
A Distributed Least-Squares Solver for
Linear Systems of Algebraic Equations

Mohammad Jahvani and Martin Guay

Department of Chemical Engineering
Queen’s University, Kingston, ON, Canada

e-mail: {mohammad.jahvani, guaym}@queensu.ca

Abstract: This paper introduces a consensus-based continuous-time distributed algorithm to
find the least-squares solution to overdetermined systems of linear algebraic equations over
directed multi-agent networks. It is assumed that each agent has only access to a subsystem of
the algebraic equations, and the underlying communication network is strongly connected. We
show that, along the flow of the proposed algorithm, the local estimate of each agent converges
exponentially to the exact least-squares solution, provided that the aggregate system of linear
equations has full column rank, and each agent knows an upper bound on the total number of
the participating agents in the network.

Keywords: Multi-agent systems, Distributed control and estimation, Sensor networks.

In a wide range of applications in systems and control
theory, such as identification, estimation, learning, signal
processing, etc, it is required to solve systems of linear
algebraic equations. With the penetration of new technolo-
gies and advent of internet of things, we are facing with
emerging applications of large-scale nature. In addition, it
is not desirable to use common shared data centres, due
to increasing concerns about privacy and security issues.
To address these issues, several distributed solvers are
proposed to solve systems of linear algebraic equations
over multi-agent networks, Mou et al. (2015); Anderson
et al. (2016); Shi et al. (2016); Zeng and Cao (2017); Liu
et al. (2018). For a recent survey on the subject, see Wang
et al. (2019), and the references therein.

On the other hand, in many applications like distributed
parameter estimation, Kar et al. (2012), filtering, Cattiv-
elli et al. (2008), and other tasks in sensor networks, Rab-
bat and Nowak (2004), the given system of linear equa-
tions, may not have a solution. In such cases, it is often
desirable to obtain an approximate solution to the given
system of linear equations in the sense of least-squares. As
a result, in recent years, we have witnessed a surge of inter-
est in the development of least-squares solvers for systems
of linear equations over multi-agent networks, Wang and
Elia (2012); Wang et al. (2019); George and Yang (2019);
Liu et al. (2019); Yang et al. (2020); Liu et al. (2020);
Jahvani and Guay (2020).

Some of these proposed algorithms, like Liu et al. (2020),
suffer from slow rate of convergence. On the other hand,
the majority of the existing distributed least-squares
solvers, except for Yang et al. (2020), and Jahvani and
Guay (2020), can only operate on undirected or weight-
balanced networks. In other words, to obtain the exact
least-squares solution, these algorithms require either sym-
metric or weight-balanced communication links. This con-

⋆ This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

dition may not be satisfied, especially in applications with
broadcast-based communications.

Indeed, to address such concerns, and with the assumption
of a priori knowledge about the node out-degrees in static
and strongly connected directed networks, Yang et al.
(2020), and Jahvani and Guay (2020) introduced discrete-
time and continuous-time distributed algorithms that can
find the exact least-squares solution. These algorithms
have a linear rate of convergence. The continuous-time
distributed algorithm presented in our previous work, Jah-
vani and Guay (2020), can be implemented in discrete-time
using coordinated or uncoordinated step-sizes. In addition,
the proposed algorithm can be utilized as a leader-based
distributed algorithm to improve the transient response
and the convergence rate.

It should be noted that the knowledge of the out-degrees is
not a local information in directed networks. As a result,
in this work, we propose an alternative continuous-time
distributed dynamics to find the least-squares solution
to systems of linear algebraic equations by imposing the
prior knowledge about the upper bound on the size of the
network. We show that, for strongly connected directed
networks, the proposed algorithm converges exponentially
to the least-squares solution without any a-priori knowl-
edge about the out-degrees of agents.

The remainder of the paper is organized as follows. First
we introduce some mathematical notation. The statement
of the problem and the underlying assumptions are pre-
sented in Section 1. The proposed dynamics is presented
in Section 2. The main results are provided in Section 3,
followed by some simulations in Section 4. Finally, Sec-
tion 5 contains our conclusions.

Notation. The set of real numbers (resp., the set of
nonnegative real numbers) is denoted by R (resp., R≥0).
We denote the set of m × n matrices with real entries
by Rm×n, the n × n identity matrix by In, and the j-

th column of In by ej . The column vector of all-ones in
Rn is represented by 1, and 0 denotes the zero-matrix
(its dimension to be understood from the context). We
write diag(v1, · · · , vn) for an n× n diagonal matrix whose
diagonal entries starting in the upper left corner are to be
v1, · · · , vn. By a positive vector, we mean a vector whose
entries are all strictly positive. For a real matrix M , we let
[M]ij to be its (i, j)-entry and we denote its transpose by
M ′. For two matricesM and N , we denote their Kronecker
product by M⊗N . Given a symmetric matrix M , we write
M ⪰ 0 if M is positive semidefinite. For a positive integer
n, we let [n] := {1, 2, . . . , n}. Throughout this paper, we
let ∥ ·∥ to be the standard Euclidean norm, or the induced
ℓ2 norm for matrices.

1. PROBLEM FORMULATION AND ASSUMPTIONS

Consider a network of n agents that must coordinate with
another to find a solution to the following problem:

minimize
x∈Rp

f(x) =

n∑
i=1

1

2
∥Aix− bi∥2, (1)

where Ai ∈ Rqi×p and bi ∈ Rqi , i = 1, 2, . . . , n, are private
data that only belong to agent i.

Let

H :=

A1 0 · · · 0
0 A2 · · · 0
...

. . .
...

0 0 · · · An

 . (2)

It is not hard to see the connection between problem (1)
and the equivalent (ordinary) least-squares problem as-
sociated with the aggregate system of linear algebraic
equations

Ax = b, (3)

where

A =

A1

A2

...
An

 , b =

b1
b2
...
bn

 . (4)

Let A ∈ Rq×p and b ∈ Rq, where q =
∑

i qi.

Assumption 1. Matrix A has full column rank.

Assumption 1 implies that (3) admits a unique least-
squares solution that we denote by xLS , i.e.,

xLS = (A′A)−1A′b. (5)

The agents are labeled 1 through n. Each agent i can
receive information from certain other agents called its in-
neighbours. We denote the set of in-neighbour of agent i
by N in

i . Similarly, each agent i can send information to
certain other agents called its out-neighbours. We denote
the set of out-neighbour of agent i by N out

i . We also
let dini := |N in

i | to be the in-degree of agent i. Notice,
the communications could be asymmetric. We model the
underlying communication network by a directed graph
G = (V, E), called the neighbour graph, where V =
{1, 2, · · · , n} is the vertex set and E ⊂ V×V represents the
edge set. There is a directed edge from vertex i to vertex
j in G, if agent j can receive information from agent i.

We impose the following additional assumptions on the
given problem.

Assumption 2. The directed neighbor graph G is static
and strongly connected.

Assumption 3. Each agent knows an upper bound n̄ on
the size of the network.

Under the given assumptions, it is desired to design a
distributed algorithm that can solve the problem (1) and
find the least-squares solution xLS to the aggregate system
of linear algebraic equations (3), with an exponential rate
of convergence.

Throughout this paper, we assume that agents can only
acquire information from their in-neighbours.

Remark 4. To overcome the well-known fundamental lim-
itations of broadcast-based deterministic protocols over
directed networks, Hendrickx and Tsitsiklis (2015); and to
solve the distributed least-squares problem (1), we need
to assume additional prior knowledge about the commu-
nication network. A commonly adopted assumption in the
consensus literature or distributed convex optimization
area is the a-priori knowledge about the out-degree of
each agent. This assumption has already been investigated
in Jahvani and Guay (2020), and Yang et al. (2020). Here,
we utilize the prior knowledge about the upper bound on
the size of network.

1.1 Motivating Example

Consider a sensor network of n stationary agents which is
deployed to track a maneuvering target. Each agent/sensor
is located at position pi ∈ R2, known to the corresponding
agent. The communication constraints between the agents
is modelled by a directed graph G. Each agent obtains
bearing measurements from a maneuvering target at posi-
tion x(t) ∈ R2, whose kinematics is governed by

ẋ(t) = v(t),

where v(t) ∈ R2 denotes the velocity of the target. The
bearing measurements are represented by unit vectors as

ui(t) =
x(t)− pi

∥x(t)− pi∥
, i ∈ [n].

Let ui(t) = [cos(θi(t)), sin(θi(t))]
′, where θi(t) ∈ [0, 2π)

denotes the bearing angle with respect to a fixed reference
frame of the i-th agent/sensor. It is easy to show that
the position of the maneuvering target can be obtained by
solving the following system of linear equations associated
with the entire sensor network (George and Yang (2019)):

A(t)x(t) = b(t),

where x(t) is the position of the maneuvering target,
bi(t) = ai(t)

′pi, and

A(t) =

a1(t)

′

a2(t)
′

...
an(t)

′

 ,

with ai(t) = [− sin(θi(t)), cos(θi(t))]
′, for i ∈ [n].

Therefore, in order to track the position of the maneu-
vering target, it is required to design a distributed least-
squares solver with exponential rate of convergence.

2. THE PROPOSED DYNAMICS

In this section, we introduce a continuous-time distributed
dynamics to solve the linear least-squares problem (1) on
directed networks.

To solve the linear least-squares problem (1) we define
an equivalent optimization problem by assigning a local
estimate xi ∈ Rp of the global variable x to each agent
and imposing a Laplacian-based consensus constraint that
ensures xi = xj , for all i, j ∈ [n].

For the neighbour graph G, we define the associated
Laplacian matrix L as follows:

[L]ij :=

 dini , if i = j
−1, if (j, i) ∈ E
0, otherwise

. (6)

By construction, zero is an eigenvalue of the Laplacian
matrix, and L1 = 0. Since G is assumed to be strongly
connected, we can show that zero is a simple eigenvalue
of L. The remaining eigenvalues of L, however, have
strictly positive real-part. Furthermore, there exists a
unique positive vector ω = (ω1, ω2, · · · , ωn)

′, such that
ω′L = 0 and ω′ 1 = 1. See, e.g., Bullo et al. (2009).

To find a distributed algorithm that solves the problem (1),
consider the following equivalent problem:

minimize
x∈Rnp

F (x) =

n∑
i=1

1

2
∥Aixi − bi∥2

subject to : Lx = 0,

(7)

where x := (x′
1, x

′
2, · · · , x′

n)
′, and L = L⊗ Ip.

Remark 5. Note that F (x) is convex and its restriction
to the consensus subspace is strictly convex. However, the
local cost functions fi(xi) := 1

2∥Aixi − bi∥2, i ∈ [n], are
in general neither strictly convex nor have bounded gradi-
ents. Moreover, the neighbour graph G is not necessarily
weight-balanced and the agents do not know their out-
degrees.

Knowing an upper bound on the size of the network, we
can easily assign unique labels to each agent by implement-
ing a finite-time distributed algorithm in the initialization
stage. (See, for example, Chopra et al. (2017)).

To solve the equivalent least-squares problem (7) over
arbitrary strongly connected networks, we propose the
following dynamics for each agent:

ẋi = α [yi]i
∑

j∈N in
i

(xj − xi)− [yi]i zi −A′
i (Aixi − bi)

żi = α
∑

j∈N in
i

(xi − xj)

ẏi = β
∑

j∈N in
i

(yj − yi) , (8)

where α, β > 0 are design parameters, xi(t), zi(t) ∈ Rp and
yi(t) ∈ Rn̄ are the state vectors associated with agent i at
time t ≥ 0, and [yi]i denotes the i-th component of yi. The
initial condition xi(0) is chosen arbitrarily, zi(0) = 0, and
yi(0) = [e′i,01×(n̄−n)]

′, for i ∈ [n]. (Recall that ei denotes
the i-th standard basis of Rn.)

The proposed dynamics (8) is distributed over the under-
lying directed network, in the sense that agents are able to

compute the flow only using the information they receive
from their in-neighbours.

Let x := (x′
1, x

′
2, · · · , x′

n)
′, z := (z′1, z

′
2, · · · , z′n)′, and

Y (t) ∈ Rn×n̄ be a matrix whose i-th row is yi(t)
′, for

i ∈ [n], and all t ≥ 0. We define the n×n diagonal matrix
Yd(t) := diag([Y (t)]11, [Y (t)]22, · · · , [Y (t)]nn), for t ≥ 0.
Accordingly, we let Yd(t) := Yd(t)⊗ Ip.

Using the notation above, the proposed dynamics (8) reads
as:

ẋ = −αYd Lx−Yd z−H ′ (Hx− b)

ż = αLx

Ẏ = −β LY, (9)

where x(0) is arbitrary, z(0) = 0, and Y (0) = [In,0n×(n̄−n)].

Remark 6. The proposed dynamics (8) is inspired by the
distributed algorithm introduced in Kia et al. (2015).
It should be noted that the proposed dynamics (8) is
different from the distributed algorithm in Kia et al.
(2015), from two aspects. First, the local cost functions in
the distributed least-squares problem are not necessarily
strongly convex. Second, the algorithm introduced in Kia
et al. (2015), only works on weight-balanced directed
graphs. In other words, our problem does not satisfy the
conditions of the algorithm developed in Kia et al. (2015).

Remark 7. In the sequel, we will introduce an alternative
distributed dynamics that can also solve the problem (1).
However, due to page restrictions, we will omit the proof
of convergence of these algorithms.

3. MAIN RESULT

In this section, we state the main result of this paper.

By Assumption 2, the underlying communication network
is strongly connected. Therefore, the Laplacian matrix L
associated with the neighbour graph G has a simple zero
eigenvalue, while the rest of its eigenvalues have strictly
positive real-part. Let 1 and ω, respectively, denote the
unique right and left (positive) eigenvectors associated
with the zero eigenvalue of L, such that ω′ 1 = 1. Then, it
is well-known that limt→∞ exp(−Lt) = 1ω′. In particular,
there exist (strictly) positive constants ρ and κ such that
∥exp(−Lt) − 1nω

′∥ ≤ ρe−κt, for all t ≥ 0. See, for
example, Bullo et al. (2009).

Note that the Laplacian matrix L is a Metzler matrix,
hence, the non-negative orthant Rn

+ is positively invariant
under the Laplacian flow, Berman and Plemmons (1994).
Using this fact, and the preceding discussion, we can easily
deduce the following result.

Lemma 8. Consider the Y –dynamics in (9) with Y (0) =
[In, 0n×(n̄−n)]. Let Assumptions 2–3 hold. Then, there
exist constants c, C > 0 such that c ≤ [Y]ii(t) ≤ C, for all
t ≥ 0 and for all i ∈ [n]. Furthermore, there exist ρ, κ > 0,
such that | [Y]ii(t)− ωi | ≤ ρe−κt, for all t ≥ 0 and for all
i ∈ [n].

Since, limt→∞ Yd(t) = Ω := diag(ω1, ω2, . . . , ωn) ⊗ Ip,
the equilibria of the proposed dynamics (8) is determined
by the following auxiliary dynamics:

ẋ = −αΩLx−Ωz−H ′ (Hx− b)

ż = αLx. (10)

Lemma 9. Consider the auxiliary dynamics (10) with
z(0) = 0, and Ω = Ω ⊗ Ip, where Ω := diag(ω1, · · · , ωn),
and (ω1, · · · , ωn)L = 0. Let Assumptions 1–2 hold, and
(xss

′, zss
′)′ be the equilibria of the auxiliary dynamics (10).

Then, we have xss = 1 ⊗ xLS , where xLS is the unique
minimizer of the problem (1), and zss = Ω−1H ′(b−Hxss).

Proof. Since (ω′ ⊗ Ip) ż = 0, we have
∑n

i=1 ωizi(t) =∑n
i=1 ωizi(0) = 0, for all t ≥ 0. To find the equilibria

of the auxiliary dynamics (10), let ẋ = ż = 0. From
Assumption 2, it follows that the equilibrium (xss

′, zss
′)′

must satisfy

xss = 1⊗ v,

Ωzss = H ′(b−Hxss),

for some vector v ∈ Rp. Multiplying the latter identity on
the left by (1′ ⊗ Ip), we obtain

0 =

(
n∑

i=1

A′
i(Aiv − bi)

)
= A′(Av − b).

On the other hand, Assumption 1 implies that the unique
solution to the normal equation A′Av = A′b is the least-
squares solution xLS . Hence, xss = 1⊗xLS , and ωi zss,i =
A′

i(b−Aix
LS). This completes the proof.

Now we are ready to state the main result of the paper.

Theorem 10. Consider the least-squares problem (1), and
let Assumptions 1–3 hold. Then, there exists α⋆ > 0
such that for α > α⋆, each solution t 7→ (x(t), z(t), Y (t))
of the distributed dynamics (9) with initial conditions
(x0, z0) in S = {(x, z) ∈ Rnp × Rnp | (ω′ ⊗ Ip) z0 =
0}, and Y (0) = [In, 0n×(n̄−n)], converges exponen-

tially to the point
(
1⊗ xLS , zss, 1⊗ ω′), where zss =

Ω−1H ′ (b−H(1⊗ xLS)
)
.

Next, we present an alternative distributed dynamics that
can solve the equivalent least-squares problem (7) on any
strongly connected network.

Consider the distributed dynamics:

ẋi = α
∑

j∈N in
i

(xj − xi)− zi −
1

[yi]i
A′

i (Aixi − bi)

żi = α
∑

j∈N in
i

(xi − xj)

ẏi = β
∑

j∈N in
i

(yj − yi) . (11)

One can show that (11) enjoys similar properties to that
of the distributed dynamics (8). In particular, all the
trajectories that start from W := {(x, z) ∈ Rnp ×
Rnp | (ω′ ⊗ Ip) z0 = 0}, and Y (0) = [In, 0n×(n̄−n)], will

converge exponentially to the point
(
1⊗ xLS , z̄ss, 1⊗ ω′),

where z̄ss = Ω−1H ′ (b−H(1⊗ xLS)
)
.

4. SIMULATIONS

In this section, we provide a numerical example to demon-
strate the performance of the proposed distributed dynam-
ics.

1 2

34

Fig. 1. The neighbour graph G modelling the communica-
tion topology.

We consider a network of n = 4 agents that can commu-
nicate with each other according to the neighbour graph
G as shown in Fig. 1. The given communication topology
is strongly connected, however, it is not weight-balanced.
These agents utilize the distributed dynamics (8) to find
the solution of the least-squares problem (1) without ex-
changing the private data (Ai, bi), where

A1 =

(
1.4090 0.4889 0.8884
1.4172 1.0347 −1.1471

)
b1 =

(
3.2520

−7.5490

)
A2 = (0.6715 0.7269 −1.0689) b2 = (13.7030)

A3 = (−1.2075 −0.3034 −0.8095) b3 = (−17.1150)

A4 =

(
0.7172 0.2939 −2.9443
1.6302 −0.7873 1.4384

)
b4 =

(
−1.0220
−2.4140

)
.

It is not hard to verify that the associated aggregate
system of linear algebraic equations (4) satisfies Assump-
tion 1, and admits a unique least-squares solution xLS =
(0.8140, 5.9143, 2.0221)′.

We assume that the initial states xi(0) are chosen ran-
domly and zi(0) are set to zero. The tuning parameters
α = 2.5, and β = 1 are used to demonstrate the perfor-
mance of the distributed algorithm (8). The trajectories
of each component of the estimated least-squares solutions
xi(·) are illustrated in Fig. 2 for i ∈ [n]. The corresponding
components of the least-squares solution xLS are also
shown (in black colour) with dash-dotted lines. It can be
observed that all the local estimated solutions t 7→ xi(t),
for i ∈ [n], and t ≥ 0, converge exponentially to the exact
least-squares solution xLS , as asserted by Theorem 10.

For the purpose of comparison, the simulation results
associated with the proposed distributed dynamics (11)
are depicted in Fig. 3. We use the same tuning parameters.
In our experience, the proposed distributed dynamics (8)
has a superior numerical performance to the distributed
dynamics (11), potentially due to round-off errors in finite
precision computations.

5. CONCLUSION

We considered the problem of obtaining the least-squares
solution to systems of linear algebraic equations over
multi-agent networks. In particular, we assumed that the
underlying communications could be asymmetric. We pro-
posed a consensus-based continuous-time algorithm to
solve this problem in a distributed manner. The pro-
posed algorithm converges exponentially to the exact least-
squares solution when the underlying communication net-
work is strongly connected. The approach presented in
this study uses prior knowledge about an upper bound on
the size of the network, rather than requiring any a-priori
knowledge about the out-degrees of agents.

0 5 10 15 20 25 30 35 40 45 50

Time (sec.)

-5

0

5

10

15

x
i,
1

0 5 10 15 20 25 30 35 40 45 50

Time (sec.)

-5

0

5

10

15

x
i,
2

0 5 10 15 20 25 30 35 40 45 50

Time (sec.)

-5

0

5

10

15

x
i,
3

Fig. 2. The trajectories of each component of the estimated
least-squares solutions xi(·) in (8), and each compo-
nent of the exact least-squares solution xLS (dash-
dotted line in black)

0 5 10 15 20 25 30 35 40 45 50

Time (sec.)

-5

0

5

10

15

x
i,
1

0 5 10 15 20 25 30 35 40 45 50

Time (sec.)

-5

0

5

10

15

x
i,
2

0 5 10 15 20 25 30 35 40 45 50

Time (sec.)

-5

0

5

10

15

x
i,
3

Fig. 3. The trajectories of each component of the estimated
least-squares solutions xi(·) in (11)

REFERENCES

Anderson, B., Mou, S., Morse, A.S., and Helmke, U.
(2016). Decentralized gradient algorithm for solution
of a linear equation. Numerical Algebra, Control and
Optimization, 6(3), 319–328.

Berman, A. and Plemmons, R.J. (1994). Nonnegative
matrices in the mathematical sciences. Society for
Industrial and Applied Mathematics (SIAM).

Bullo, F., Cortes, J., and Martinez, S. (2009). Distributed
control of robotic networks: a mathematical approach to
motion coordination algorithms, volume 27. Princeton
University Press.

Cattivelli, F.S., Lopes, C.G., and Sayed, A.H. (2008). Dif-
fusion recursive least-squares for distributed estimation
over adaptive networks. IEEE Transactions on Signal
Processing, 56(5), 1865–1877.

Chopra, S., Notarstefano, G., Rice, M., and Egerstedt,
M. (2017). A distributed version of the hungarian
method for multirobot assignment. IEEE Transactions
on Robotics, 33(4), 932–947.

George, J. and Yang, T. (2019). Fast distributed least-
squares solver for linear time-varying equations. In 2019
American Control Conference (ACC), 4092–4097.

Hendrickx, J.M. and Tsitsiklis, J.N. (2015). Fundamen-
tal limitations for anonymous distributed systems with
broadcast communications. In 2015 53rd Annual Aller-
ton Conference on Communication, Control, and Com-
puting (Allerton), 9–16. IEEE.

Jahvani, M. and Guay, M. (2020). Solving least squares
for linear equations over strongly connected directed
networks. In 2020 Australian and New Zealand Control
Conference (ANZCC), 178–183.

Kar, S., Moura, J.M.F., and Ramanan, K. (2012). Dis-
tributed parameter estimation in sensor networks: Non-
linear observation models and imperfect communica-
tion. IEEE Transactions on Information Theory, 58(6),
3575–3605.

Kia, S.S., Cortés, J., and Mart́ınez, S. (2015). Distributed
convex optimization via continuous-time coordination
algorithms with discrete-time communication. Automat-
ica, 55, 254–264.

Liu, J., Mou, S., and Morse, A.S. (2018). Asynchronous
distributed algorithms for solving linear algebraic equa-
tions. IEEE Transactions on Automatic Control, 63(2),
372–385.

Liu, Y., Lageman, C., Anderson, B.D., and Shi, G. (2019).
An arrow–hurwicz–uzawa type flow as least squares
solver for network linear equations. Automatica, 100,
187–193.

Liu, Y., Lou, Y., Anderson, B.D., and Shi, G. (2020). Net-
work flows that solve least squares for linear equations.
Automatica, 120, 109108.

Mou, S., Liu, J., and Morse, A.S. (2015). A distributed
algorithm for solving a linear algebraic equation. IEEE
Transactions on Automatic Control, 60(11), 2863–2878.

Rabbat, M. and Nowak, R. (2004). Distributed opti-
mization in sensor networks. In Proceedings of the 3rd
International Symposium on Information Processing in
Sensor Networks, 20–27.

Shi, G., Anderson, B.D., and Helmke, U. (2016). Network
flows that solve linear equations. IEEE Transactions on
Automatic Control, 62(6), 2659–2674.

Wang, J. and Elia, N. (2012). Distributed least square
with intermittent communications. In 2012 American
Control Conference (ACC), 6479–6484. IEEE.

Wang, P., Mou, S., Lian, J., and Ren, W. (2019). Solv-
ing a system of linear equations: From centralized to
distributed algorithms. Annual Reviews in Control, 47,
306–322.

Wang, X., Zhou, J., Mou, S., and Corless, M.J. (2019). A
distributed algorithm for least squares solutions. IEEE
Transactions on Automatic Control, 64(10), 4217–4222.

Yang, T., George, J., Qin, J., Yi, X., and Wu, J. (2020).
Distributed least squares solver for network linear equa-
tions. Automatica, 113, 108798.

Zeng, X. and Cao, K. (2017). Computation of linear
algebraic equations with solvability verification over
multi-agent networks. Kybernetika, 53(5), 803–819.

