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Abstract: UTEX 2714 (Chlorella vulgaris) is cultivated outdoors in vertical bubble columns contained 

within a greenhouse to serve as a renewable blending bioplastic feedstock (BPFS). This application has 

potential advantages over traditional biofuels due to a simpler downstream process and higher marketability 

of the bioplastic product (> 1200 USD/ton). To assess sustainability for further scale-up and predict growth 

for varying seasonal conditions, mathematical modeling of growth kinetics was performed. Pilot plant data 

for parameter estimations were provided by the Pangyo LNG power plant complex. For early June 2021 

during which the data was collected, algae productivity was 0.13 kg/m3/day, with the unit cost of production 

and specific carbon footprint being 2768 USD/ton and 1.33 ton CO2-eq/ton, respectively. Monthly average 

productivity dipped to 0.061 kg/m3/day in February and peaked at 0.16 kg/m3/day in early August. Seasonal  

variations in temperature and light intensity significantly influenced the economic viability and greenhouse 

gas emission reducibility of the BPFS process, which highlights the need to improve the accuracy of the 

growth prediction model and expand the risk assessment scope for guiding future R&D.  

Keywords: Algae growth modeling, Outdoor cultivation, Growth kinetics, Bioplastic feedstock, 
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1. INTRODUCTION 

Microalgae is considered as a platform for biological carbon 

capture and utilization (CCU) due to its ability to 

autotrophically bio-fix CO2. It has especially garnered interest 

as a renewable feedstock for biofuels due to its high areal lipid 

productivity of >90,000 L/hectare (Demirbas and Fatih 

Demirbas, 2011). A major criticism of microalgae for biofuels 

applications, however, is the costly and complicated 

downstream that is required to produced the end fuel. 

Biodiesel, for example, can only be derived from cell lipids, 

which first requires penetration of the cell wall and extraction 

before any conversion can occur. For virtually all biofuel 

applications, large amounts of water need to be removed to 

concentrate the biomass. These harvesting, dewatering and 

drying steps can be highly energy-intensive, leading to low 

energy efficiencies (Razon and Tan, 2011). The combination 

of low lipid yields, high processing costs and energy demands 

means that the sustainability of microalgae-to-biofuel 

technologies is uncertain. On the other hand, production of 

highly valorisable products such as dietary supplements (e.g. 

astaxanthin) are restricted to small, niche markets (Li et al., 

2020), which limits the ability to effectively reduce 

greenhouse gas (GHG) emissions on a large scale. 

In this regard, microalgae as a bioplastic feedstock (BPFS) can 

be a viable alternative. Algal biomass is co-blended with 

traditional polymers to create a bioplastic resin that has both 

improved biodegradability and lower carbon footprint of 

production than conventional polymers (Zeller et al., 2013). 

The feasibility of algae-plastic blending has been 

demonstrated in previous works such as M. Crocker et al. 

(2020) in which freshwater UTEX B72 was blended with 

ethylene vinyl acetate (EVA) (Crocker et al., 2020). For 

biomass-EVA blends, the minimum selling price ranges 

between 1500 – 2000 USD/ton, compared to biofuels at 800 – 

1300 USD (Gerber et al., 2016). Moreover, preparation of 

BPFS requires minimal downstream processing. After drying, 

the entirety of the biomass with <10 wt% moisture can be 

blended, although additional treatment steps such as lipid 

extraction, and biomass fractionation can further improve 

bioplastic properties (Crocker et al., 2018).  

In this work, we consider BPFS preparation via drying only, in 

which further heat integration is achieved by rerouting stack 

flue gases to the convective dryer. Despite these process 

improvements, the economic feasibility and environmental 

sustainability of algal BPFS production is still dubious and 

highly dependent on natural variabilities. Temperature and 

sunlight intensity, in particular, directly influence the growth 

rate of the biomass (Béchet et al., 2013), which affects both 

efficiency and productivity. Meanwhile, cultivation 

experiments are known to be time consuming. A single batch 

growth experiment can take multiple days and requires many 

intermediate measurements. In order to estimate and assess the 

sustainability of the BPFS process under varying natural 

conditions, mathematical modeling of cell growth and key 

downstream units was conducted. Unit cost of goods 

manufactured (COGM, USD/ton BPFS) and specific carbon 

footprint (ton CO2-eq/ton BPFS) were measured as 



performance indicators for economic and environmental 

sustainability, respectively. 

2. CULTIVATION PILOT PLANT 

2.1 Plant specifications 

UTEX 2714 (Chlorella vulgaris) was cultivated in a 15 m3 

pilot plant. The plant was constructed on-site at the Pangyo 

LNG-fired power facility in South Korea and consists of a 

greenhouse encompassing an area of 50m2 with fifteen 

photobioreactor (PBR) modules. Each PBR module has a 

culture volume of 1 m3 that is contained within LDPE airlift 

bags and supported on a stainless steel superstructure (Fig. 1). 

The LDPE bags are arranged horizontally in a design similar 

to the Green Wall Panel®-II and have a maximum thickness 

of 20 cm, approximate height of 1.2m and a length of 4.2m. 

 

The 1m3 PBR module each occupies 3.3m2 of land and 

requires 3 kg of LDPE, which are replaced every two years. 

CO2 is supplied via flue gas aeration from the power plant 

stack, which also provides vertical mixing. Flue gas is supplied 

to the PBR system as a bypass, meaning that any lean gases 

and PBR off-gases are rerouted to the stack. The composition 

of CO2 in the flue gas ranges between 4 – 6 vol%. For the 

purpose of establishing mass balances, the values reported in 

Scholes et al. were used (Scholes et al., 2016) (Table 1). 

Table 1. Temperature and composition of LNG-fired flue gas as 

reported in Scholes et al. 

Temperature (oC) 100oC 

Composition (mol %)  

CO2 4.97 

N2 74.28 

O2 9.73 

H2O 11.02 

 

2.2 Data collection and processing 

The experimental data for growth parameter estimation was 

conducted over a 149 hour period between June 2nd to June 9th 

2021. Cell concentration (g/L), light intensity (μE/m2s), and 

temperature (oC) were measured at roughly 90 second intervals. 

The target cell concentration for biomass harvesting was set to 

1 g/L.  

 

Due to outdoor cultivation, the collected data was noisy, 

particularly with respect to light intensity. It was observed that 

the recorded light intensity would spontaneously fall to 0 

during the daylight hours. The cause was later determined to 

be shadows that were cast from the steel superstructure 

covering the light sensors, for which it instantaneously read 

very low intensities. The data for light intensity and 

temperature were post-processed with ARIMA for outlier 

removal. ARIMA(2,0,1) was fitted, corresponding to 2 

autoregressive time lags and 1 moving average time lags. The 

dynamic threshold was set to mean(error) + 3∙stdev(error).  

3. CELL GROWTH MODELING 

3.1 Characterizing cell growth and death 

A plot of the log of cell concentration versus time showed 

approximate first order kinetics with an R2 error of 0.92. 

Periods of cell concentration decrease during the night was 

observed, with particularly significant death occurring in night 

4. We postulate multiple reasons for night-induced death, 

including programmed cell death (PCD), low temperature due 

to absence of light, and a decrease in culture pH. The latter can 

occur because flue gas is still being supplied during the night, 

albeit at a lower flowrate of 0.02 v.v.m., in order to provide 

aeration and prevent settling. Due to the absence of 

photosynthesis, carbonic acid can build up in the culture. 

However, low pH alone does not describe why significant cell 

death was observed only on night 4.  

Figure 1. Stainless steel supported vertical airlift PBRs 

inside a greenhouse at the Pangyo facility. Each row 

contains a culture volume of 1m3. 

Figure 2. Experimental data for culture temperature, light 

intensity inside the greenhouse and cell concentration. 



Following first order kinetics, cell concentration can be 

represented via the following equation 

𝐶𝑥(𝑡) = 𝐶𝑥0𝑒𝜇𝑔−𝜇𝐷  (1) 

𝜇𝑔  and 𝜇𝑑  represent rate constants for cell growth and cell 

death, respectively. In the current PBR system, growth 

nutrients were present in excess in the culture media and CO2 

was continuously supplied during the daylight hours at 0.05 

v.v.m. Consequently, 𝜇𝑔 and 𝜇𝑑 were modeled as functions of 

light intensity and culture temperature. Various forms of rate 

expressions for light/temperature-limited growth have been 

proposed in literature and can be broadly classified into either 

threshold or multiplicative models (Lee et al., 2015). 

Threshold models are based on the minimum law and models 

growth rate based on the most limiting condition. In the 

threshold model proposed by Guest et al. for example, co-

limitation of light intensity and N, P nutrients was considered 

(Guest et al., 2013). Multiplicative models, on the other hand, 

assume that relevant growth conditions influence growth 

equally and simultaneously. Each contributing factor is 

represented as a multiplicative term in the rate expression. 

3.2 Modeling growth rate 

For the growth rate 𝜇𝑔, a screening of existing multiplicative 

models that consider light intensity (𝐼) and temperature (𝑇) 

was performed. The model proposed by Franz et al. (2) was 

ultimately selected on the basis of best fit and lowest mean 

squared error (MSE) of 1.5E-3. 

𝜇𝑔 = 𝜇𝑚𝑎𝑥 (
𝐼

𝐾𝐼 + 𝐼
) 𝑒

−(
𝑇−𝑇𝑜𝑝𝑡

𝜃
)

2

 (2) 

The overall expression follows the Arrhenius form where the 

maximum specific growth rate (𝜇𝑚𝑎𝑥)  and the light 

dependency term comprise the pre-exponential factor. For 

light-dependency, Monod kinetics was assumed, where 𝐾𝐼  is 

the half-light saturation constant (μE/m2s) . Temperature 

dependence was modeled as a Gaussian function where 𝑇𝑜𝑝𝑡 

represents the mean of the curve or the temperature where the 

corresponding growth rate is the highest (Franz et al., 2012). 

Growth rate levels off exponentially as the temperature 

deviates (either positively or negatively) from 𝑇𝑜𝑝𝑡 . 

Accordingly, θ is the temperature distribution parameter that 

is analogous to the standard deviation.  

3.3 Modeling death rate 

In literature, the death rate was often considered as a constant 

parameter whose value was determined via parameter 

estimation (Darehshouri et al., 2008). This method may seem 

appropriate for this study as the exact cause(s) of cell death 

during night time has not been confirmed. However, attempts 

to estimate as a static parameter resulted in poor model fitting 

where in most cases the value reached the lower bound. In 

addition, higher rates of cell death were observed on nights 2 

and 4. 
 

𝜇𝑑 = 𝑘𝐷𝑒−𝐶𝐷𝐼  (3) 

The death rate was modeled empirically which ultimately 

resulted in an Arrhenius form dependent on light intensity 

rather than temperature (3). This was due to possible overlap 

with the expression for 𝜇𝑔, and to account for possible PCD in 

the absence of light. Equation (3) introduces two additional 

fitting parameters: specific death rate 𝑘𝐷  and the death 

constant 𝐶𝐷. Performing parameter estimation with equations 

(2) and (3) resulted in a good estimation (Fig. 3) that was able 

to adequately capture the concentration dynamics. The 

resultant mean squared error was 1.47E-3. The values of the 

estimated parameters and their lower/upper bounds are 

summarized in Table 2.  

 

 

Table 2. Values of parameter estimators with bounds  

Parameter Value Upper Bound Lower Bound 

𝜇𝑚𝑎𝑥 0.0035 min-1 0.01 0.0001 

𝐾𝐼 384.5 μE/m2s 100 800 

𝑇𝑜𝑝𝑡 27.9oC 10 50 

θ 9.8oC 0.001 100 

𝑘𝐷 0.0011 min-1 0.01 0.0001 

𝐶𝐷 187.6 0.001 Positive 

 

4. DOWNSTREAM MODELING 

 

A simplified flow diagram is shown in Figure 4. For the 

purpose of constructing mass and energy balances, dissolved 

air flotation (DAF) and centrifugation was assumed for 

Figure 3 Parameter estimation considering rate expressions for cell 

growth and death as functions of light intensity and temperature.   

Figure 4 Flow diagram of the algal BPFS process. 

Yellow lines represent bypass streams. 



harvesting and dewatering, respectively. Centrifugation can 

achieve biomass concentration up to 25 solid wt% (Fasaei et 

al., 2018). However, in order for algal powder to be 

transported and blended, water content needs to be minimized 

to <10 wt% (Crocker et al., 2018), which requires drying. 

While traditionally an energy intensive process, the on-site 

integration with the LNG-fired power plant means that flue gas 

can be used as a source of cost-free waste heat.  

 

 

Black box models were used for harvesting, dewatering and 

blowdown purge steps. The biomass recoveries at harvest and 

dewatering were 91% and 95% respectively (Niaghi et al., 

2015, Molina Grima et al., 2003) and energy consumption was 

scaled using literature values. For the drying process (Fig. 5), 

the following adiabatic convective dryer model was used (4). 

�̇�𝐷𝑒𝑤 + �̇�𝐹𝐺𝑖𝑛
= �̇�𝑜𝑢𝑡 + �̇�𝐹𝐺𝑜𝑢𝑡

(4) 

Water removal occurs both from the convective force of air 

and heat transfer from the flue gas. No external heat is supplied 

and the blower energy requirements are calculated separately. 

The enthalpy of the incident flue gas �̇�𝐹𝐺𝑖𝑛
 can expressed as 

the sum of specific heat capacity and the latent heat of 

humidity: 

�̇�𝐹𝐺𝑖𝑛
= (𝑐𝑝

𝐹𝐺 + 𝑐𝑝
𝐻2𝑂𝜉𝑖𝑛) ∙ 𝑇𝑖𝑛 + 𝐻𝐿𝐴𝑇𝜉𝑖𝑛 (5) 

Setting 𝑇𝑀 = 10 𝑤𝑡% as the target moisture, the removal rate 

of water and the required flue gas flowrate can be calculated 

by the following equations: 

𝐸𝑣𝑝̇ = �̇�𝐻2𝑂
𝐷𝑒𝑤 −

𝑇𝑀 ∗ �̇�𝐴𝑙𝑔𝑎𝑒
𝐷𝑒𝑤

1 − 𝑇𝑀
(6) 

�̇�𝐹𝐺 =
𝐸𝑣𝑝̇

𝜉𝑖𝑛 − 𝜉𝑜𝑢𝑡

(7) 

𝜉𝑖𝑛 and 𝜉𝑜𝑢𝑡 are the relative humidities of incident and outlet 

flue gases. The outlet flue gas temperature was set to 55oC 

according to Giostri et al., implying a temperature drop of 

45oC (Giostri et al., 2016). The relative humidities are 

calculated by equations (8) and (9). 

𝜉𝑖𝑛 =
𝑀𝑊𝑊𝑎𝑡𝑒𝑟

𝑀𝑊𝐹𝐺
 ∙  

𝑝𝐹𝐺𝑖𝑛

𝑠𝑎𝑡 ∗ 𝑋𝐻2𝑂

𝑝𝐹𝐺𝑖𝑛
 −  (𝑝𝐹𝐺𝑖𝑛

𝑠𝑎𝑡 ∗ 𝑋𝐻2𝑂)
(8) 

𝜉𝑜𝑢𝑡 =   
�̇�𝐹𝐺𝑖𝑛

 − 𝑐𝑝
𝐹𝐺𝑇𝑜𝑢𝑡

𝑐𝑝
𝐻2𝑂𝑇𝑜𝑢𝑡 + 𝐻𝐿𝐴𝑇

(9) 

The model has 4 unknowns (�̇�𝐹𝐺𝑖𝑛
, �̇�𝐹𝐺 , 𝜉𝑖𝑛 , 𝜉𝑜𝑢𝑡 ) and 4 

equations (5, 7, 8, 9). The values of the unknowns and the 

parameters are summarized in Table 3.  

Table 3. Parameters and solved unknowns for the adiabatic dryer 

Parameter Value 

𝐸𝑣𝑝̇  Water evaporation rate, kg/hr 47.2 

𝑇𝑀 Target biomass moisture, wt % 10 

𝐻𝐿𝐴𝑇  Latent heat of moisture, kJ/kg 2260 

𝑐𝑝
𝐹𝐺  Heat capacity of flue gas, kJ/kgC 1.05 

𝑐𝑝
𝐻2𝑂 Heat capacity of water, kJ/kgC 4.19 

𝑋𝐻2𝑂 Water content in flue gas, wt% 5  

𝑇𝑖𝑛 Flue gas inlet temperature, oC 100 

𝑇𝑜𝑢𝑡 Flue gas exit temperature, oC 55 

 

5.  SUSTAINABILITY ASSESSMENT 

5.1 Performance indicators for sustainability assessment 

Prior to sustainability assessment, the pilot plant was up-scaled 

1,000 times to remove any scale-dependent effects when 

measuring performance indicators. The scaled-up process with 

a PBR volume of 15,000 m3 was simulated in MATLAB as a 

semi-batch, wherein cultivation and media preparation were 

operated as batch and the remaining downstream units were 

operated as continuous. Economic and environmental 

sustainability of the Chlorella vulgaris BPFS process was 

measured by with the unit cost of goods manufactured (unit 

COGM) and carbon footprint per functional unit indicators. 

Unit COGM measures the total annual cost of production 

divided by the total amount of produced product (10). Due to 

the early maturity and small scale of the BPFS plant, Lang 

factors from Towler and Sinnott (2013) was used to estimate 

fixed operating expenses such as labor and overhead (Towler 

and Sinnott, 2013). 

𝑈𝑛𝑖𝑡 𝐶𝑂𝐺𝑀 =
𝑂𝑃𝐸𝑋𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 + 𝑂𝑃𝐸𝑋𝐹𝑖𝑥𝑒𝑑 + 𝐶𝐴𝑃𝐸𝑋

∑ 𝐴𝑙𝑔𝑎𝑙 𝑃𝑜𝑤𝑑𝑒𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑦𝑒𝑎𝑟

(10) 

OPEX and CAPEX represent operating expenses and capital 

expenses, respectively. Variable operating expenses depend on 

the plant operation, and include costs of utilities and raw 

materials. Fixed operating expenses includes labor costs and 

site maintenance. Cost factors for OPEX were referenced from 

Clippinger and Davis (2019) (Clippinger and Davis, 2019). 

Capital expenses include annual payments on plant capital 

with interest. A capital recovery factor of 6.5% was used 

assuming an annual discount rate of 5%. Specific carbon 

footprint (CF) measures the total cradle-to-gate global 

warming impact of algal BPFS production per functional unit. 

This includes any indirect greenhouse gas (GHG) emissions 

from raw material and utility production and consumption. 

Note that due to the integration with the LNG-fired power 

plant with flue gas bypass, CO2 emissions from the PBR off 

gases were not counted as direct emissions.  

Figure 5. Adiabatic process for convective flue gas drying  



𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐶𝐹 =
∑ 𝐷𝑖𝑟𝑒𝑐𝑡 & 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝐺𝐻𝐺 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

∑ 𝐴𝑙𝑔𝑎𝑙 𝑃𝑜𝑤𝑑𝑒𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑦𝑒𝑎𝑟

(11) 

For the purpose of assessment, the functional unit was set to 

“1 ton of algal powder (A.P.) with <10 wt% moisture” 

5.2 Baseline assessment results 

The baseline values for the measured indicators were 2768 

USD/ton A.P. and 1.3 ton CO2-eq/ton A.P. from a mean 

biomass productivity of 0.13 kg/m3/day. The breakdown 

graphs for constituent cost and emission components are 

displayed in Figure 6.  

 

The high cost of production is primarily attributed to the cost 

of the greenhouse and PBRs. Of the 1452 USD/ton fixed 

operating costs, labor and maintenance account for 699 

USD/ton and 629 USD/ton respectively. In the case of carbon 

footprint, a nominal reduction is achieved when the algal 

BPFS is compared with the conventional EVA resin. The 

majority of emissions were indirect in the form of electricity 

production. Large amounts of electricity were consumed by 

flue gas blowers operating 24 hours a day, and at a pressure 

drop of 0.12 bar. Due to the trade-off relationship of higher 

unit COGM versus saved GHG emissions, the cost of CO2 

avoided can be calculated as follows (12) 

𝐶𝑜𝑠𝑡𝐴𝑣𝑜𝑖𝑑𝑒𝑑 =
𝐶𝑂𝐺𝑀𝐴𝑙𝑔𝑎𝑒 𝐵𝑃𝐹𝑆 − 𝐶𝑂𝐺𝑀𝐸𝑉𝐴

𝐶𝐹𝐸𝑉𝐴 − 𝐶𝐹𝐴𝑙𝑔𝑎𝑒 𝐵𝑃𝐹𝑆

(10) 

At baseline conditions, the cost of CO2 avoided for the algae 

BPFS plant was 1509 USD/ton CO2. 

5.3 Predicting seasonal biomass production with uncertainty 

The growth model was used to predict seasonal average 

biomass productivities and estimate how plant economics and 

environmental emissions change with climate conditions. 

Climate data from the Korea Meteorological Administration 

was appropriated to greenhouse conditions using pilot plant 

data as reference. Random 149 hour intervals were sampled 

between December – February, March – May, June – August, 

and September – November corresponding to Spring, Summer, 

Fall, and Winter seasons, respectively. For each sampled 

interval, biomass growth was predicted with the current model 

and sustainability assessment was performed for the up-scaled 

scenario. For each season, Monte Carlo sampling of 149 hour 

intervals was performed 1,000 times. Figure 7 displays the 

average values of performance indicators for each season, with 

error bars representing one standard deviation from the 

empirical distribution.  

 

Figure 7 verifies that the performance of the algal BPFS plant 

is highly dependent on natural light and temperature 

variabilities. Korea has distinct seasonal weathers with warm 

and dry spring/fall, hot and humid summers, and cold and dry 

winters. A larger error bar was observed for the Summer due 

to Korea’s monsoon season, in which periods of sporadic 

rainfall result in reduced photosynthetically available radiation 

(PAR). Both economics and environmental sustainability falls 

dramatically during the winter season. This was due to lower 

predicted biomass productivities despite unchanging expenses 

incurred during plant operation. The average biomass 

productivity during December – February was 0.0072 

kg/m3/day. 

6. DISCUSSION 

Validating the growth model should take precedence before 

any meaningful R&D decisions are made. In this study, a 

single dataset from the cultivation pilot plant was used to 

perform parameter estimation. In addition, for appropriating 

ambient light intensity and temperature data to the greenhouse 

a simple scaling factor was used. The accuracy and scope of 

the prediction model could benefit from additional 

experimental datasets conducted over a wider range of climate 

conditions. Measurements of PAR and culture temperature 

inside the greenhouse alone, can enable a more rigorous 

appropriation model taking into consideration effects such as 

sunlight albedo.  

Figure 6. Breakdown of the unit COGM and specific 

carbon footprint for algal BPFS production 

Figure 7. Predicted seasonal average estimates for 

performance indicators using Monte Carlo simulation of 

meteorological data. 



With the present results, it is difficult to guarantee the 

sustainability of algal BPFS despite significant improvements 

over previous biofuel applications. Disregarding natural 

variabilities, the greatest hurdles to sustainability seem to be 

the high upstream capital costs at the cultivator and high 

energy consumption from flue gas aeration. Regarding the 

latter, testing a range of flue gas aeration speeds and its effect 

on settling and biomass productivity can enable a PBR mass 

transfer model to supplement growth kinetics. Optimal 

aeration speeds can subsequently be determined through 

optimization. 

A limitation of this study was that the uncertainty of parameter 

estimators was not considered, focusing only on the effect of 

natural variabilities. The effect of both model uncertainties and 

natural variabilities can be quantified simultaneously with 

second-order Monte Carlo simulations (Wu and Tsang, 2004). 

This would allow a more complete assessment of risk when 

assessing the viability for further scale-up. 
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