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Abstract: Atomic layer deposition (ALD) is an outstanding thin film deposition technique based on the 

surface chemical reaction. As the conventional device fabrication method is reported to be ineffective under 

the 5nm process, ALD drew attention to its ability to control the film growth. To develop an efficient ALD 

process, controlling film thickness is one of the most important factors. The key requirement for the film 

thickness control is to understand their chemical reactivity upon adsorption on different substrate surfaces. 

However, the current research on viable ALD development have remained inefficient because of the 

expensive and time-consuming experiments. In this study, we aim to analyze and suggest a strategy for 

identifying the contribution of ALD process features on the device film thickness based on principal 

component analysis (PCA) method. First, the features of ALD experiment (Precursor properties, reactant 

type, substrate properties, operating conditions) are compiled to define the chemical dimension of ALD 

process. Then, the contributions of ALD experiment features on the thickness growth are analyzed by 

projecting ALD chemical dimension into the information space using PCA technique. As a result, we could 

identify highly sensitive features for ALD film growth and suggest the strategy for controlling film 

thickness. From providing the analysis for the film growth, we elucidate the importance of high dimension 

analysis of ALD process and improve the understanding on film growth control.  
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1. INTRODUCTION 

As the demand for greater integrated circuit functionality and 

performance increased, more precise and controllable 

deposition technique has been highly desired (G. Mazaleyrat 

et al., 2005). The deposition processes conducted in device 

fabrication conventionally are chemical vapor deposition 

(CVD) and physical vapor deposition (PVD). Even though the 

conventional deposition process has been helpful for device 

fabrication, there are many difficulties and limitations to 

produce the device with high circuit density at a lower cost. 

For example, decreasing the size of semiconductor devices is 

limited to 5nm with the conventional method (Rizwan Khan   

et al., 2018; Hyun Gu Kim et al., 2020). In this context, atomic 

layer deposition (ALD) is one of the most salient alternatives 

of deposition process for the thin film development (Chi 

Thang Nguyen et al., 2021). As ALD is able to control the 

film growth by modifying the surface properties, 

implementing ALD could achieve more uniform film with 

higher circuit density (Hyunhang Park et al., 2016). 

However, even though ALD is the effective and powerful 

method for developing more precise devices, time-consuming 

and expensive experiments have been great challenges of 

ALD deployment (Hyun Gu Kim et al., 2020; Markku 

Leskelä Prof. et al., 2003). Especially, the film thickness is 

extremely difficult to be predicted according to the material 

types (e.g., precursor, reactant, substrate) and operating 

conditions (e.g., temperature, cycle, idle time) (Yangyao Ding 

et al., 2019). Hence, there is an urgent need for a deeper 

understanding of film growth to obtain the predictive film 

thickness control. 
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Machine learning (ML) technique is artificial intelligence (AI) 

method for analyzing and predicting the complex system of 

natural phenomena (C. Pozo et al., 2012). Based on the 

observation data, ML could provide the practical data analysis 

method such as dimension reduction. Principal component 

analysis (PCA) technique is one of the well-established 

dimension reduction techniques (Hervé Abdi et al., 2010). 

From transforming the descriptor space to information space, 

the perplexing relationship of the descriptors could be more 

easily identified. 

Therefore, in this research, we are aimed to analyze the 

dominant descriptors of ALD process for film growth and 

suggest the strategy for controlling the film thickness. For the 

analysis, the chemical dimension of ALD process is defined 

by collecting the critical ALD descriptors and experimental 

data. The ALD descriptors include the physio-chemical 

properties of materials (precursor, reactant, substrate) and 

operating conditions. Then, by using PCA technique, the 

contribution of descriptors for achieving thick (>30nm) and 

thin (≤30nm) thickness is compared and analyzed. 

Consequently, it was able to identify the material conditions 

and operating conditions for controlling film thickness. 

2. METHOD 

2.1 ALD experiment datasets 

The precursor, reactant, and substrate types are the major 

components of ALD material conditions. Especially, the 

precursor design has a fatal role in ALD R&Ds.  In ALD 

experiment datasets, there are popular 12 precursors (TTIP, 

Tris-dimethylamionisilane, TMA, TiCl4, TEMAZ, TDMAH, 

MeCpPtMe3, DMAI, DMADMS, CoCp2, CoCp(CO)2, Carish) 

as shown in Figure X. The material conditions and operating 

conditions are summarized in Table 1. 

 

Figure 1. The precursor type counts 

The precursors are then represented into the physio-chemical 

descriptors (ligand material, precursor molecular weight, Z 

value, ligand length, the number of oxides, precursor expose 

temperature, precursor expose time). The ligand materials 

means substances forming ligand, which are chlorine, carbon, 

cyclopentadiene, oxygen, and nitrogen. Total 533 ALD 

experimental datasets are compiled. 

For the experiments, there are 4 reactants, which are H2O, 

NH3, O2, and O3. The reactant conditions incluye the number 

of H and O, molecular length, molecular weight, and expose 

time. These reactants are used to modify the substrate'surface 

properties, which later has the terminations of –OH, -NH2, 

and -O. 

In case of substrate, etched Si and SiO2 are used in the 

experiment. Unlike other descriptors, substrate descriptor is 

not numerically represented. Because only 2 substrates are 

dealt thereby representing substrate as a categorical value (1 

or 2). Note that the substrate temperature is sorted as the 

operating condition rather than substrate material conditions 

due to the process. 

Operating conditions include 3 descriptors, which are idle 

time, substrate temperature, and cycle. Note that the cylce 

means the pulse-purge cycle of precursor and co-reactant. 

Lastly, the thickness of ALD process is also included in the 

datasets. The total counts of experimental datasets are 696 

with 21 descriptors. Among 21 descriptors, 20 descriptors are 

dependant variables and 1 descriptor (thickness) is 

indenpendant variable. 

Table 1. ALD experimental dataset 

Feature name Avg. Std. Min. Max. 

Cl (Chlorine) 0.24 0.95 0 4 

C (Carbon) 0.82 1.12 0 3 

Cp (Cyclopentadiene) 0.49 0.80 0 2 

O (Oxygen) 0.72 1.45 0 4 

N (Nitrogen) 1.34 1.76 0 4 

Precursor M.W. (g/mol) 253 97.6 92.5 411.3 

Z value 38.4 23.2 13 78 

Ligand length (nm) 7.01 2.37 3.69 12.44 

Number of oxide 1.24 0.94 0 2 

Temperature (℃) 57.7 23.6 0 100 

Expose time (hr) 3.42 2.15 0.5 15 

# of H 1.35 1.23 0 3 

# of O 1.58 1.18 0 3 

Molecular length (μm) 1.72 0.21 1.23 1.89 

Reactant M.W.  (g/mol) 29.7 14.3 17 48 

Expose time (hr) 3.88 4.73 0.3 60 

Functional group - - 1 2 

Idle time (hr) 0.97 3.95 0 60 

Wafer temperature (℃) 262 77 100 428 

Cycle 245 185 30 1500 

Thickness (nm) 18.8 13.1 3.75 96.4 



2.2 Principal component analysis (PCA)  

 

Figure 2. Principal component analysis 

PCA is a powerful technique to visualize and interpret the 

high-dimensional data by extracting the most valuable 

chemical descriptors and transforming the chemical space 

into information space. Principal components (PC) are the 

dimension of information space and decided by Eigen-

decomposition procedure. From finding the most critical 

orthogonal vectors maximizing the covariance of datasets, the 

ALD data could be projected in lower dimensions. 

The mathematical concept of PCA includes the calculation of 

the covariance and covariance matrix. Firstly, the Euclidean 

space that has N number of ALD descriptors is constructed. 

For the given series of datasets x and y, the variances of each 

dataset are calculated as follows:  

cov(x, y) = 𝐸[(𝑥 − 𝑚𝑥)(𝑦 − 𝑚𝑦)] = 𝐸[𝑥𝑦] − 𝑚𝑥𝑚𝑦      (1) 

mx and my indicate average value of x and y. 

The covariance matrix C is as followed: 
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Then, Eigen-decomposition using orthogonal matrix (P) and 

diagonal matrix (PT) produce the Eigenvector (e) and 

Eigenvalue (𝜆) of information space. 

𝐶 = 𝑃∑𝑃𝑇 = (𝑒1 … 𝑒𝑛)(
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The Eigenvector and Eigenvalue are score and loading, 

respectively. Score is the coordinates in information space 

and loading is the contribution of the descriptor on 

Eigenvector. Among N number of Eigenvectors (PCs) 

produced, PCs that explain the 80-90% of original datasets are 

selected. Also, in order to identify the importance of 

descriptors, the loadings of descriptors are compared and 

analyzed. 

3. RESULTS. 

 

Figure 3. Dimension coverage (blue) and the cumulative 

dimension coverage (red) of PCs 

Figure 3 shows the dimension coverage and the cumulative 

variance of PCs. To keep the original features of the data, it is 

essential to choose the number of PCs. As shown in Figure 3, 

the PCs that explain 80-90% of datasets are at least PC1 to 

PC5. It means that we have to consider at least PC1 to PC5 to 

extract the essential information of ALD process datasets. 

 

Figure 4. Thick (red) and Thin (blue) thickness of ALD process 

In order to visualize the relationship of ALD process feature 

and film thickness, the PCs with the biggest dimension 

coverage are extracted. The ALD process data is projected in 

dim1 (PC1) and dim2 (PC2) coordinates. PC1 and PC2 are 

covering 48.8% of original ALD data. The thickness and ALD 

process features are displayed in Figure 4 and Figure 5, 

respectively.  

Among 20 dependent variables, Figure 5 highlights the 

descriptor with a noticeable trend on film growth. The 

noticeable descriptors are Cp, precursor molecular weight, 

ligand length, N, precursor Z value, the number of oxide in 

precursor, the number of H in the reactant, the number of O 

in the reactant, reactant molecular weight, and the number of 

experiment cycle.



 



 
Figure 5. The distribution of features (a. Cp, b. N, c. Precursor molecular weight, d. Precursor Z value, e. Ligand length, f. The number of 

oxide in precursor, g. The number of H in the reactant, h. The number of O in the reactant, i. The reactants molecular weight, k. The 

number of cycle) in information space

As shown in Figure 4, thin film and thick film data are located 

in the upper left area and upper right area of the plot. In case 

of both film growth, the distinguishable trend are found in 

precursor conditions, reactant conditions, and operating 

conditions. 

For the thin film growth, the precursor tends to have relatively 

shorter ligand length and more N than other precursors. Also, 

according to Figure 5 c and d, the presence of heavy precursor 

does not have a clear contribution on the film thickness. In the 

reactant, high number of O and high molecular weight are 

clearly favored while the presence of H is not favored.  

Oppositely, for the thick film growth, the precursor tends to 

have a longer ligand length and 5re N 5re other precursors. 

While precursor molecular weight and Z value has no clear 

5ren on the thin film growth, in thick film growth, Figure 5 c 

and d show that the modest precursor molecular weight and Z 

value are favored. In the reactant, a low number of O and low 

molecular weight are clearly favored. 

In the material aspect, the favored conditions for the thin and 

thick film growth tend to have the opposite trend. The 

operating condition for the thin and thick film growth was 

opposite as well. As there are more cycle, the film tends to 

have thicker film. 

 

Figure 6. The relative contribution of ALD descriptors on PC1 

As well as in Figure 5, the contributions of 21 descriptors on 

PC1 construction are analyzed in Figure 6. Note that the 

absolute value of the relative contribution is taken into 

account for the interpretation. The noticeable descriptors are 

highlighted in red. For PC1, there are 7 descripors (Cp, N, 

Precursor moleculear weight, ligand length, number of H in 

reactant, number of O in reactant, cycle) that have relatively 

more important than others. Especially, the importance of 

reactant conditions are the most important among them. 

Meanwhile, there are less important descriptors: Cl, C, O, 

precursor temperature, reactant molecular length, idle time, 

and substrate temperature. Interestingly, the contribution of 

Cp and N are more visible than that of other ligand materials. 

Also, all kind of temperatures (the precursor temperature and 

substrate temperature) shows the relatively less contribution 

than other descriptors. It means that film thickness of ALD 

process does not heavily rely on the temperature.  

 

Figure 7. The relative contribution of ALD descriptors on PC2 

The contributions of 21 descriptors on PC2 construction are 

analyzed in Figure 7. The most distinguishable difference 

from PC1 contribution in Figure 6 is that some of the high 

contributors (O, precursor temperature, reactant molecular 

length, idle time) are the less important descriptors in PC1. 

Interestingly, the reactant molecular length and idle time that 

were not important in the PC1 are heavily contributed in PC2. 

i) Reactant molecular weight j) The number of experiment cycle 



Meanwhile, in PC2, some of descriptor (Cp, number of H in 

reacatnat, number of O in reactant, cycle) that are important 

in PC1 are less important in PC2. 

Even though PC1 and PC2 agree that the precursor weight and 

ligand length are important descriptors, the result from Figure 

5 shows that the precursor weight shows no clear contribution 

to the thickness. Hence, it is suggested that designing 

appropriate ligand size is important to control the film 

thickness of ALD process. Specifically, ligand size around 8 

nm is suitable for thin film growth, while ligand sizes less than 

8nm are for thick film growth. 

4. CONCLUSIONS 

The critical descriptors and trend of film growth of ALD 

process are analyzed by using PCA to understand the 

relationship of ALD system. In this research, the ALD process 

descriptors, including physio-chemical properties of materials 

and operating conditions, are collected to develop the 

preliminary chemical dimension of ALD process. As a result, 

high-dimensional analysis using PCA reveals the most 

important descriptor for the film thickness control and 

suggests the strategy for thick (>30nm) and thin (≤30nm) film 

growth. Based on this study, we could provide fundamental 

knowledge for film thickness control. As future work, we 

aimed to analyze the ALD process with a larger volume of 

data and develop the strategy for precisely predicting the 

thickness of ALD process. 
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