recursively applied to predict the
entire trajectory for 900 mins. It is demonstrated in Fig. 3
that the RNN prediction results and the PBM results are
in close agreement with each other under various jacket
temperatures.
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Fig. 3. Comparison of crystallizer temperature Tr (top
figure), solute concentration C (middle figure), and
crystal number N16 of size class 16 (bottom figure)
predicted by the RNN model, and the first-principles
model, respectively, where the stars denote the sam-
pling time.

In the simulation, it is noted that, due to the compu-
tational complexity of PBM, each batch run took ap-
proximately 40 s, and this thus poses a great hindrance
to its applicability in real-time process optimization and
control. Whereas the RNN model only took approximately
0.1 s for predicting the states of each batch run, thereby

demonstrating a dominant computational efficiency, and
is thus considered as a better alternative to PBM for real-
time process optimization and control.

4. RNN-BASED PREDICTIVE CONTROL

In this section, we develop a machine learning-based pre-
dictive control scheme to optimize the batch crystallization
of FF. Specifically, the predictive control scheme is formu-
lated as a real-time optimization problem that computes
the optimal manipulated input (jacket temperature) to op-
timize a number of process performance considerations, for
example, product yield, a particular crystal size of interest,
and energy consumption. Additionally, by incorporating
RNN models in MPC schemes, the MPC optimization
problem achieves a desired control performance with sig-
nificantly reduced computation time. The formulation of
the RNN-based MPC is presented as follows:

min
u∈S(∆)

∫ tk+N

tk

L(x̃,u)dt (13a)

s.t. ˙̃x(t) = Fnn(x̃(t),u(t)) (13b)

x̃(tk) = x(tk) (13c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (13d)

|∆u| ≤ U∆, ∀ t ∈ [tk, tk+N ) (13e)

where x̃ = [C, T,Ni] ∈ R42, i = 1, ..., 40 and u = Tj are
the predicted states and manipulated inputs, respectively.
S(∆) is the set of piecewise constant functions with
sampling period ∆. L(x̃,u) = Q1(C(t))2 −Q2(N21(t))

2 +
Q3(Tj(t) − T r

j )
2 is the objective function that minimizes

C(t) (i.e., maximizing product yield), maximizes N21, and
minimizes the energy consumption which is represented as
the deviation of the jacket temperature Tj from its value
at room temperature (T r

j = 25◦C) over the prediction
horizon t ∈ [tk, tk+N ), whereQ1, Q2, Q3 are the coefficients
chosen to balance the scale of each term. The RNN model
is used as the predictive model in Eq. 13b, and the
measurements of process states at every sampling time
are used as the initial condition to predict the evolution of
the dynamics of the batch crystallizer (Eq. 13c). Eq. 13d
is the constraint on the jacket temperature that reflects
the physical limitations on coolant supply, and Eq. 13e
is the rate-of-change constraint on the jacket temperature
to avoid extreme changes in the manipulated inputs. In
this work, Q1 = 106, Q2 = 10−15, Q3 = 0.1 are chosen
in Eq. 13a. The jacket temperature is bounded by U =
[−10, 30]◦C, and |∆u| = |Tj(tk+1)−Tj(Tk)|, k = 0, 1, 2, ...,
is bounded by U∆ = 5◦C.

The RNN-MPC optimization problem of Eq. 13 is solved
every sampling time with the new state measurements
received by the controller, and applies only the first
control action u(t), t ∈ [tk, tk+1) to the crystallizer,
which is represented by the PBM in Section 2. Since the
RNN model is developed to predict one sampling period
∆, the RNN model prediction is carried out recursively
to predict all the future states within the prediction
horizon t ∈ [tk, tk+N ). The MPC is solved using PyIpopt,
which is a Python connector to the IPOPT software
package (Wächter and Biegler, 2006).

Remark 1. Note that all intermediate steps within one
RNN prediction step (i.e., all the integration time steps



within one sampling period) are utilized in the calcula-
tion of the integral of Eq. 13a. This improves the MPC
optimization process since more dynamic information is
included in the calculation. As compared to the feed-
forward neural networks that predict one time step only,
incorporating all the internal steps is one of the benefits
of using RNNs in modeling nonlinear dynamic systems.

5. CLOSED-LOOP SIMULATION RESULTS

The batch crystallization process of FF is used to illustrate
the application of the RNN-based MPC of Eq. 13 to maxi-
mize both the product yield and a particular crystal size of
interest, while accounting for the energy consumption and
the physical constraints of the cooling jacket. Closed-loop
simualtions are carried out for the seeded cooling crystal-
lization of FF using the RNN-MPC of Eq. 13. Additionally,
the MPC, utilizing the PBM of Eqs. 1-9 as its predictive
model, is also used as a benchmark case for comparison
purpose.

The process states x = [C, T,Ni] ∈ R42, i = 1, ..., 40,
are the solute concentration C, crystallizer temperature
T , and the number of crystals in 40 size classes through
logarithmic discretization, respectively. The manipulated
input is the jacket temperature u = Tj . The MPC
is implemented in a sample-and-hold fashion, with the
sampling time ∆ = 30 min. The process is initially
operated at msol = 0.482 kg, m0 = 0.1 kg, mseed = 5 ×
10−3 kg, Tr = 35 ◦C, and Tj = 35 ◦C.

Fig. 4 shows the closed-loop solute concentration pro-
files (top figure), and the number of crystals of average
size 11.3 µm (bottom figure) under open-loop control,
and the MPC using the first-principles PBM (denoted
by FP-MPC), and the RNN model (denoted by RNN-
MPC), respectively. The open-loop control scheme uses
the maximum cooling (i.e., Tj = −10◦C) after it reaches
−10◦C, and subject to the rate-of-change constraint. It
is demonstrated that both MPCs maximize the product
yield by decreasing the solute concentration, and achieve
a desired number of crystals with the size of interest.
Overall, the closed-loop performance under RNN-MPC
is very close to that under the PBM-based MPC, which
demonstrates that the RNN model provides a sufficiently
accurate prediction of the dynamic evolution of the batch
crystallization process in the MPC optimization problem
as compared to the benchmark case of FP-MPC. We have
also performed additional simulations with various initial
conditions, and observe that the RNN-MPC results are all
very similar to those under FP-MPC.

Fig. 5 shows the evolution of crystal size distribution in
the closed-loop simulation with RNN-MPC. It is noticed
that the number of crystals in the size class of interest
(N21 of approximately 11.3µm) reaches an initial peak
rapidly before experiencing a sharp descent. This obser-
vation can be attributed to the addition of seed crystals
(corresponding to N18 and N19), which marks the onset
of the crystallization process. At the initial stage, most
crystals are clustered in N18 and N19, which are in close
proximity to the target size class N21. Further ascribing to
the sharp decrease in crystallizer temperature Tr at this
initial stage, the driving force for crystal growth is maxi-
mized, thereby engendering a rapid increase in crystals of

larger size classes adjacent to the seed size class and hence
the observed sharp increase in them. As the crystallization
process proceeds further, the number of crystals spreads
more evenly among the various size classes due to the
interplay between the various crystallization kinetics (e.g.,
crystal growth and agglomeration), and classes close to
N18 and N19 would thus experience a decline. Finally, as
observed toward the end of the crystallization process, the
number of crystals in all classes levels off. This is mainly
due to the effect of Tr, which also stabilizes toward the
end, and therefore diminishes the driving force for crystal
growth. The crystal size distribution profile obtained is
also similar to the ones reported by Trampuž et al. (2019).

Fig. 6 shows the closed-loop crystallizer temperature (top
figure), and jacket temperature profiles (bottom figure)
under open-loop control, FP-MPC, and RNN-MPC, re-
spectively. The open-loop control initially decreases Tj and
uses Tj = −10◦C for the remaining time of simulation after
it reaches the lowest jacket temperature of −10◦C. How-
ever, it is observed that both MPCs decrease the jacket
temperature initially, and after around 240 min, gradually
increase the jacket temperature in order to reduce energy
consumption since both the solute concentration and the
number of crystals in N21 (Fig. 5) start to vary slowly
after 240 min. This phenomenon is in well agreement with
the empirical results reported by Trampuž et al. (2019),
and can be attributed to the size of the target class N21,
which is comparable to that of the crystal seeds (e.g.,
∼ 6.4µm v.s.∼ 11.3µm). Ascribing to the relatively small
target crystal size, a fast cooling is preferred as it is more
conducive for the formation of small crystals. Through
comparison with the open-loop scheme, it is demonstrated
in Fig. 4 that no significant improvement in product yield
and the number of crystals can be achieved by maintaining
the lowest jacket temperature. Therefore, the MPCs opti-
mize the overall performance by stopping using maximum
cooling while still maintaining a desired outcome.
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Fig. 4. Comparison of closed-loop solute concentration
profiles (top figure), and the number of crystals of size
11.3 µm (bottom figure) under open-loop control (i.e.,
using maximum cooling after Tj reaches −10◦C), and
the MPC using the first-principles model (FP-MPC),
and the RNN model (RNN-MPC), respectively.

Additionally, one of the benefits of using RNN models
is the computational efficiency of online prediction using
the offline-trained RNN model. Therefore, we compare the
computation time for solving FP-MPC and RNN-MPC
under the same initial condition using the desktop with
Intel Core i7-10700 CPU @ 2.90GHz. Table 1 reports the
average computation time to solve the MPC optimization



Fig. 5. Crystal size distribution in the closed-loop simula-
tion using RNN-MPC.
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Fig. 6. Comparison of closed-loop crystallizer temperature
(top figure), and jacket temperature (bottom figure)
under open-loop control (i.e., using maximum cooling
after Tj reaches −10◦C), and the MPC using the
first-principles model (FP-MPC), and the RNNmodel
(RNN-MPC), respectively.

problem with different prediction horizons at each sam-
pling step. Since the MPC is solved successively when new
state measurements are received at each sampling time
with ∆ = 30 min, we run the closed-loop simulation for
600 min, and calculate the average computation time for
solving MPC problems 20 times over the entire simulation
period.

Table 1. Computation time for solving MPC

MPC Prediction Horizon N FP-MPC RNN-MPC

3 148.0 seconds 24.7 seconds

5 3992.7 seconds 327.3 seconds

10 N/A 1023.3 seconds

From Table 1, it is shown that the RNN-MPC significantly
reduces the computation time compared to the FP-MPC.
Additionally, as MPC prediction horizon increases, the
computation time for solving MPC optimization problem
increases rapidly. Specifically, for RNN-MPC, the com-
putation time for solving MPC at each sampling time is
rendered less than one sampling period (i.e., 30 min) for
all prediction horizons N ≤ 10; however, it is noticed that
for FP-MPC, the computation time for N = 5 has already
exceeded 30 min, making it infeasible for practical imple-
mentation. Also, the FP-MPC with N = 10 is unable to
obtain the solutions within a reasonable computation time,
and thus, is shown as N/A in Table 1. Since computation
time is an important performance metric that determines

whether an algorithm can be implemented in practice, it
demonstrates the benefit of RNN-MPC in the practical im-
plementation of real-time control of crystallization process.
Moreover, due to its data driven nature, the prediction
accuracy of RNN can be readily improved by updating it
with the most recent process data obtained through online
learning, and thereby rendering RNN robust predictive
models.

6. CONCLUSION

In this work, we developed an RNN model for a batch
crystallization process using the simulation data from a
PBM, and designed an RNN-MPC to control the batch
crystallization process in real time in order to optimize
its product yield, crystal size, and energy consumption.
Through open- and closed-loop simulations, we demon-
strated that the RNN model achieved a desired accuracy in
predicting future states with much less computation time
as compared to PBM, and the RNN-MPC achieved desired
product yield and crystal size while reducing energy con-
sumption simultaneously. Additionally, the computational
efficiency of solving real-time control problems was signif-
icantly improved through the use of the RNN in MPC.
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