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Abstract: Optimal experimental design for parameter precision attempts to maximize the
information content in experimental data for a most effective identification of parametric model.
With the recent developments in miniaturization and parallelization of cultivation platforms
for high-throughput screening of optimal growth conditions massive amounts of informative
data can be generated with few experiments. Increasing the quantity of the data means to
increase the number of parameters and experimental design variables which might deteriorate
the identifiability and hamper the online computation of optimal inputs. To reduce the problem
complexity, in this work, we introduce an auxiliary controller at a lower level that tracks
the optimal feeding strategy computed by a high-level optimizer in an online fashion. The
hierarchical framework is especially interesting for the operation under constraints. The key
aspect of this method are discussed together with an in silico study considering parallel glucose
limited bacterial fed batch cultivations.

Keywords: Interaction between design and control, Bio-applications, Batch process modeling
and control, Design of experiments

1. INTRODUCTION

Obtaining a mechanistic model of the microbial system is
crucial to the effective, consistent, and reliable bioprocess
development (Neubauer et al., 2013). A mechanistic model
is described by the set of parameters, which character-
ize the kinetics of the key metabolic pathways (Anane
et al., 2019). The parameters are estimated by fitting
the parameter to the experimental data with the maxi-
mum likelihood estimation objective. The accuracy of the
mechanistic model is significantly affected by the amount
of experimental data available. Nonetheless, it is difficult
to obtain the satisfactory amount of data especially for a
bioprocess. This is because the cultivation experiment is
typically costly and time consuming. Moreover, the key
states of the cultivation are mainly measured through the
at-line channels, which are significantly scarcer than those
from the online sensors.
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Recently, high-throughput (HT) technology allows for ob-
taining massive experimental data, which accelerates bio-
process development (Cruz Bournazou et al., 2017). Liquid
handling station supports for automatizing, parallelizing,
and miniaturizing the experimental facilities to perform
the laborious cultivation experiments (Hemmerich et al.,
2018). In the down-scaled cultivation based on the mini-
bioreactors, the heterogeneous (or oscillating) operating
conditions in the large-scale bioreactors should be sim-
ulated (Anane et al., 2019). Moreover, the microfluidic
device for the continuous feeding on the milliliter scale re-
actor is technically difficult to achieve (Faust et al., 2014).
For these reasons, pulse-based glucose feeding has been
incorporated for the HT bioprocess development (Hans
et al., 2020). It is crucial to exactly capture the sharp
change of states from the pulse-feed by an exact parameter
estimation, because the state values right after the pulse-
feed are often locate at the boundary of the operating
conditions, activating the corresponding inequality con-
straints.

Although the data amount is amplified thanks to the
HT technique and thereby resolve issues rooted from the



scarcity of data, it is still crucial to design the experiment
that can maximize the information content of the data
given the experimental facility. The purpose of the optimal
experimental design (OED) is to search for the feeding
strategy that maximizes the information content of the
measurement, quantified by the Fisher information ma-
trix (FIM) (Franceschini and Macchietto, 2008). Through
the sequential procedure, which consists of 1) comput-
ing new experimental strategy, 2) obtaining data, and 3)
estimating the parameters, the parametric uncertainties
become progressively reduced (Martinez et al., 2009). The
online OED following such procedure has been applied
for dynamic systems such as batch fermentation, liquid
chromatography, and oxidative reaction (Galvanin et al.,
2009; Telen et al., 2014; Barz et al., 2016).

A critical issue for the online implementation of the
OED is the existence of non-identifiable parameters that
make the parameter estimation ill-posed. Especially at the
beginning of an experiment (i.e., batch phase) the scarcity
of at-line measurements of bioprocesses might cause a
huge error for the initial parameter guesses, and therefore
leads to the failure of the model-based approaches for
the entire experiment (López Cárdenas et al., 2015; Barz
et al., 2016). Running parallel experiments is advantageous
to alleviate this ill-posedness issue in the sense that the
amounts of at-line data are multiplied by the number
of parallel reactors. Parameter estimation of the parallel
experiments has been successfully performed in (Anane
et al., 2019; Hans et al., 2020).

Nonetheless, a new problem arises at the OED side from
incorporating multiple reactors simultaneously. The online
computation or numerical solution of the re-design prob-
lem becomes intractable as the number of design variables
increases proportionally to the number of parallel bioreac-
tors. Concerning that the typical time interval for online
decision of the cultivation is in the order of few minutes,
full parallel OED should be relaxed. There exist only a
few studies for the parallel OED. One approach is to de-
compose to the sequential OED for the individual systems
by maximizing kth largest singular value of the FIM of
kth system (Galvanin et al., 2007). This is based on the
assumption that the individual optimizer constitutes the
global optimizer. Another approach rather focuses on the
stabilization of the numerical solution of the parallel OED
problem by the subset selection method (Cruz Bournazou
et al., 2017; Barz et al., 2018). However, previous studies
have not considered the constrained nonlinear program-
ming formulation based on the full discretization of the
dynamic systems and sensitivity. Such method can benefit
from the efficient gradient-based solver on providing the
analytic derivative (Bauer et al., 2000). In addition, the
parallel OED becomes flexible in incorporating important
process constraints as well as being extended to the robust
setting or data-driven methods (Körkel et al., 2004; Lucia
and Paulen, 2014; Telen et al., 2018).

This paper extends the work of Barz et al. (2018), in
which the adaptive optimal design of 4 parallel fed-batch
mini-bioreactors was performed using single shooting op-
timization. We add an oxygen constraint to the OED
which is important for the cell growth by preventing
the oxygen limitation condition. To avoid the computa-
tional intractability of the constrained OED under the

full discretization method, we separate the problem into
the unconstrained OED and the additional constrained
controller. The auxiliary controller is responsible for track-
ing the optimal experimental strategy of each bioreactor
computed by the unconstrained OED under the oxygen
constraint. Auxiliary controllers now concern the dynamics
of each single bioreactor, hence they become independent
from each other and easily parallelizable. Moreover, the
objective function of the tracking problem is convex and
the size of the problem is considerably reduced. The par-
allel OED is solved with much lower frequency, while the
auxiliary controllers are solved in every decision time steps.
This hierarchical structure enables the online implemen-
tation of the parallel constrained OED by experiencing
minimal approximation, as demonstrated similarly in the
adaptive optimization of bioprocess (Kim et al., 2021).
Proposed methods are demonstrated using the 8 parallel
cultivation experiments base on the in silico setting.

2. MACRO-KINETIC GROWTH MODEL

The robotic facility of the HT platform is able to conduct
eight parallel cultivations. The following measurements are
considered:

• Online measurements: Dissolved oxygen tension (DOT)
and pH are recorded every 30 seconds online.

• Atline measurements: Biomass, substrate, acetate,
and product concentrations are analyzed from sam-
ples taken every 120 minutes.

• Pipette actions: Glucose solution 200 g/L is added
every 10 min in each reactor. The amount of pulse
addition of the glucose solution is the decision vari-
able.

The cultivation is divided into two phases; batch and fed-
batch. In the batch phase, the biomass grows by consuming
the substrate which initially exists in the reactor. Fed-
batch starts as soon as the substrate is depleted, which
can be detected by observing the steep increase in the
DOT signal.

The macro-kinetic growth (MKG) model is described
by a set of ordinary differential equations (ODEs) of
six state variables, biomass X, substrate S, acetate A,
dissolved oxygen tension measurement DOTm, product
P , and the reactor medium volume V . The governing
equations for the biomass, substrate, acetate, and product
concentrations are expressed as

dX

dt
= −µX +

X

V
Fλ (1)

dS

dt
= −qSX +

S

V
Fλ (2)

dA

dt
= qAX +

A

V
Fλ (3)

dP

dt
= qPX +

P

V
Fλ (4)

where µ, qS , qA, and qP are the specific growth rate
(g/(g ·h)), specific substrate uptake rate (g/(g ·h)), specific
acetate production rate (g/(g · h)), and specific product
formation rate (g/(g · h)), respectively; Fλ (L/h) is the
evaporation rate. Dissolved oxygen tension (DOT) is mod-
elled by the algebraic equation considering equilibrium
oxygen concentration in the reactor medium as



DOT = DOT ∗ − qOXH

kla
(5)

where kla (h−1) denotes the volumetric oxygen transfer co-
efficient; DOT ∗ (%) denotes the saturation concentration
of DOT; qO (g/(g · h)) denotes the specific oxygen uptake
rate; H (mol/(m3 ·Pa)) denotes the Henry constant. The
oxygen sensor has first order delay, which is written as

dDOTm
dt

= kp(DOT −DOTm) (6)

where kp (h−1) represent the time constant.

The parameter vector θ comprises of the physical param-
eters of the MKG model. The reader is referred to Anane
et al. (2017) for the detailed description of the MKG model
based on the acetate cycling and glucose partitioning.
We distinguish the global parameters and local reactor-
dependent parameters as θg and θl, respectively as;

θg =

{
qS,max, qm, qAp,max, qAc,max,
YXS,em, YAS,of , YXA, YOS , YOA, YPS ,
KS ,KqS ,Ki,SA,KA,Ki,AS , dS,ox,P

}
θl = {kla, kp}

(7)

In the fed-batch phase, the glucose feed is given in pulse-
type rather than continuous-type. This results in instanta-
neous jumps in the process variables, which are governed
by the mass balance. Denote t and t+ the times just before
and after the pulse input occurs, respectively. The mass
balance is described by

X(t+) = X(t)− X(t)

V (t+)
∆v(t) (8a)

S(t+) = S(t)− S(t)− Sf

V (t+)
∆v(t) (8b)

A(t+) = A(t)− A(t)

V (t+)
∆v(t) (8c)

DOTm(t+) = DOTm(t) (8d)

P (t+) = P (t)− P (t)

V (t+)
∆v(t) (8e)

V (t+) = V (t) + ∆v(t) (8f)

where ∆v(t) (L) denotes the amount of pulse-feed at time
t; Sf (g/L) denotes the substrate concentration in the
pulse-feed.

3. MODEL BASED OPTIMAL EXPERIMENTAL
DESIGN

3.1 Problem description and formulation

The states x, manipulated variables u, and measured
variables y comprise of

x = [X,S,A,DOTm, P, V ]

y = [X,S,A,DOTm, P ]

u = [∆v]

(9)

The high-throughput experiment is characterized by fol-
lowing discrete variables:

R = {(row)|row ∈ {A,B, . . . ,H}}
U = {10k (min)|k ∈ N}

Mr,y =

{
{120k (min)|k ∈ N} , y ∈ {X,S,A, P}
{30k (sec)|k ∈ N} , r ∈ R, y = DOTm

(10)

where R is the index set of the mini-bioreactors; U is
the discrete pulse-feeding times; Mr,y is the measurement
times of the reactor r for the measured variable y. The
collection of all-time elements of Mr,y is denoted as M =⋃

y,r∈R Mr,y.

Denote differential equations of the MKG model (Eqs. (1)-
(6)) as f ∈ Rnx , algebraic equations of mass balance due
to the pulse-feed (Eqs. (8)) as fd ∈ Rnx , and output
functions for reactor r as hr ∈ Rny . Then the parallel
cultivation setup of the mini-bioreactors can be described
in the compact form as:

ẋr(t) = f(xr(t), θr), t ∈ [t0, tf ] \ U
xr(t

+) = fd(xr(t), ur(t)), t ∈ U
yr(t) = hr(xr(t)) t ∈ M
xr(t0) = x0,r, ∀r ∈ R

(11)

where the subscript r indicates that variables x, u, and y
belong to the reactor r; t0 and tf are the initial and final
cultivation time, respectively; t+ is the time after which
pulse-feed is made. The parameter vector for the individual
reactor r ∈ R is denoted as θr, and the parameter
vector that contains the global parameters and the local
parameters for the entire reactors is denoted as θ ∈ Rnθ .
Following shows the definition:

θr = [θg, θl,r] , r ∈ R
θ = [θg, {θl,r|r ∈ R}] (12)

Each bioreactor has the initial condition x0,r. The output
function is given by hr(xr(t)) = xr(t) if t ∈ Mr,y and not
defined elsewhere.

3.2 Parameter estimation and Fisher information matrix

Parameters are estimated based on the maximum likeli-
hood estimation method by incorporating previous mea-
surements. Measurements at time instance ti are as-
sumed to follow the normal distribution with the variance-
covariance matrix Σi ∈ Rny×ny . The correlations between
measurements are not considered, hence Σi is a diagonal
matrix. Parameters are estimated by minimizing the ob-
jective function defined as:

∥θ̂− − θ∥2
R−1

0

+
∑
r∈R

∑
ti∈M

∥hr(xr(ti))− yr,i∥2Σ−1
ti

(13)

where R0 denotes a weighting constant; yr,i is the mea-
surement of the reactor r at time ti. The residual vector
is scaled by |Mr,y|, the number of measurements on the
reactor r and output variable y. Here, Tikhonov regu-
larization that penalizes the parameters deviating from

the previous estimates (i.e., θ̂−) is utilized to prevent
the ill-conditioning issue (Barz et al., 2016). The optimal

parameter vector θ̂ is evaluated by solving the optimiza-
tion problem Eq. (13) subject to the model equations in
Eqs. (11).

If θ̂ is the unconstrained optimizer of Eq. (13), then the
Cramer-Rao inequality provides the lower bound of the
parameter covariance as

F (t0) =
∑
r∈R

∑
ti∈M

sr(ti)
TΣ−1

i sr(ti)

C[0,t0](θ̂) ≈ F (t0)
−1

(14)



where sr(ti) ∈ R|M|×nθ is the sensitivity matrix of the
output of the bioreactor r with respect to the parameter

vector, given as sr(ti) =
∂yr
∂θ

; F (t0) is Fisher information

matrix; C[0,t0](θ̂) is the parameter covariance matrix com-
puted at time t0.

3.3 Optimal experimental design

We formulate the OED with the Fisher information matri-
ces (FIM) for the past and future measurements. Denote
the current and future times as t0 and tp, respectively, and
the collection of the measurement times within [t0, tp] as

M+. Under the last estimates θ̂, the Fisher information
matrix is additive:(

C[0,tp](θ̂)
)−1

≈
(
C[0,t0](θ̂)

)−1

+
∑
r∈R

∑
ti∈M+

sr(ti)
TΣ−1

i sr(ti)
(15)

The exact evaluation of Eq. (15) is impossible, due to
the dependency of the FIM on the model parameter
values with the measurements, which cannot be known
in advance. Therefore, OED approximates the parameters
to be fixed to their prior estimates until the prediction
horizon tp (Galvanin et al., 2009).

There exist several scalar metrics for the Fisher informa-
tion matrix. In this paper, we apply A criterion of the
objective function of the OED problem. The definition is
given as:

ψA =
1

nθ
Tr

(
C[0,tp](θ̂)

)
(16)

where Tr(·) stands for the trace of the matrix, respectively.

Dynamic propagation of the sensitivity matrix can be
computed from the chain rule as

ṡr(t) =
∂f

∂x
sr(t) +

∂f

∂θ
, sr(0) =

∂xr(0)

∂θ
(17)

In addition, the relationship between sensitivity matrices
before and after the pulse-feed is obtained from differenti-
ating the mass balance equations fd as

sr(t
+) =

∂fd
∂x

sr(t) +
∂fd
∂θ

(18)

Accommodating the dynamic models and dynamic sen-
sitivity matrices for all r ∈ R, and the objective func-
tion, the OED problem optimizes the manipulated variable
ur, r ∈ R in [t0, tp]. The problem is formulated as

min
ur,r∈R

ψA (19a)

s.t. ẋr(t) = f(xr(t), θr), t ∈ [t0, tp] \ U (19b)

xr(t
+) = fd (xr(t), ur(t)) , t ∈ U (19c)

ṡr(t) =
∂f

∂x
sr(t) +

∂f

∂θ
, t ∈ [t0, tp] \ U (19d)

sr(t
+) =

∂fd
∂x

sr(t) +
∂fd
∂θ

, t ∈ U (19e)

xmin ≤ xr(t) ≤ xmax, t ∈ [t0, tp] (19f)

umin ≤ ur(t) ≤ umax, t ∈ U (19g)

xr(0) = x0,r (19h)

r ∈ R (19i)

⋮

Setpoints

Optimal pulse-feed, perform experiment

Time

Fig. 1. Hierarchical structure of the parallel OED and
auxiliary MPC controllers.

where xmin and xmax are the lower and upper bounds for
the state variables; umin and umax are the lower and upper
bounds for the manipulated variable.

3.4 OED-guided auxiliary model predictive controller

The number of decision variables in the OED problem in
Eqs. (19) comprises the model and sensitivity dynamics
multiplied by the number of bioreactors as

|R| (nx + nxnθ + nu)ncolnp (20)

where ncol is the number of collocation points and np is the
prediction horizon. Because the computational complexity
of the optimization is super-linear with respect to the
number of decision variables, it is intractable to perform
the re-design of 8 bioreactors in a fully online manner.
Nevertheless, if the experimental design is not adapted to
recent measurements, the process will be operated under
the region with low information content. This eventually
leads to the violation of the crucial DOT constraint, which
is parameter dependent (see Eq. (5)).

To overcome such limitation, we propose utilizing an
auxiliary model predictive controller (MPC) that tracks
the pulse-feed strategy of a single bioreactor computed by
the OED and considering the constraints in the auxiliary
MPC instead of in the parallel OED. Here, we relax
the DOT constraint of the OED problem which is likely
to be violated in the large-scale optimization problem.
Instead, the DOT constraint is considered in the auxiliary
controllers individually. The optimization problem for the
auxiliary controller for the reactor r ∈ R is formulated as
follows:

min
ur

∑
t∈U

∥ur(t)− uoedr (t)∥2 (21a)

s.t. ẋr(t) = f(xr(t), θr), t ∈ [t0, tp] \ U (21b)

xr(t
+) = fd (xr(t), ur(t)) , t ∈ U (21c)

xmin ≤ xr(t) ≤ xmax, t ∈ [t0, tp] \ U (21d)

umin ≤ ur(t) ≤ umax, t ∈ U (21e)

DOTlb,r ≤ DOTr(t, θr), t ∈ [t0, tp] (21f)

xr(0) = x0,r, (21g)

where uoedr (t) is the pulse-feed strategy computed from the
optimization problem of Eqs. (19); DOTlb,r represents the
DOT lower bound of the reactor r. The number of decision
variables of Eq. (21) is given as

(nx + nu)ncolnp (22)



Table 1. Size of the optimization problems
of the OED and auxiliary MPCs, and their

computation times.

OED Aux. MPC

Num. decision var. 109728 1556
Num. equality constraints 109576 1537
Num. inequality constraints 4560 570
CPU time (min) 22.7 1.2

which is considerably reduced compared to Eq. (20).
The total computational complexity is now linear with
respect to the number of reactors. The implementation
procedure is illustrated in Fig. 1. Unconstrained OED
is computed with lower frequency due to its complexity,
while auxiliary MPC controllers for the individual reactors
are computed every decision time steps (i.e., 10 min). With
this hierarchical structure, the experimental design for the
parallel mini-bioreactors with the oxygen constraint can
be conducted online.

4. IN SILICO RESULTS

The in silico cultivation for 8 mini-bioreactors is per-
formed. To generate the in silico data, we add uncer-
tainties to the parameters and measurements by adding
random uniform noises. 10 % and 5 % with respect to
the operation bounds are added to the parameters and
measurements, respectively. Do-mpc software, a toolbox
developed based on CasADi (Andersson et al., 2019), is
utilized to solve the optimization problems (Lucia et al.,
2017). The prediction horizon for the OED and auxiliary
MPCs are until the end of the batch and 180 min, respec-
tively. The number of decision variables and constraints
and computation times of the OED and auxiliary MPCs
are written in Table 1. The computation time for the OED
exceeds 10 min, and therefore it is solved every 60 min.
On the other hand, the computation time for solving 8
auxiliary MPC problems take 1.2 min.

A cultivation result of one of eight reactors operated by
the unconstrained OED is presented in Fig. 2. Biomass,
substrate, acetate, DOTm, DOT , and pulse-feed trajec-
tories are plotted. The sensitivities for the four states
(i.e., X, S, A, and DOTm) with respect to 18 kinetic
parameters θg and θ1 (Eq. (7)) are shown in Fig. 3. This
figure highlights that the magnitude of sensitivity values
arise as the pulse-feed is given. The increase of sensitivities
are proportional to the feed amount, and therefore the
OED objective encourages to feed as much as possible.
Because the oxygen uptake is proportional to the biomass
amount according to the Eq. (5), the optimal solution of
the OED problem activates the DOT constraint.

Figure 4 depicts the cultivation results of one of eight
reactors operated by the OED problem with the auxiliary
MPC. The MPC is solved every 10 min. MPC tracks the
OED result initially where the violation does not happen.
After the violation is detected within the prediction hori-
zon, the pulse-feed amount is decreased. The feasibility
can be guaranteed by shifting the DOT constraint to the
auxiliary controllers.

Finally, we validate that the loss of the information content
of the pulse-feed strategy computed by the proposed
method is not significant compared to the constrained
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Fig. 2. State trajectory under the pulse-feed computed by
the pure OED. The colored solid line represents the
state trajectory, the dot represents the measurement.
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Fig. 3. Dynamic sensitivities for four states with respect to
18 parameters throughout the cultivation experiment.
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Fig. 4. State trajectory under the pulse-feed computed by
OED guided MPC. The colored solid line represents
the state trajectory, the dot represents the measure-
ment.

OED. For comparison, we consider the OED problem for
a single reactor because the optimization problem is able
to be solved online. ψA values for three different feeding
strategies, proposed hierarchical structure, constrained
OED problem, and the OED without constraint, are 1.014,
1.106, and 3.386, respectively. This indicates that due
to the approximation the reduction of the information
content is unavoidable, however not considerable.



5. CONCLUDING REMARKS

In this study, we introduce the auxiliary controller to
enable online implementation of the computationally in-
tractable OED for the parallel cultivation. The auxiliary
controller has a simple structure that can be parallelizable,
and has a quadratic objective for tracking the results
from the OED problem. The additional constraint such as
oxygen limitation constraint can be relaxed from the OED
problem and then be accounted for to the auxiliary con-
troller. Through the in silico study for the cultivation of
eight parallel replicates, we demonstrate that the proposed
approach yields a closed-loop feeding strategy with near-
optimal information content within the feasible region.
Future work will focus on extending the strategy to the
full high-throughput experiment involving different exper-
imental conditions. Results obtained demonstrate that it is
also important to account for the parametric uncertainty
by formulating robust OED.
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