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Abstract: Uncertainty is inherent in bioprocess modelling and control. Typically, uncertainties
are handled using either the stochastic approach or the robust approach. Recently, the risk-averse
approach, i.e., an interpolation between the stochastic and worst-case robust approach is gaining
popularity. Risk-averse formulations are very useful in avoiding conservative solutions while still
handling high-effect, low-probability events. In the bioreactor case considered in this paper, one
such high effect low probability event is wash off caused by high feed rate or low inlet substrate
concentration. A risk-averse, risk-constrained model predictive control formulation is proposed
in this paper. The dynamic optimisation problem to be solved at every measurement instance
is formulated using AV@R type risk objective. Similarly, probabilistic chance constraints are
approximated by an AV@R-type risk constraints. The problem is then solved using the conic
duality of the risk measure and an epigraphical decomposition of the nested multistage problem.
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1. INTRODUCTION

Fed-batch bio-reactors are the workhorses of the biochemi-
cal industry. Their applications range from fermentation to
produce sweeteners (Joseph et al., 2019), proteins (Ceregh-
ino et al., 2002; Çalık et al., 2010), alcohol (Alfenore
et al., 2004), etc to waste-water treatment (Lauwers et al.,
2013). In a fed-batch reactor operation, the reactor is first
inoculated with the bacteria or yeast culture. Unlike batch
operation, the substrate on which the cells grow is fed con-
tinuously to the reactor. However, unlike the continuous
operation, the fermentation (or bioconversion) products
are removed from the reactor only at the end of the batch.
The rate at which the substrate is fed to the bioreactor
can be used to control the operation, stability, and produc-
tivity of the bioreactors (Bastin, 1990). Typically, offline
dynamic optimisation strategies are utilised to determine
the feeding profile of for the bioreactor to optimise a
desired objective (Bhonsale et al., 2019; Pushpavanam
et al., 1999). However, in absence of any feedback from
measurements, application of the feeding profile obtained
from offline dynamic optimisation can lead to erroneous
outcomes due to plant-model mismatch, measurements un-
certainty, and the existence of unknown disturbances. Such
a feedback can be incorporated into the control strategy
using model predictive control (MPC).

In MPC, a discrete-time finite-horizon problem is solved
to optimise a desired objective. While the entire optimal
sequence of control actions is obtained, only the first
action is applied to the system till a new measurement
is available. Once a new measurement is available, the

optimal control problem is solved again with the new
measurement as the initial condition. Traditionally, MPC
was developed for setpoint tracking. Recently however,
economic MPC in which an economic cost function (e.g.,
production, costs) is optimised rather than the deviation
from setpoint has been developed (Angeli et al., 2012). A
variety of studies utilise MPC for control and optimisation
of bioreactors (Ashoori et al., 2009; Chang et al., 2016;
Nimmegeers et al., 2021).

Although the feedback incorporated in MPC can handle
a small plant-model mismatch, uncertainties in the model
can drastically affect the accuracy, efficiency, stability of
the process, or even lead to violations of the state con-
straints. Two main approaches exist to handle uncertain-
ties in an MPC context. In the robust approach, the worst-
case realisation of the (random) cost function is optimised
(Rawlings et al., 2020). Such an approach does not utilise
any information about the distribution of the uncertain-
ties, i.e., an non-informative prior is assumed. However,
the occurrence of these worst-case extreme events is in
most cases unlikely. Thus, the control profile obtained from
a robust approach tends to be conservative. In the stochas-
tic approach, the expectation of the objective obtained by
propagating the distribution of the uncertainty through
the process model is optimised (Mesbah, 2016). This ap-
proach requires the distribution of the uncertainties to be
known explicitly. Often, these distributions are assumed
to be normal, or estimated from data. However, accuracy
of such estimates and assumptions cannot be guaranteed.



Most often, only inexact information about the uncer-
tainty distribution is available. Risk measures allow the
incorporation of this uncertainty on the uncertainty in
an optimisation or MPC framework (Herceg, 2019). This
allows the interpolation between the two approaches used
to account for uncertainties, i.e., the worst-case robust
approach and expectation based stochastic approach. The
formulation of a risk-averse MPC problem leads to opti-
misation of the expectation of the objective for the worst-
case probability distribution. This makes risk-averse op-
timisation a subset of distributionally robust optimisation
(Rahimian and Mehrotra, 2019).

In this paper, a risk-averse MPC formulation is proposed
for the optimisation of bioreactors. As it is also desirable
to account for the uncertainties in the constraints that are
imposed on the process system, risk constraints are for-
mulated following Sopasakis et al. (2019). These risk con-
straints are used as convex approximations of the chance
constraints (Nemirovski and Shapiro, 2007) to improve
the computational efficiency. The optimisation problem is
rendered tractable by utilising the conic representation of
coherent risk measures (Sopasakis et al., 2019).

The paper is organised as follows: first the fed-batch
bioreactor model is introduced along with the dynamic
optimisation problem that needs to be solved. Then the
concepts of scenario trees, risk measures, and risk averse,
risk constrained optimisation are introduced. Then the
tractable reformulation of the problem is described. The
last section discusses the results obtained from the risk
averse MPC.

Notation

In this paper, N[k1,k2] denotes the integers between k1
and k2. The transpose of the a matrix A is given by A>.
The dual cone K∗ of a closed convex cone K is the set
K∗ = {y ∈ Rn | y>x ≥ 0,∀x ∈ K}. A conic inequality of
form x 4K y is interpreted as x− y ∈ K.

2. NUMERICAL METHODS AND BACKGROUND

2.1 Dynamic Optimisation of fed-batch bioreactor

For a yeast or bacteria which consumes a substrate and
utilises it to reproduce as well as produce a product, the
macroscopic mass balance leads to the following set of
ordinary differential equations for a fed-batch bioreactor
(Srinivasan et al., 2003):

Ẋ = µ(S)X − u

V
X, (1)

Ṡ = − 1

Yx
µ(S)X − 1

Yp
νmaxX +

u

V
(Sin−S), (2)

Ṗ = νX − u

V
P, (3)

V̇ = u, (4)

where X is the concentration of biomass, S is the concen-
tration of substrate, P is the concentration of the product,
and V is the volume of the mixture. The feed rate is
denoted by u and the substrate concentration in the feed is
denoted by Sin. Yx and Yp are the yield coefficients, while
µ(S) and ν(S) are the reaction kinetics. The substrate
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Fig. 1. Analytical optimal trajectories for the fedbatch
bioreactor case following Srinivasan et al. (2003)

Table 1. Parameters for the bioreactor model.

Model parameter Value Units

µmax 0.02 1/h
Km 0.05 g/L
Ki 5 g/L
νmax 0.004 1/h
Yx 0.5 g[X]/g[S]
Yp 1.2 g[P]/g[S]
Sin 200 g/L

uptake kinetics is assumed to be described by Haldane type
kinetics described in Eq. (5) while the product formation
kinetics is assumed to be constant

µ(S) = µmax
S

Km + S + S2

KI

. (5)

The values of the kinetic parameters can be found in Table
1.

The objective of the optimisation is to maximise the
product concentration at every time instance. The final
fermentation time is fixed at 150 h, and the input is
constrained between 0 L/h and 1 L/h. Furthermore, due
to limitations in oxygen transfer at high biomass loads,
the maximum permissible concentration of biomass within
the reactor is 3.7 g/L. For a prediction horizon of N
stages, the optimal control problem to be solved at every
measurement instance can then be formulated as

minimize
u0,u1,...,uN−1
x0,x1,...,xN

J (6)

subject to, xt+1 = f(xt, ut) (7)

Xt ≤ 3.7, ∀t ∈ N[0,N ] (8)

0 ≤ ut ≤ 1, ∀t ∈ N[0,N−1] . (9)

Eq. (7) represents the discretised system (in this case
using first order Euler method) of differential equations



described in Eq. (1)- Eq. (4) with the subscript t denoting
the stage and xt = [Xt St Pt Vt].

The cost function is defined as

J =

Np−1∑
t=0

x>t+1Qxt+1 + r(∆ut)
2, (10)

where t ∈ N[0,N ] denotes the discrete time step, ∆ut = ut−
ut−1 is the difference between consecutive control actions,
and

Q =

0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 and r = 0.5. (11)

The optimal solution of this specific problem can be
computed analytically and leads to the final product
concentration of 1.68 g/L. The analytical trajectories are
depicted in Figure 1.

For the risk-averse MPC (RAMPC), it will be assumed
that only the inlet substrate concentration is uncertain
and varies hourly. Sin is a random process described by
a scenario tree (see Section 2.2). In our simulations we
shall assume that Sin follows an iid normal distribution,
N (200, 25), as in Lucia and Engell (2013). All other pa-
rameters are assumed to be known accurately. Further-
more, the RAMPC will be formulated as a multistage risk-
averse optimisation problem using the concept of scenario
trees. This approach has already been used for a stochastic
MPC in which the expectation of the objective over all
the scenarios is optimised (Lucia and Engell, 2013). The
concept of scenario trees is introduced next.

2.2 Scenario Tree

To incorporate uncertainty, the state update of the dis-
cretized version of model in Eq. (1)- Eq. (4) can be made
dependent on the realisation of the random variable as

xt+1 = f(xt, ut, wt) ∀t ∈ N[0,N−1] . (12)

Starting from a known initial state, different realisations
of the random variable lead to a tree like structure which
grows at every stage. An example of scenario tree is
depicted in Figure 2. The nodes of this tree are assigned a
unique index i. The initial state corresponds to the the root
node and is assigned the index i = 0. The nodes at stage
t ∈ N[0,N ] are denoted by nodes(t). The nodes at the final
stage, nodes(N), are referred to as leaf nodes. Variables
defined at a specific node get the index of that node
as superscript. To describe the relation between different
nodes, two functions are defined. The unique ancestor of
node i ∈ nodes(t) for t ∈ N[1,N ] is denoted by anc(i) and
the set of children of i ∈ nodes(t) for t ∈ N[0,N−1] by
child(i) ⊆ nodes(t + 1). Additionally, all non-leaf nodes
are also assigned an input ui. The generalised system Eq.
(12) can now be used to describe each node as

xi+ = f(xi, ui, wi+), (13)

where i ∈ nodes(t), t ∈ N[0,N−1] and i+ ∈ child(i). The

different wi+ can be seen as all the possible realizations
of wt+1. Each paths from the root node to an end-node
i ∈ nodes(N) is called a scenario.

2.3 Risk Measures

Let Ω = {ωi}ni=1 be a finite sample space and P a
probability measure with P[{ωi}] = πi, together forming
the probability space (Ω,P). The vector π ∈ Rn is a
probability vector, which means that all its elements are
positive and sum up to one. The set of all possible
probability vectors in Rn is called the probability simplex
and is denoted by Dn. In what follows, events with a zero
probability will have no effect on the calculations, so all
πi will be assumed to be strictly positive. Let Z be a real-
valued random variable over (Ω,P), defined as Z : Ω→ R
with Z(ωi) = Zi.

A risk measure is a function that maps the random
variable Z to the extended real line, i.e., ρ(Z) : Rn → R.
A risk measure is considered to be coherent if it satisfies
the following condition:

• Convexity: ρ(tZ + (1 − t)Z ′) ≤ tρ(Z) + (1 − t)ρ(Z ′)
for all t ∈ [0, 1].

• Monotonicity: If Zi ≤ Z ′i for all i ∈ N[1,n], then
ρ(Z) ≤ ρ(Z ′).

• Translational equivariance: If a ∈ R, then ρ(Z +
a) = ρ(Z) + a.

• Positive homogeneity: If t > 0, then ρ(tZ) = tρ(Z).

The expectation operator Eπ[Z] = π>Z is an example of
coherent risk measure. A coherent risk measure can be
represented in its dual form as

ρ[Z] = max
µ∈A(π)

Eµ[Z] (14)

where A(π) ⊆ Dn is the ambiguity set of the risk measure
ρ and is a closed and convex set of probability vectors
containing π. The ambiguity set reflects how much uncer-
tainty there is in the probabilistic information. The larger
the ambiguity set, the larger the risk will be.

Another common coherent risk measure is the average
value-at-risk (AV@R). The ambiguity set for AV@R with
a parameter α is given by

AAV@R
α =

{
µ ∈ Rn

∣∣∣∣∣
n∑
i=1

µi = 1, 0 ≤ αµi ≤ πi, i ∈ N[1,n]

}
.

(15)

The AV@R interpolates between the risk-neutral expecta-
tion operator when α = 1, and the worst-case maximum
when α = 0. In this paper, AV@R will be used as the risk
measure to formulate the RAMPC problem.

2.4 Risk averse, risk constrained optimal control

Under uncertainty, the objective function becomes a ran-
dom variable with a realisation on each node of the sce-
nario tree. This realisation at a node i is denoted by
J i. At each stage t, another random variable is defined:
Jt = (J i)i∈nodes(t). The variable Jt is partitioned into
groups based on a shared common ancestor by defining
J [i] = (Zi+)i+∈child(i). The risk measure of this random
variable on the probability space child(i) is denoted by

ρi : R|child(i)| → R. Then, a conditional risk mapping

ρ|t : R|nodes(t+1)| → R|nodes(t)| is defined as

ρ|t[Jt+1] =
(
ρi
[
J [i]
])
i∈nodes(t)

. (16)
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Fig. 2. Scenario tree evolution, adapted from Sopasakis et al. (2019)

The risk-averse, risk constrained optimal control problem
(RAOCP) can be cast into a nested multistage formulation
as (Sopasakis et al., 2019; Shapiro et al., 2014, Ch. 6)

min
u0

J0 + ρ|0

[
min
u1

J1 + ρ|1

[
min
u2

J2 + . . .

+ ρ|N−2

[
min
uN−1

JN−1 + ρ|N−1
[
JN
]]
. . .

]] (17)

subject to,

xt+1 = f(xt, ut, wt), ∀t ∈ N0,N−1 (18)

AV@Rβ [ct(xt, ut, wt)] ≤ 0. (19)

Here, Eq. (19) is an AV@R-type risk constraint. AV@Rβ

serves as the convex and conservative approximation of the
chance constraint P[ct > 0] ≤ β (Shapiro et al., 2014, Ch.
6). This stagewise risk constraint fails to describe how the
ambiguity fails to propagate in time. To incorporate the
evolution of ambiguity, multistage nested risk constraints
can be imposed (Sopasakis et al., 2019).

2.5 Tractable reformulation

The tractable reformulation of the RAOCP is based on
the conic representation of coherent risk measures and
epigraphical relaxations. The ambiguity set of a coherent
risk measure can be cast into a conic inequality with the
matrices E,F and a vector b such that

ρ[Z] = max
µ∈Rn,ν∈Rr

{
µ>Z | Eµ+ Fν 4K b

}
, (20)

where K is a closed convex cone. Furthermore, when strong
duality holds (i.e., if there exists µ∗, v∗ such that, b−Eµ∗+
Fv∗ ∈ ri(K) (Ben-Tal and Nemirovski, 2001) 1 ), the risk
measure can be written as

ρ[Z] = min
y
{y>b | E>y = Z,F>y = 0, y <K∗ 0}. (21)

For AV@Rα, E = [1>n − 1>n αIn − In]>, F = 0,
b = [1 − 1 π 0n]>, and K = R2n

≥0.

The epigraph of a coherent risk measure ρ, i.e., the set
epi ρ = {(Y, γ) ∈ Rn+1 | ρ[Y ] ≤ γ}, is given by

epi ρ =

{
(Y, γ) ∈ Rn+1

∣∣∣∣ ∃y <K∗ 0, E>y = Y
F>y = 0, y>b ≤ γ

}
. (22)

1 ri(K) is the relative interior of K

The epigraph of a conditional risk measure is the Cartesian
product of the epigraphs of the underlying risk measures.

With help of the risk-infimum interchangeability property
(Sopasakis et al., 2019, Th 5.1), the problem in Eq. (17)
can be cast as

minimize
u0,u1...,uN−1

J0 + ρ|0

[
J1 + ρ|1

[
J2 + · · ·+ ρ|N−1

[
JN
]
. . .
]]
.

(23)

This is equivalent to

minimize
u0,u1,...,uN−1
τ0,τ1,...,τN

τ0 + ρ|0

[
τ1 + ρ|1

[
τ2 + · · ·+ ρ|N−1

[
τN
]
. . .
]]

subject to, Jt ≤ τt, t ∈ N[0,N ], (24)

where τt ∈ R|nodes(t)|. The epigraphical relaxation then
follows from the innermost risk mapping which is written
as

ρ|N−1
[
τN
]

= inf{sN−1 | (τN , sN−1) ∈ epi ρ|N−1}. (25)

Eq. (24) then becomes,

minimize
u0,u1,...,uN−1
τ1,τ2,...,τN ,sN−1

τ0 + ρ|0

[
τ1 + ρ|1

[
τ2 + . . .

+ ρ|N−2
[
τN−1 + sN−1

]
. . .
]]

subject to, Jt ≤ τt, t ∈ N[0,N ]

(τN , sN−1) ∈ epi ρ|N−1.

(26)

Similarly relaxing the innermost risk mappings recursively
leads to the following optimisation problem

minimize
u0,u1,...,uN−1
τ1,τ2,...,τN
s0,s1,...,sN

τ0 + s0

subject to, Jt ≤ τt, t ∈ N[0,N ]

(τt+1 + st+1, st) ∈ epi ρ|t, t ∈ N[0,N−1],

sN = 0 (27)

As we use AV@Rα as the risk measure (which can be
described by the tuple (Ei, bi,Ki)) at every node, the
problem in Eq. (17) can be replaced by



Table 2. Mean final product concentration with
changing values of α for the AV@Rα objective

and AV@Rβ risk constraint β = 0.5

Objective Final product
α concentration (g/L)

0 1.6679
0.2 1.6679
0.4 1.6682
0.6 1.6712
0.8 1.6714
1.0 1.6718

minimize
u0,u1,...,uN−1
τ1,τ2,...,τN
s0,s1,...,sN

τ0 + s0

subject to, x0 = x0 and xi+ = f(xi, ui, wi+),

yi 4(Ki)∗ 0, (Ei)>yi = τ [i] + s[i],

(yi)>b ≤ si, (28)

Jt ≤ τt
sN = 0.

where t ∈ N[0,N−1], i ∈ nodes(t) and i+ ∈ child(i). Sim-
ilarly, the stage wise risk constraints can be reformulated
as (ct, 0) ∈ epi ρ̂t). For AV@Rβ type risk constraints (de-

scribed by tuple (Êi, b̂i, K̂i)), the epigraphical relaxation
leads to

ŷt 4(K̂t)∗
0, Ê>t ŷt = ηt, (29)

ŷ>t b̂t ≤ 0, ct(x
i, ui) ≤ ηit, (30)

with i ∈ nodes(t) and additional variables ηt ∈
R|nodes(t)|.

The final dynamic optimisation problem is solved recur-
sively in an MPC framework. A 30 stage prediction hori-
zon is considered along with a 3 stage robust horizon.
The robust horizon indicates how far the scenario tree
branches. In this case, after three stages the tree stops
branching , i.e., wt = wmin(t,3). This helps avoid extensive
computational times. The dynamic system described in
Eq. (1) - Eq. (4) is discretised using an explicit Euler
scheme. The problem is solved in MATLAB using two
toolboxes. Marietta 2 is used to generate scenario trees
and assign probabilities to each node. The scenario tree
is generating using the values Sin ∈ {150, 200, 250} with
probabilities π = [0.25, 0.5, 0.25]>. The process model
considers Sin varying every hour following a normal distri-
bution. Although Marietta can be used to construct and
solve risk-averse problems using YALMIP, in this work
CasADi (Andersson et al., 2019) is used. Within CasADi,
the optimisation problem is solved using the interior point
method as available through IPOPT.

3. RESULTS

Figure 3 depicts the performance of RAMPC for 100
Monte Carlo simulations with uncertain Sin. This figure
depicts the case with objective α = 0.4, and constraint
α = 0.5. The control and state profile resemble the ana-
lytical solution. Furthermore, in the 100 simulations per-
formed, the constraints were violated only in 9 cases. The
mean of the maximum product concentration obtained at

2 Available at: https://github.com/kul-optec/risk-averse

Table 3. Mean final product concentration with
changing values of β for the AV@Rβ risk con-

straint and AV@Rα objective α = 0.5

Risk Constraint Final product
β concentration (g/L)

0.0 1.6672
0.2 1.6669
0.4 1.6712
0.6 1.6691
0.8 1.6703
1.0 1.6719

the end from the 100 simulations is 1.6712 g/L. This is
slightly lower than the 1.68 g/L product obtained via the
analytical solution. However, the analytical solution does
not consider the influence of uncertainty.
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Fig. 3. Risk averse model predictive control with AV@Rα

objective, and AV@Rβ risk constraints. The objective,
α = 0.4 and for the constraints β = 0.5. The figure
depicts results of 100 Monte Carlo simulations. The
state constraint was violated only in 9 cases out of the
100.

In Table 2, the final product concentrations obtained
for different combinations of α values for the AV@R
objective are reported. It can be seen that increasing the
α value, i.e., moving from worst case scenario to risk-
neutral scenario, the final optimised product concentration
increases slightly.

Similarly, in Table 3, the final product concentrations
obtained for different combinations of β values for the
AV@R risk constraint are reported. In this case, no trend
can be noticed in the optimised final product concentration
with increasing β.



4. CONCLUSIONS

In this paper, a risk-averse, risk constrained formulation
for the optimisation of bioreactors in an MPC framework is
presented. The dynamic optimisation problem that needs
to be solved at every measurement time is formulated
with nested AV@R risk objective and the probabilistic
chance constraints are over-approximated by AV@R type
risk constraints. The formulation is rendered tractable
by utilising conic dualities for coherent risk measures,
and epigraphical relaxations. Future work will focus on
ensuring the recursive feasibility of the MPC formulation
and incorporating parametric uncertainties which are not
measured into the risk-averse, risk constrained framework.
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Van Impe, J.F., and Dewil, R. (2013). Mathematical
modelling of anaerobic digestion of biomass and waste:
Power and limitations. 39(4), 383–402.

Lucia, S. and Engell, S. (2013). Robust nonlinear model
predictive control of a batch bioreactor using multi-stage
stochastic programming. In 2013 European Control
Conference (ECC), 4124–4129.

Mesbah, A. (2016). Stochastic Model Predictive Control:
An Overview and Perspectives for Future Research.
IEEE Control Systems Magazine, 36(6), 30–44.

Nemirovski, A. and Shapiro, A. (2007). Convex approxi-
mations of chance constrained programs. SIAM J Op-
tim, 17(4), 969–996.

Nimmegeers, P., Vercammen, D., Bhonsale, S., Logist, F.,
and Van Impe , J. (2021). Metabolic Reaction Network-
Based Model Predictive Control of Bioprocesses. Ap-
plied Sciences, 11(20), 9532.

Pushpavanam, S., Rao, S., and Khan, I. (1999). Optimiza-
tion of a biochemical fed-batch reactor using sequential
quadratic programming. Ind Eng Chem Res, 38(5),
1998–2004.

Rahimian, H. and Mehrotra, S. (2019). Distributionally
robust optimization: A review. doi:arxiv.org/abs/1908.
05659.

Rawlings, J., Mayne, D., and Diehl, M. (2020). Model
predictive control : theory, computation, and design.
Nob Hill Publishing, Santa Barbara, California.

Shapiro, A., Dentcheva, D., and Ruszczy?ski, A. (2014).
Lectures on Stochastic Programming: Modeling and The-
ory, Second Edition. MOS-SIAM Series on Optimiza-
tion. Society for Industrial and Applied Mathematics.

Sopasakis, P., Schuurmans, M., and Patrinos, P. (2019).
Risk-averse risk-constrained optimal control. doi:arxiv.
org/abs/1903.06749. URL https://arxiv.org/abs/
1903.06749.

Srinivasan, B., Bonvin, D., Visser, E., and Palanki, S.
(2003). Dynamic optimization of batch processes: II.
Role of measurements in handling uncertainty. Com-
puters & Chemical Engineering, 27(1), 27–44.


