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Abstract: Competitive biotechnological processes need to operate over various conditions
and adapt to changing economic contexts. Dynamic ATP turnover allows trading off declines
in biomass formation and volumetric productivity for enhancements of product yields in
fermentations where the product pathway is linked to ATP synthesis. To facilitate its practical
implementation, we propose to dynamically manipulate the cellular ATP turnover by putting
the ATPase enzyme, which hydrolyzes ATP into ADP, under the control of an optogenetic
gene expression system. This allows achieving dynamic control of the ATP wasting online via
a tunable external input. While light as control input is promising because it is easily tunable,
generally non-invasive/non-toxic, and more affordable than classical chemical inducers, it makes
the overall control task challenging. Thus, we derive an expanded version of dynamic enzyme-
cost flux balance analysis that takes into account the dynamics of the optogenetic actuator.
We then formulate a suitable optimal control problem to find optimal inputs for achieving the
desired process performance. We test our approach in simulations using the batch anaerobic
lactate fermentation of glucose by Escherichia coli as a case study.
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1. INTRODUCTION

Global challenges such as climate change and resource
depletion are driving the move from a fossil-based to a
circular bio-based economy (Yang et al., 2021). Biotech-
nologies can be key players in this transition by enabling
the sustainable manufacturing of chemicals, materials and
fuels from renewable resources (Clarke and Kitney, 2020).
In this regard, metabolic engineers have developed a wide
range of tools and methods to rewire metabolic networks
towards enhancing the production of commercially rele-
vant metabolites by microbial cell factories (Ko et al.,
2020).

In the last years, enforced ATP wasting or turnover has
gained attention as a useful metabolic design principle
in fermentations where the product pathway is linked to
ATP formation (e.g., Boecker et al. (2019); Zahoor et al.
(2020); Boecker et al. (2021); Espinel-Ŕıos et al. (2022)).
Under the latter conditions, introducing mechanisms that
“waste” cellular ATP can lead to an increase in product
yields (amount of product per amount of substrate) and
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specific productivities (amount of product per amount
of biomass per time). Since the substrate is a shared
resource in the metabolism, this also results in less biomass
formation, hence lower volumetric productivities (amount
of product per culture volume per time) in batch fer-
mentations. Previous mathematical models of the ATP
wasting effect, based on oversimplified and unstructured
equations (Klamt et al., 2018), lack enough precision and
predictability to enable efficient optimization and control.

Recently, we formulated optimal control problems to com-
pute dynamic ATP turnover policies for maximizing batch
fermentation efficiency (Espinel-Ŕıos et al., 2022) based
on dynamic enzyme-cost flux balance analysis (deFBA)
(Waldherr et al., 2015). We were able to predict differ-
ent trade-offs between enhancement of product yield and
decline in volumetric productivity. However, a remaining
practical challenge is how to fine-tune the intracellular
ATP turnover to make the implementation of this strategy
possible in production setups. First, we propose to use the
ATPase enzyme (F1-subunit) (Koebmann et al., 2002),
which hydrolyses ATP into ADP, as the ATP wasting
mechanism. This offers a degree of freedom to modulate
the ATPase flux via fine-tuning of the ATPase gene ex-
pression. To achieve this, we consider to put the ATPase



enzyme under the control of a CcaSR two-component opto-
genetic gene expression system. CcaS is a sensor histidine
kinase that phosphorylates CcaR under green light. Phos-
phorylated CcaR binds to the promoter region, thereby
inducing gene expression (Olson et al., 2014). Using light
has many advantages as control input, e.g., it can be easily
tuned online, it is generally non-toxic/non-invasive, and
it is economically more affordable than chemical inducers
(Carrasco-López et al., 2020).

To facilitate the model-based optimization of the described
system, the considered fermentation model should be able
to account for the dynamics of the CcaSR optogenetic
actuator. Unfortunately, the original deFBA modeling for-
mulation does not cover this aspect. Therefore, the main
contribution of this work is, we modify the original deFBA
model to consider the CcaSR dynamics in batch fermen-
tations (Section 2). We then formulate optimal control
problems to find light input policies that maximize the
batch fermentation efficiency in the ATP wasting context
(Section 3). As a case study we use the anaerobic lactate
fermentation from glucose by an Escherichia coli strain
with the acetate and ethanol pathways blocked (Section
4). Note that, under these conditions, lactate production is
linked to ATP synthesis, hence the ATP wasting strategy is
applicable (Hädicke et al., 2015; Espinel-Ŕıos et al., 2022).

2. MODEL OF THE FERMENTATION WITH
OPTOGENETIC REGULATION

First, we define the molar vector p(t) = [pATPase(t) pbc(t)]
T

which contains all components that the cell is made up.
The variable pATPase describes the concentration of the
(regulated) ATPase enzyme and pbc is a vector contain-
ing the remaining biomass components, including unregu-
lated enzymes, ribosomes and quota elements (e.g., non-
catalytic proteins, DNA, lipids, carbohydrates, etc.). By
unregulated enzymes we mean that they are not controlled
externally via an inducible gene expression system. Quota
elements do not participate in catalytic reactions but they
are necessary for vital functions such as cell structure,
maintenance and reproduction. For simplicity, we assume
that ribosomes catalyse the synthesis of all biomass com-
ponents.

The dynamics of pATPase can be expressed as

dpATPase(t)

dt
= F (p(t), I(t))−D(pATPase(t)),

pATPase(t0) = pATPase,0,
(1)

where F : Rnp × R 7→ R and D : R 7→ R are functions
of the ATPase enzyme production and degradation rates,
respectively. The variable I(t) is the control input (in our
case, the green light intensity) and pATPase,0 is the initial
value of pATPase. In the remainder of the paper, we will
omit the explicit time dependency of I, p and pATPase when
clear from the context. We assume that all cells receive
the same light intensity and that there is homogeneous
induction.

The CcaSR two-component system has been previously
modeled in literature following the Hill equation (Olson
et al., 2014). Normalized per biomass concentration, F can
be described as

F (p, I) = (bT p)

(
α1 + α2

Iβ

αβ
3 + Iβ

)
, (2)

where b is the vector comprising the molecular weights
of the elements in p. Hence, bT p is equal to the biomass
concentration in g/L. The parameter α1 is the light-
independent production rate, α2 is the light-dependent
maximum rate of production, α3 is a saturation constant,
and β is a coefficient that determines the steepness of the
Hill function.

The function D is modeled as the product of the ATPase
turnover degradation rate dATPase and pATPase

D(pATPase) = dATPasepATPase. (3)

Note that dilution of pATPase by growth is implicitly con-
sidered in our model. Since we model all cellular compo-
nents separately, the production of other compounds (e.g.,
other enzymes, ribosomes and quota elements) will have a
dilution effect on the cellular ATPase.

Extracellular metabolites z and pbc are collected in the

molar vector x = [z pbc]
T
which changes in time accord-

ing to the product of the stoichiometric matrix Sx and the
vector of fluxes V (in molar amount per time)

dx(t)

dt
=

[
dz(t)

dt

dpbc(t)

dt

]T
= SxV (t),

x(t0) = [z0 pbc,0]
T
,

(4)

where z0 and pbc,0 are the initial conditions. Here we
assume that the degradation rate is negligible compared
to the production rate, hence there is no degradation term
in Eq. (4). However, the concentration of a pi element
will have a dilution effect related to the production of the
remaining biomass components.

Intracellular metabolites m are assumed to be in quasi-
steady state conditions

0 =
dm(t)

dt
= SmV (t), (5)

with Sm being the stoichiometric matrix of the species in
m.

Assuming for simplicity that the ATPase enzyme is work-
ing under substrate saturation conditions, and thus close
to its maximum reaction rate, the ATPase flux is con-
strained by the amount of enzyme pATPase and its corre-
sponding catalytic constant kcat,ATPase∣∣∣∣VATPase(t)

kcat,ATPase

∣∣∣∣ = pATPase, (6)

where | · | indicates the absolute value operator. Further-
more, the fluxes of the set of reactions cati catalyzed by
an enzyme pbci are constrained such that the maximum
reaction rate must be less or equal than the product
of the catalytic constant and the corresponding enzyme
concentration



∑
j∈cati

∣∣∣∣Vj(t)

kcat,j

∣∣∣∣ ≤ pbci , ∀i ∈ [1, npbc
]. (7)

The biomass dry weight must contain a fraction φQ ∈ [0, 1]
made of a quota compound pQ ∈ p that lumps all quota
elements

φQb
T p(t) ≤ pQ(t). (8)

We also account for the metabolic cost to produce the
ATPase enzyme via the CcaSR system

VpATPase
(t)− dpATPase(t)

dt
= 0, (9)

where VpATPase
is the flux through the ATPase-producing

reaction.

In addition, one can consider feasible lower and upper
bounds for the fluxes

Vmin (t) ≤ V (t) ≤ Vmax(t). (10)

Finally, we formulate an optimization problem to cir-
cumvent the fact that constraint-based models are often
underdetermined

max
V (·)

∫ tdeFBA

t0

bT p(t) dt

s.t. Eqs. (1)− (10).

(11)

In (11) we consider the maximization of the biomass inte-
gral over a time window [t0, tdeFBA] as the objective func-
tion of the cell. This objective function is frequently used in
the frame of deFBA-based models for cells growing under
non-starvation conditions (Waldherr et al., 2015; Reimers,
2017; Jabarivelisdeh and Waldherr, 2018; Jabarivelisdeh
et al., 2020; Liu and Bockmayr, 2020; Espinel-Ŕıos et al.,
2022).

2.1 Parameters of the lactate fermentation and the CcaSR
gene expression system

As mentioned before, we focus on the anaerobic lac-
tate fermentation from glucose by an E. coli strain with
the acetate and ethanol pathways knocked-out. We fol-
lowed a protocol for developing resource allocation models
(Reimers et al., 2017) based on experimental data available
for this specific lactate fermentation and strain (Hädicke
et al., 2015). The resulting resource allocation model and
parameters can be found in Espinel-Ŕıos et al. (2022). In
Figure 1 we present the metabolic reactions considered
in the network. We define a set of parameters in Table 1
to complement the latter model with the light-inducible
CcaSR gene expression system dynamics.

In summary, the resulting model comprises 16 metabolic
reactions and 18 biomass-producing reactions, thus a total
of 34 fluxes. It contains 5 external metabolites (glucose,
lactate, formate, succinate and carbon dioxide), 18 internal
metabolites, and 18 cell components. Apart from the pa-
rameters in Table 1, there are also 34 catalytic constants,

Table 1. Parameters of the CcasSR optogenetic
system.

Item Value Unit Ref.

α1 0.02α2 mmol/g/h See note*

α2 1 · 10−4 mmol/g/h See note*

α3 0.138 W/m2 (Olson et al., 2014)
β 2.49 1 (Olson et al., 2014)

dATPase 6.3× 10−2 1/h (Benito et al., 1991)

* Inferred from deFBA simulations.

and 18 molecular weights for the biomass components. The
value of φQ for the referred model is constant and set to
0.67 1 . Note that the biomass-producing reactions consider
the cost of producing the biomass components in terms of
amino acids and ATP.

3. MODEL-BASED OPTIMAL CONTROL OF LIGHT
INTENSITY

We formulate an optimal control problem to find optimal
green light inputs towards maximizing the batch efficiency.
For the lactate fermentation we define the objective func-
tion to be the maximization of the lactate concentration
at the end of the batch

max
I(·)

zLAC(tf )

s.t. Eq. (11).
(12)

It is expected that different tf values (fixed in the op-
timizations) will render different ATP turnover policies,
and thus fermentation performance profiles. The selected
batch time would constrain the maximum possible lactate
yield enhancement achievable in the process through the
ATP wasting strategy. Furthermore, any enhancement in
the product yield should still allow for enough biomass
formation and efficient substrate utilization towards max-
imizing the final lactate titer in the considered time frame.

The optimal control problem was solved using the colloca-
tion method based on Lagrange interpolation polynomials
(Waldherr et al., 2015). The bilevel optimization prob-
lem was transformed into a single-level nonlinear program
with complementary constraints by applying the Karush-
Kuhn-Tucker conditions to (11), following an optimistic
approach (Dempe and Franke, 2019). In the optimistic
approach, using game theory terminology, the upper-level
optimization (the “leader”) and the lower-level optimiza-
tion (the “follower”) collaborate to satisfy the leader’s
objective. This was deemed reasonable because the leader
can directly manipulate the ATPase flux via the optoge-
netic actuator, thereby already influencing the “best” V
distributions achievable by the follower. This helped to
reduce the computational burden of the complementary
slackness constraints and the other KKT conditions 2 . The
1 For the derivation of the original model (Espinel-Ŕıos et al., 2022),
the considered cell composition was 44 % proteins (6 % catalytic plus
38 % non-catalytic), 27 % ribosomes, and 29 % other components
(DNA, lipids, carbohydrates, etc.). Thus, Q = (38 + 29) %.
2 Since the ultimate goal of the bilevel optimization is then to satisfy
the leader’s objective, we assumed that the leader also influences the
collocation points of the dynamics, hence the decision variables of
the follower´s problem were limited to the unregulated fluxes.



3PG: 3-phospho-D-glycerate; AA: amino acid; AcCoA: acetyl-CoA; ADP: adenosine diphosphate; AKG: alpha-ketoglutarate; ATP:
adenosine triphosphate; CO2: carbon dioxide; CoA: coenzyme A; DHAP: dihydroxyacetone phosphate; F6P: fructose 6-phosphate; FOR:
formate; FUM: fumarate; G3P: glyceraldehyde 3-phosphate; G6P: glucose 6-phosphate; GLC: glucose; LAC: lactate; MAL: malate; NAD:
nicotinamide adenine dinucleotide; NADH: NAD-reduced; OAA: oxaloacetic acid; PEP: phosphoenolpyruvate; PYR: pyruvate; SUCC:

succinate.

Fig. 1. Metabolic pathway of the anaerobic lactate fermentation by E. coli. The ATPase enzyme (encoded by the
atpAGD gene) is regulated by the CcasSR optogenetic system. Production reactions of enzymes, ribosomes and
the lumped quota compound are not depicted.

resulting optimization problem was solved using CasADi
(Andersson et al., 2019) and IPOPT (Wächter and Biegler,
2006).

4. MODULATION OF THE ATPase GENE
EXPRESSION

We solved the optimal control problem in (12) for three
batch times, namely 13, 15 and 19 h. These scenarios were
compared against the case with I = 0 at all control in-
stances, i.e., no ATPase induction. The simulation results
are shown in Figure 2. Relevant fermentation metrics were
calculated to compare the process performance among
the different scenarios. The average yield of product on
substrate (YPS), the average yield of biomass on substrate
(YXS), and the batch volumetric productivity (rP) are
presented in Table 2.

Optimal optogenetic manipulation of the ATPase expres-
sion using light as control input allowed improving the
product yield via exploitation of the ATP wasting concept.
As expected, this happened at the expense of the biomass
yield which in turn translated into lower volumetric pro-
ductivity rates. The product yield was enhanced by 8.7,
10.3, and 11.7 % for batch times of 13, 15 and 19 h,

Table 2. Average fermentation metrics of the
lactate fermentation case study.

tf [h] YPS

[
mol
mol

]
YXS

[
g

mol

]
rp
[
mmol
L·h

]
7.5* 1.72 15.3 31.8
13 1.87 7.2 20.0
15 1.90 5.6 17.6
19 1.92 4.5 14.0

* Without induction of the ATPase gene expres-
sion.

respectively, compared to the case with no ATP wasting.
That is, the longer the batch fermentation time, the higher
the product yield enhancement because the ATP wasting
effect can be applied for longer periods as we allow for
lower volumetric productivity. In other words, the lower
fermentation rates due to less biomass accumulation are
compensated by the higher product yields achieved via
ATP wasting.

In relation to the results, some may argue that running
the 7.5 h-process (without ATPase induction) twice would
achieve net higher production than running the 19 h-
process once (with ATPase induction). Although this is
in fact a valid point, the conclusion is not straightforward



Fig. 2. Optimization results for the lactate fermentation considering different batch times. In the first row we show the
case without induction of the ATPase enzyme expression, corresponding to a batch time of 7.5 h. The second to
fourth rows belong to batch times of 13, 15 and 19 h, respectively.

because one should also consider that setting up a batch
fermentation is labour-intensive, often involving a high
proportion of unproductive time or down-time (Macauley-
Patrick and Finn, 2008). For example, between batches,

the operators would need to clean the equipment and
connections, sterilize the bioreactor, allow time for cooling,
charge/inoculate the bioreactor, discharge the bioreactor
content, and restart the batch. Moreover, a bioprocess



generally involves not only the fermentation, but also
upstream and downstream unit operations. Therefore, we
recommend that the selection of a given yield and volu-
metric productivity trade-off should ideally come from the
result of an overall optimization of the plant, considering
scheduling, labour, upstream and downstream processes,
and of course the fermentation. The outcome would be
process-specific and not possible to generalize.

With regards to the fermentation dynamics under the
effect of ATP wasting, one can see that the the ATPase
enzyme expression is induced at a high rate at the be-
ginning of the batch and then gradually decreased. As
expected, with increasing ATPase accumulation, and thus
ATP wasting level, the biomass growth rate starts to
decrease even down to non-growth scenarios, e.g., by the
end of the batch. The substrate flux is then redirected
towards more product formation, explaining the enhanced
product yields.

It is worth noting that the gene expression of the ATPase
enzyme reached close to or slightly above 10 % of the
biomass dry weight in the considered scenarios. Over-
expression of regulated genes can impose a considerable
burden to the cell since there is an interplay between
the usage of resources and cell growth (Santos-Navarro
et al., 2021). That is, a very high protein expression can
negatively affect cell growth and productivity. Therefore,
the observed reduction of the growth rate with increasing
ATPase expression should be in principle a combined effect
of the ATP wasting mechanisms and any possible burden
associated with the increased cost of protein synthesis. In
fact, the higher the intensity of the ATPase induction,
the less amino acids and energy co-factors such as ATP
available for the synthesis of other enzymes and cell com-
ponents required to sustain the cell viability. The optimizer
should consider this potential resource burden into account
when computing the optimal light input trajectories be-
cause this is an intrinsic aspect of our model (see e.g., Eq.
(9)).

Another aspect to consider is that the implementation of
optogenetics in large-scale bioreactors is not yet solved. In
fact, the model assumes that all cells will receive the same
light intensity and that the induction will be homogeneous.
In small-scale bioreactors this assumption may hold, but
it could be put into question for bigger bioreactors where
gradients of all types might arise. For example, high cell
densities in bioreactors may cause problems related to
light penetration and the fermentation performance could
become light-limited (Carrasco-López et al., 2020).

Furthermore, in our model we do not take into account
the evolutionary stability of the CcaSR gene expression
system. For instance, if the employed gene expression
system imposes a heavy burden to the cell fitness, the cells
may mutate to inactivate/reverse/modify the engineered
elements driven by evolutionary principles. These effects
could be reduced, e.g., by overlapping the costly gene
expression system with essential genes (Blazejewski et al.,
2019). We recommend that evolutionary stability should
be assessed when considering experimental applications of
the presented optimal control strategy.

Overall, in line with previous observations (Espinel-Ŕıos
et al., 2022), these results support the idea that dynamic

ATP turnover can be used as a way to find trade-offs
between product yield and volumetric productivity (see
Table 2). This provides flexibility to the batch-to-batch
operation as the plant can easily adapt to changes in the
economic context. For example, having a high product
yield could be of particular interest in cases where the sub-
strate cost has a significant share within the operational
costs. The volumetric productivity might be more relevant
if production time is a big constraint. In other scenarios,
an economic analysis of the integrated plant, including
upstream and downstream processing, might tell that the
highest profit occurs at a given trade-off between product
yield and volumetric productivity. With our approach,
instead of developing a new strain every time that a given
performance metric is required, one could keep the same
production strain and achieve a different phenotype just
by adjusting the process input online. Naturally, process
development can be significantly shortened, making the
biotechnology industry more flexible and competitive.

5. CONCLUSION AND OUTLOOK

We presented a model-based optimization strategy for
modulating the ATP turnover in the cell via CcaSR-
mediated optogenetic regulation of the ATPase enzyme
expression in a batch anaerobic lactate fermentation. To
do so, we first derived an expanded version of the deFBA
model that takes into account the dynamics of the op-
togenetic gene expression system. After solving suitable
optimal control problems, it was possible to improve the
product yield of the process at the expense of the vol-
umetric productivity by dynamically changing the light
intensity throughout the fermentation. Different trade-offs
between product yield and volumetric productivity were
obtained. With the possibility of optogenetic modulation
of the ATP turnover one could to easily adjust the batch-
to-batch strain’s performance in production setups. This
could provide the biotechnology industry with a higher
degree of flexibility and adaptability to changing economic
contexts.

Based on our results, we are working on the implementa-
tion of an automatic light delivery system to enable light-
mediated ATP wasting applications. Since open-loop opti-
mization can be affected by uncertainty (e.g., model-plant
mismatch or disturbances), we are also considering ad-
vanced feedback control schemes such as model predictive
control. Furthermore, we are developing state estimators
for facilitating process monitoring and automatic control.
Future work also includes the generalization of a model-
ing and predictive control framework to enable metabolic
cybergenetic applications with focus on optogenetics and
fed-batch fermentations.
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