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Abstract: The development of well-devised irrigation scheduling methods is desirable from the
perspectives of plant quality and water conservation. In this article, a model predictive control
(MPC) with discrete actuators is developed for irrigation scheduling, where a long short-term
memory (LSTM) model of the soil-water-atmosphere system is used to evaluate the objective of
ensuring optimal water uptake in crops while minimizing total water consumption and irrigation
costs. A heuristic method involving a sigmoid function is used in this framework to enhance the
computational efficiency of the scheduler. The scheduling scheme is applied to a homogeneous
field and the results indicate that the LSTM-based MPC with discrete actuators is able to
prescribe optimal or near-optimal irrigation schedules that are typical of irrigation practice.
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1. INTRODUCTION

According to the United Nations, agriculture accounts
for about 70% of global freshwater withdrawals, the vast
majority of which are used for irrigation purposes (UN
Report (2018)). At the same time, the global water scarcity
crisis is worsening, due to increased stress on freshwater
resources resulting from population growth and climate
change. Given the rising freshwater shortages, there is a
pressing need for enhanced and precise irrigation manage-
ment strategies that will enable efficient and sustainable
water use while ensuring optimal plant development.

Precision irrigation can be realized by implementing well-
devised irrigation control and scheduling operations on an
hourly or daily basis for a predetermined planning horizon
(Ali and Talukder (2001)). Traditionally, most control and
scheduling operations in irrigation management are imple-
mented in an open-loop fashion, where there is no direct
connection between the supplied irrigation volume and the
prevailing soil water status. Open-loop implementations
are known to be imprecise and thus do not guarantee
optimal plant yield and enhanced water use efficiency.
Precision irrigation methods have been advocated as a
means of alleviating the drawbacks that are associated
with open-loop irrigation operations (Navarro-Helĺın et al.
(2015)). In the context of systems engineering, precision
irrigation can be realized by closing the irrigation decision
support loop to form a closed-loop system (Shah et al.
(2021)).

Irrigation scheduling seeks to provide crops with the
right amount of water at appropriate times. Among all
the irrigation scheduling methods that have been recom-
mended and developed, two main categories can be clearly
distinguished: (1) model-free methods, and (2) mode-

based methods (Gu et al. (2020)). In model-free methods,
soil moisture content is inferred from plant stress vari-
ables/sensor measurements/crop evapotranspiration val-
ues and the irrigation event is triggered when the inferred
soil moisture exceeds a particular threshold. While these
methods are computationally efficient, inaccuracies in the
inferred soil moisture content often lead to a false trigger-
ing of the irrigation scheduler. To obtain a more precise
and robust scheduler, agro-hydrological models have been
used to determine irrigation schedules. In this regard,
mechanistic agro-hydrological models such as the Richards
equation (Park et al. (2009)), the AquaCrop model (Del-
goda et al. (2016)), and the Root Zone Water Quality
Model (Nguyen et al. (2017)) have been used to deter-
mine irrigation schedules. While these methods have been
largely successful, mechanistic models are more difficult
to handle from a numerical point of view and hence they
render the resulting scheduling scheme computationally
inefficient.

Recent studies have examined the use of statistical or
data-driven models, also known as black box models, in
irrigation scheduling. For example in Nahar et al. (Nahar
et al. (2019)), a linear parameter varying model was
used to develop a closed-loop scheduler and controller.
Data-driven machine learning approaches such as adaptive
neuro-fuzzy inference systems (Karandish and Šimůnek
(2016)), support vector machines (Deng et al. (2016)), and
feedforward neural networks (Capraro et al. (2008)) are
another group of statistical models that have been used
to develop model-based irrigation schedulers. Similarly,
recurrent neural networks, particularly long short-term
memory networks, have been used to determine irrigation
schedules (Adeyemi et al. (2018)) due to their ability to
learn long-term temporal dependencies in sequential data.



A number of optimal control approaches such as dynamic
programming (Naadimuthu et al. (1988)), set-point track-
ing model predictive control (MPC) (McCarthy et al.
(2014)), and MPC with zone control (Nahar et al. (2019))
have been used to schedule irrigation. When irrigation is
to be scheduled on a daily basis, the determination of the
irrigation time reduces to a discrete decision of whether
or not the irrigation event should be performed on the
days that make up the planning horizon. Thus, the daily
irrigation scheduling problem can be transformed into an
optimal control problem with both continuous- (irrigation
volume or depth) and integer- (irrigation time) valued
control variables. In the MPC framework, improvements in
optimization software and computing performance permit
the optimal selection of discrete-valued controls by directly
including them in the MPC design. MPC with discrete
actuators has seen applications in different areas such as
energy systems (Risbeck (2018)) and heat pumps (Lee et
al. (2019)). Following the convention in (Risbeck (2018);
Rawlings and Risbeck (2017)), we refer to MPC with
both continuous- and discrete-valued control variables as
a mixed-integer MPC in the rest of this paper.

Motivated by the above, this work develops an irrigation
scheduler in the framework of a mixed-integer MPC with
zone control for agro-hydrological systems that utilize an
LSTM model to predict the dynamics of soil moisture.
The LSTM model is initially developed based on a dataset
generated from extensive open-loop simulations of a mech-
anistic agro-hydrological model, specifically the Richards
equation. Subsequently, a mixed-integer MPC with zone
objectives is developed based on the identified LSTM
model. Due to the inherently complex nature of mixed-
integer programs, this work further proposes a heuristic
method that can be used to simplify the mixed-integer
MPC in order to reduce its computation time. The main
contributions of this work include:

(1) A method to identify an LSTM model for the predic-
tion of soil moisture content in an agro-hydrological
system.

(2) A detailed closed-loop irrigation scheduler design in
the framework of a mixed-integer MPC with zone
control that ensures optimal root water uptake while
minimizing irrigation costs and total water consump-
tion.

(3) A heuristic method, using a sigmoid function, that
simplifies the mixed-integer MPC in order to reduce
its computation time.

2. PRELIMINARIES

2.1 Agro-hydrological system

In this paper, we consider an agro-hydrological system that
details the movement of water between crops, the soil, and
the atmosphere. Fig. 1 provides a simple illustration of an
agro-hydrological system. The transport of water in soil
can be modeled using the Richards equation. The Richards
equation can be expressed in capillary pressure head form
as:

c(ψ)
∂ψ

∂t
= ∇. (K(ψ)∇ (ψ + z))− S(ψ, z) (1)

In Eq. (1), ψ is the capillary pressure head (m), which
describes the status of water in soil, t represents time,
z is the spatial coordinate, K(ψ) is the unsaturated
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Fig. 1. An agro-hydrological system.

hydraulic water conductivity (ms−1), c(ψ) is the cap-
illary capacity (m−1). K(ψ) and c(ψ) are parameter-
ized by models of Maulem (Maulem (1976)) and van
Genuchten (Van Genuchten (1980)). S (ψ, z) denotes the
sink term (m3m−3s−1) and it is expressed as:

S(ψ, z) = α(ψ)R
(
Kc, ET 0, zr

)
(2)

α(ψ)[−] is a dimensionless stress water factor, R(·) is
the root water uptake model which is a function of the
crop coefficient Kc[−], the reference evapotranspiration
ET 0[LT−1], and the rooting depth zr[L].

3. PROPOSED APPROACH

3.1 Development of the LSTM model

A. Data generation

In this work, we focus on infiltration processes in agro-
hydrological systems. Infiltration is often assumed to be
a one-dimensional (1D) process in the vertical direc-
tion (Farthing and Ogden (2017)); thus, the 1D version
of Eq. 1 is used in this work. The 1D Richards equation is
solved numerically using the method of lines approach.
The central difference scheme is used to approximate
the spatial derivative and implicit schemes, specifically
the Backward Differentiation Formulas (BDFs), are used
to approximate the time derivative. The discretized 1D
Richards equation is solved for the following initial and
boundary conditions:

ψ(t = 0) = ψinit (3)

∂(ψ + z)

∂z

∣∣∣
z=Hz

= 1 (4)

∂ψ

∂z

∣∣∣
z=0

= −1−
uirrig

K(ψ)
(5)

where Hz and uirrig (ms−1) in Eqs. (4) and (5) represent
the depth of the soil column and the irrigation rate, respec-
tively. The depth dependent root water uptake model pro-
posed by (Feddes et al. (1993)) is used as the sink term in
this work. The discretized 1D Richards equation together
with the initial and boundary conditions is expressed in
state space form as:

xk+1 = F(xk, uk) + ωk (6)

where xk ∈ RNx represents the state vector containing
Nx capillary pressure head values for the corresponding
spatial nodes. uk represents the input vector containing
the irrigation amount, precipitation, daily reference evap-
otranspiration, and the crop coefficient. ωk is the model
disturbance.
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Fig. 2. A block diagram of the proposed irrigation sched-
uler.

Extensive open-loop simulations are conducted to generate
a dataset that captures the soil water content dynamics
for the state x and the inputs u. Using randomly gen-
erated initial states x0, Eq. (6) is solved for randomly
generated inputs in order to obtain a large number of
state trajectories. In order to ensure a small temporal
truncation error, the open-loop simulations are performed
with a small time step size. Model uncertainty is included
in the open-loop simulations to improve the generalization
ability and robustness of the LSTM model. Finally, the
time-series data obtained from the open-loop simulations
are partitioned into training, validation, and test datasets.

B. Proposed LSTM model of an agro-hydrological system

For irrigation scheduling purposes, it suffices to focus on
the soil moisture dynamics in the root zone. Thus, we
propose a multiple input, single output LSTM model that
predicts the root zone capillary pressure head in an agro-
hydrological system. Specifically, the LSTM is trained to
predict the the one-day-ahead root zone capillary pressure
head xt+1 using the present and the past l root zone
capillary pressure head x(t = 0, ..., l), irrigation amount
uirrig(t = 0, ..., l), rain r(t = 0, ..., l), crop coefficient
Kc(t = 0, ..., l), and reference evapotranspiration ET 0(t =
0, ..., l) inputs. In order to realize the proposed LSTM
model of the soil-water-atmosphere system, the states
outside the root zone are discarded from the datasets and
the resulting datasets are resampled to a time frame of
1 day. The time lag l used in the model development
is determined through experimentation. In addition to
approximating the complex 1D Richards equation, the
proposed LSTM model can also be thought of as a reduced
model since it has fewer states compared to Eq. (6).

Prior to training the LSTM model, the datasets are nor-
malized to rescale the input and output variables. The
LSTM model is trained with the Keras Deep Learning Li-
brary in Python. The optimal number of layers and LSTM
units are determined through experimentation. During
the training process, an optimization problem which min-
imizes the modeling error is solved using an adaptive
moment estimation algorithm (i.e. Adam in Keras).

3.2 Scheduler design - Mixed-integer MPC

The proposed scheduler, depicted in Fig. 2, is designed
in the mixed-integer MPC with zone control framework.
The scheduler considers a prediction horizon of up to a
few weeks and its primary objective is to ensure optimal
water uptake in crops while minimizing the total water
consumption and the irrigation cost. In this design, the

scheduler ensures optimal water uptake in crops by main-
taining the root zone capillary pressure head within a
target zone. The integer (binary) variable embedded in
this design encodes the daily discrete (yes/no) irrigation
decision. Using past weather data, daily weather forecast,
the root zone capillary pressure head measurement, and
the identified LSTM model, the scheduler prescribes the
daily discrete irrigation decision and the daily irrigation
amount that achieve its primary objective. Additionally,
the soft constraint approach is used to realize the zone
control in this design. In this approach, slack variables are
introduced in the formulation to relax the limits (bounds)
of the target zone. At the same time, the slack variables
are included in the objective function that is to be mini-
mized. For day d and a fixed prediction horizon of N , the
scheduler PMINLP(x) is formulated as:

min
x, ϵ̄, ϵ, uirrig, c

d+N∑
k=d+1

[
Q̄ϵ̄2k +Qϵ2k

]
+

d+N−1∑
k=d

Rcck +

d+N−1∑
k=d

Ruu
irrig
k

(7a)

subject to

xk+1 = FLSTM({γ}kk−l) k ∈ [d, d+N − 1] (7b)

xd = x(d) (7c)

ν − ϵk ≤ xk ≤ ν̄ + ϵ̄k, k ∈ [d+ 1, d+N ] (7d)

cku
irrig ≤ uirrig

k
≤ ckūirrig, k ∈ [d, d+N − 1] (7e)

ck = {0, 1}, k ∈ [d, d+N − 1] (7f)

ϵk ≥ 0, ϵ̄k ≥ 0, k ∈ [d+ 1, d+N ] (7g)

where k ∈ Z+, x := [xd, xd+1, ..., xd+N ], ϵ̄ := [ϵ̄d+1, ϵ̄d+2, ...,
ϵ̄d+N ], ϵ := [ϵd+1, ϵd+2, ..., ϵd+N ], c := [cd, cd+1, ..., cd+N−1],

uirrig := [uirrigd , uirrigd+1 , ..., u
irrig
d+N−1], and {γ}kk−l := [γk−l,

γk−l−1, γk−l−2, .., γk] where γ ∈ [x,Kc, ET 0, uirrig]. ϵk and
ϵ̄k in Eqs. (7a) and (7g) are nonnegative slack variables
that are introduced to relax the target zone (νk, ν̄k) in
Eq. (7d). Q and Q̄ are the per-unit costs associated with
the violation of the lower and upper bounds of the target
zone, respectively. Rc is the fixed cost associated with the
operation of the irrigation implementing system, and Ru

is the per-unit cost of the irrigation amount uirrig. The
binary variable (c) encodes the daily discrete irrigation
decision. The cost function, Eq. (7a), incorporates the
objectives of maintaining the root zone capillary pres-
sure head in a target zone in order to ensure optimal
water uptake in crops by minimizing the violation of the

target zone
∑d+N

k=d+1

[
Q̄ϵ̄2k +Qϵ2k

]
, minimizing the irriga-

tion cost
∑d+N−1

k=d Rcck, and minimizing the irrigation

amount
∑d+N−1

k=d Ruu
irrig
k . Eq. (7b) corresponds to the

LSTM model of the root zone capillary pressure head.
The initial state is assumed to be measured and it is
represented with Eq. (7c). Eq. (7e) is the amount of water
that can be supplied during the irrigation event on day k.
When the irrigation decision on day k is “a no decision”
(ck = 0), Eq. (7e) specifies that the irrigation amount must
necessarily be 0. On the other hand, when the irrigation
decision on a particular day is “a yes decision” (ck = 1),
this constraint states that the prescribed irrigation amount
must be at least equal to the lower bound on the irrigation
rate (uirrig) and must be no larger than the upper bound
on the irrigation rate (ūirrig). The solution to PMINLP(x) is
a sequence of predicted states x, optimal slack variables (ϵ̄,



ϵ), optimal irrigation decisions (c), and optimal irrigation
amounts (u).

3.3 Heuristic methods - Sigmoid function

It is desirable to develop modifications to mixed-integer
problems so as to ensure that they can be executed in
real-time. This is necessary because mixed-integer pro-
gramming belongs to the class of NP−complete problems
and thus, can require extensive computation time and
resources for problems with many integer variables. To
this end, a heuristic method that approximates the binary
variable in the mixed-integer formulation with a sigmoid
function, which was originally applied to transmission ex-
pansion problems (Mazzini et al. (2018)) and active power
losses minimization problems (Olivera et al. (2005)), is
employed. Specifically, the binary variable in PMINLP(x)
is replaced with a sigmoid function ω(r) which is defined
as:

ω(r) =
1

1 + e−βr
(8)

where β is the slope of the sigmoid function and the
argument r is a real number. The inclusion of Eq. (8) in
PMINLP(x) results in the modified problem PSIG(x):

min
x, ϵ̄, ϵ, uirrig, r

d+N∑
k=d+1

[
Q̄ϵ̄2k +Qϵ2k

]
+

d+N−1∑
k=d

Rcω(rk) +

d+N−1∑
k=d

Ruu
irrig
k

(9a)

subject to

xk+1 = FLSTM({γ}kk−l) k ∈ [d, d+N − 1] (9b)

xd = x(d) (9c)

ν − ϵk ≤ xk ≤ ν̄ + ϵ̄k, k ∈ [d+ 1, d+N ] (9d)

ω(rk)u
irrig ≤ uirrig

k
≤ ω(rk)ūirrig, k ∈ [d, d+N − 1] (9e)

rmin ≤ rk ≤ rmax, k ∈ [d, d+N − 1] (9f)

ϵk ≥ 0, ϵ̄k ≥ 0, k ∈ [d+ 1, d+N ] (9g)

where r := [rd, rd+1, ..., rd+N−1]. The modified problem is
an nonlinear program (NLP) and can thus be solved with
a suitable NLP algorithm.

A. Selection of β

ω(r) converges to binary elements for higher values of its
slope β. However, the use of very large β values often
results in an ill-conditioned optimization. To handle this
issue, an algorithm is proposed to improve the convergence
of the sigmoid function to binary elements while reducing
ill-conditioning issues. This process involves successively
solving PSIG(x) for increasing values of β (by a factor
of τ in Algorithm 1) until a predetermined convergence
criterion is met. This predefined criterion, for the ith

evaluation of PSIG(x), can be mathematically expressed
as:

∥ω(ri)− c∥2 ≤ ζ (10)

where c is a vector of binary elements. Each element of c
corresponds to the nearest binary value of each element of
ω(ri). ζ represents the user-defined convergence tolerance.
The detailed steps are described in Algorithm 1.

4. ILLUSTRATIVE EXAMPLES

4.1 Predictive capability of the proposed LSTM model

To evaluate the predictive capability of the proposed
model framework, we apply the proposed LSTM model

Algorithm 1 Algorithm for approximating c with ω(r)

Require: x(0), x0, r0, (uirrig)0, ζ, β0, τ
x1 ← x(0)
xguess ← x0

rguess ← r0

(uirrig)guess ← (uirrig)0

β ← β0

i← 0
while ∥ω(ri)− c∥2 > ζ do
Solve PSIG(x) for βi

xguess ← xi

rguess ← ri

(uirrig)guess ← (uirrig)i

βi+1 ← τβi

i← i+ 1
end while

framework to a 0.6 m loamy-sand soil column. In this
example, the pressure head value at a depth of 0.5 m
is chosen to characterize the root zone pressure head in
the root zone. The LSTM model is designed to have two
hidden layers. Each layer consists of 200 LSTM units
and a sequence length of 5 days is used for the training.
Consequently, the time lag l associated with the inputs of
the LSTM model is 4.

In Fig. 3(A), the one-day-ahead predictions obtained from
the LSTM model are compared with the actual pressure
head values in the test dataset. It is evident from Fig.
3(A) that the identified LSTM model is able to accurately
model the root zone pressure head while capturing its
general trend. In model predictive algorithms, it is required
that at any given time, the process outputs be predicted
many time-steps into the future. To this end, the identified
LSTM model is used to predict the root zone pressure
head for long periods of time (at least up to the prediction
horizon of the predictive controller). Particularly, these
multistep-ahead predictions are produced recursively by
iterating the identified one-step-ahead LSTM model in
which previously predicted pressure head values are used
as inputs in successive predictions. From Figure 3(B), it
can be seen that the recursive use of the identified LSTM
model produces accurate pressure head predictions and
the predictive performance is comparable to that of the
1D Richards equation.
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Fig. 3. Actual root zone pressure head (red solid line) and
the predicted root zone pressure head (blue dash-dot)
using the test dataset, (A) One-day-ahead prediction,
and (B) Multistep-ahead prediction.



4.2 Utility of the proposed scheduler

In this section, the scheduler designs PMINLP(x) and
PSIG(x) are used to prescribe irrigation schedules for a
uniform field composed of loamy soil. In this simulation
experiment, an LSTM model is first identified for a 0.6 m
loamy soil column using the method outlined in section
3.1. The lower and upper bounds of the target zone are
chosen as -820 mm and -690 mm, respectively and these
values are chosen to lie within the field capacity and the
permanent wilting point of loamy soil. The per unit costs
associated with the violation of these zones are chosen as
Q̄ = Q = 9000. Rc and Ru are chosen as 50 and 20,
respectively. The scheduler is evaluated for initial state
of -795 mm and past root zone capillary pressure head
values of [-748 mm, -735 mm, -740 mm, -754 mm] are used
in this simulation. A prediction horizon of 14 days is used
and the daily reference evapotranspiration values for the
simulation are generated randomly between 2.0 mm and
2.7 mm. A constant crop coefficient value of 0.5 is used
in the simulation. The mixed-integer and NLP problems
arising from PMINLP(x) and PSIG(x) are solved using the
BONMIN and the IPOPT solvers, respectively.

We consider a closed-loop implementation of the sched-
uler, specifically the receding horizon control (RHC) im-
plementation. This closed-loop implementation is known
to provide some degree of inherent robustness to multi-
plicative (imperfect knowledge of the model) and additive
uncertainties. In RHC, only the first control input of the
optimal control sequence is implemented, and, to incor-
porate feedback into this control strategy, the process is
repeated at the next time instant using newly obtained
information of the state. In this paper, the scheduler is
evaluated each day for a period of 20 days.

A. Simulation results - PMINLP(x)
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Fig. 4. Closed-loop trajectories under PMINLP(x).

Figs. 4(a) and 4(b) show the closed-loop irrigation amount
and root zone pressure head trajectories under PMINLP(x).
From these figures, it is evident that the scheduler is able
to maintain the root zone pressure head in the target zone
by prescribing irrigation amounts of 0.5 inches/day, 0.47
inches/day, 0.48 inches/day, and 0.48 inches/day on days
3, 8, 15, and 20 of the simulation period.

B. Simulation results - PSIG(x)

This simulation study revealed that a slope of 25 was able
to provide a good convergence of the sigmoid function
to the binary elements while preventing ill-conditioning
issues. The closed-loop results summarized in Figs. 5(a) &
5(b) reveal that by prescribing irrigation amounts of 0.46
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Fig. 5. Closed-loop trajectories under PSIG(x).

inches/day, 0.55 inches/day, and 0.48 inches/day on days
3, 8, and 15, the scheduler design involving the sigmoid
function is able to maintain the root zone pressure head
in the target zone.

C. Comparison between PMINLP(x) and PSIG(x)

A visual comparison of the results summarized in Figs.
4 and 5 reveals that, there exist noticeable similarities
between the closed-loop irrigation and root zone pressure
head trajectories obtained under PMINLP(x) and PSIG(x).
Additionally, it is evident from Table 1 that the compu-
tation speed of the proposed scheduler can be remark-
ably enhanced when the binary variable in PMINLP(x)
is approximated with a sigmoid function. It should be
noted in instances where the sigmoid function is unable
to approximate the binary elements correctly, the value

of
∑N−1

k=0 Rω(rk) +
∑N−1

k=0 Ruu
irrig
k in the cost function

of PSIG(x) may be smaller than that of
∑N−1

k=0 Rck +∑N−1
k=0 Ruu

irrig
k in PMINLP(x). This will result in a smaller

overall cost for formulation PSIG(x) compared to the mixed
integer formulation PMINLP(x). Thus, a smaller overall
cost in PSIG(x) compared to PMINLP(x) should be con-
strued as a failure of the sigmoid function to adequately
approximate the binary elements and not the ability of the
heuristic approach to provide the best possible solution (in
the sense of a minimization optimization problem).

5. SUMMARY AND CONCLUSIONS

In this study, an LSTM-based mixed-integer MPC with
zone control for irrigation scheduling was proposed and
tested. The proposed scheduling framework seeks to ensure
optimal water uptake in crops while minimizing total water
consumption and irrigation costs. To this end, an LSTM
model was developed to describe the dynamics of the root
zone capillary pressure head. This data-driven machine
learning model was trained using open-loop simulated data
from the Richards equation. A mixed-integer MPC with
zone control was then developed using the identified LSTM
model. A heuristic method using the sigmoid function
was proposed to simplify the mixed-integer MPC in or-
der to reduce the evaluation time of the scheduler. The
simulation results obtained in the illustrative examples
revealed that, the LSTM model was capable of performing
accurate single-step and multi-step predictions of the root
zone capillary pressure head. Furthermore, the closed-loop
trajectories obtained in the illustrative example highlight
the efficacy of the proposed scheduler, as it was able to
prescribe irrigation schedules that are typical of irrigation
practice. The proposed approach can thus be successfully



Table 1. Simulation metrics for formulations
PMINLP(x) and PSIG(x).

Formulation PMINLP(x) PSIG(x)

Computation Time (hours) 10.5 2.0

Cost 213.4 176.6

used to maximize crop yield while minimizing the total
water consumption and irrigation costs. The heuristic
method involving the sigmoid function was capable of en-
hancing the computational efficiency of the scheduler and
this underscores the capability of the proposed approach
to prescribe optimal or near-optimal irrigation schedules
within workable computational budgets.
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