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Abstract: Model-based control of biotechnological processes is, in general, challenging. Often
the processes are complex, nonlinear, and uncertain. Hence modeling tends to be complex and
is often inaccurate. For this reason, non-model-based control strategies developed via flask,
bench-scale, or pilot plant experiments are often applied in the biotechnology industry. Model-
based control and optimization techniques can increase processes’ performance and automation
level, thereby decreasing costs and guaranteeing the desired specifications. These rely on a
model of the process to make predictions and optimize the inputs to the plant. To improve the
quality of the models, it is often helpful to use combined first principle and data-driven models
together in a hybrid modeling approach which increases the model prediction capabilities. The
residual uncertainty of the hybrid model should be taken into account in the control level to
satisfy the process specifications and constraints. This paper proposes to use a stochastic model
predictive control scheme that exploits a hybrid, Gaussian processes–based model. We outline
the effectiveness of the stochastic model-based approach in combination with a suitable Kalman
filter for state estimation considering an example biotechnological process. Furthermore, we
underline that appropriate tools exist that allow the simple application of such methods even
for the novice user. To do so, we use an open-source Python package — HILO-MPC, which
allows the simple yet efficient formulation and solution of machine learning–supported optimal
control and estimation problems.

Keywords: Predictive control, toolbox, machine learning, Gaussian process, uncertain process,
biotechnology, stochastic model predictive control, HILO-MPC

1. INTRODUCTION

While in many fields, such as chemical engineering and au-
tonomous driving, automation has significantly advanced,
in biotechnology and especially biopharma, production
processes, e.g., fermentations, are still mainly controlled
with semi-empirical open-loop control policies (Mears
et al., 2017; Roman and Olaru, 2018; Mitra and Murthy,
2021). A key operational objective in bio-engineering is
to be able to ensure consistent productivity and product
quality, possibly in a fully automated fashion (Luo et al.,
2021). Furthermore, modern feedback control strategies
are included within the guidelines of the quality-by-design
concept encouraged by regulatory agencies (Rathore et al.,
2021). Moreover, there is a strong motivation in the bio-
process community towards adopting the standards of
Industry 4.0 and smart manufacturing, including aspects
like online monitoring, control, and optimization (Sokolov
et al., 2021). Three important points that need to be
addressed to facilitate the use of these methods in industry
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are: Automated model identification/adaptation routines,
uncertainty prediction methods, and simple software tools,
to make these methods accessible to personnel with little
or no control background.

Advanced model-based optimization and closed-loop con-
trol strategies such as model predictive control (MPC)
Rawlings et al. (2017); Findeisen and Allgöwer (2002);
Allgöwer et al. (2004) are one way to increase perfor-
mance and reduce the cost of operations. It could also
be used to avoid deviations in critical product quality
attributes. Mathematical models are used to investigate
systematically, develop economic benefits, and optimize
biotechnological processes, such as the production of bio-
plastic (Koller et al., 2006; Duvigneau et al., 2021), lutein
(Zhang et al., 2019) or the genetically enhanced synthesis
of β-galactosidase (Tholudur and Ramirez, 1996), among
others. However, due to noisy measurements, incomplete
experimental data sets, oversimplifications or the lack of
understanding of the underlying biological system, models
of such biological processes tend to be inaccurate to a cer-
tain extent. Furthermore, it is often impossible to measure
all variables necessary for closed-loop control online. This
inaccuracy leads to poor system predictions, hence poor
control performance.



On the other hand, over the last decades, there has been
an increasing interest in hybrid models, i.e., models con-
taining first-principles and machine learning components
(Oliveira, 2004; Von Stosch et al., 2014). Hybrid modeling
believed to be a pragmatic approach that can fit within
the quality-by-design paradigm and the FDA’s Process
Analytical Technology initiative (Sokolov et al., 2021).
Hybrid models have the advantage of being more inter-
pretable than pure machine learning models and requiring
much fewer data to train. Moreover, they can still capture
dynamics that are hard to capture with pure first principle
models. A successful machine learning approach used for
hybrid models is Gaussian processes (GPs) (Williams and
Rasmussen, 2006). GPs have the advantage of providing
the uncertainty on the prediction that can be used, e.g.,
to guarantee (with a certain probability) process specifi-
cations in the context of process optimization and control,
which can be defined as process constraints.

In this paper, a hybrid model using Gaussian processes is
used in a stochastic model predictive controller. Stochastic
MPC is an MPC approach that considers uncertain pro-
cesses with stochastic uncertainty (Heirung et al., 2018;
Mesbah, 2018). Stochastic MPC can be more robust to
uncertainty, guarantee constraint satisfaction (in proba-
bilistic terms) and have a dual-control effect (cf. Mesbah
(2018) and references therein). Nevertheless, the propaga-
tion of the uncertainty into the future and the constraints
can be hard to handle. The propagation of even a simple
probability distribution such as a Gaussian distribution
through a nonlinear system results in a non-Gaussian
distribution that is usually hard to describe.

Recently, in the field of bioreactor control, several stochas-
tic MPC were proposed. They rely on Monte Carlo sam-
pling (Bradford et al., 2021; Mowbray et al., 2021) or
polynomial chaos expansion (Bradford et al., 2019b,a) for
propagating the uncertainty. The previous methods can
offer a good description of the uncertainty evolution, but
they are complex and might be difficult to implement,
especially for practitioners not familiar with stochastic
control. In Hewing et al. (2020) a simpler and more
tractable approximated stochastic problem based on the
assumption that the future state evolution maintains a
Gaussian distribution is used for an autonomous racing
example. In this paper, we expand this approach also
considering state estimation using an unscented Kalman
filter. The approach is simpler than the Monte Carlo and
polynomial chaos method previously mentioned, but it
might nevertheless require some knowledge of stochastic
MPC for its correct implementation. Therefore, we show
how to use the toolbox HILO-MPC (Pohlodek et al.,
2022) to define and solve this stochastic MPC problem
with minimal effort. This facilitates the applicability of
advanced control methods for researchers and users with-
out deep knowledge of stochastic control approaches. To
showcase the toolbox, we apply the method in the case of a
bioreactor producing a foreign protein by the recombinant
Saccharomyces cerevisiae SEY2102, and we show some
preliminary results.

1.1 Notation

The notation N (µ,K) indicates a Gaussian distributed
random variable with mean µ and covariance matrix K,
with GP(µ(x),K) we indicate a Gaussian process with
mean function µ(x) and covariance matrix K. We indicate
the i, j element of a matrix A with [A]i,j . The ⊖ indicates
the Pontryagin difference i.e. A⊖B = {a|a+ b ∈ A, ∀b ∈

B}, with p(x) we indicate the probability density of x and
with p(x|a) the probability density conditioned to a. Pr(e)
is the probability of an event e. ∥x∥2A = xTAx. The symbol
† indicates the Moore-Penrose inverse of a matrix.

2. PROBLEM FORMULATION

We will consider discrete-time nonlinear hybrid models of
the form

xk+1 = f(xk, uk) +B (g(xk, uk) + wk) , (1)

where x ∈ Rnx and u ∈ Rnu is the state and input,
respectively. The function f : Rnx × Rnu → Rnx is known
while g : Rnx×Rnu → Rnx describes the unknown effect on
the system dynamics and will be learned from data using
Gaussian processes. This additive hybrid model structure
is commonly used and aims at modifying the known
function to represent better the data. The vector w ∈ Rnd

is process noise, assumed to be Gaussian distributed with
mean zero i.e. wk ∼ N (0,Σw) with diagonal variance
matrix Σw = diag([σ2

1 , ..., σ
2
nd
]). The matrix B ∈ Rnx×nd

is known.

2.1 Gaussian process regressor

We shortly review the main concepts behind a Gaussian
process (GP), for more details refer to Williams and Ras-
mussen (2006). Gaussian processes are stochastic data-
based models that can be used for regression and classifi-
cation. Compared to other machine learning models, such
as neural networks, they have the advantage of naturally
providing a measure of uncertainty on the prediction.
Furthermore, they embed previous knowledge by choos-
ing an appropriate kernel functions that, for example,
ensure smoothness or periodicity of the solution that can
be dictated by first-principles. Here we are interested in
GP regressors, i.e. that infer a continuous function from
available data. Let g : Rnx → R be a function of an input
vector x. The measured output is y = g(x) + v, where v
is assumed to be Gaussian distributed noise v ∼ N (0, σ).
Gaussian processes assume that the unknown function g
is Gaussian distributed, i.e.

g(x) ∼ N (m(x), k(x, x)), (2)

where m : Rnx → R is the mean function and m :
Rnx × Rnx → R is the covariance function or kernel. The
training takes place by fitting the hyperparameters that
are contained in the mean and kernel function. Let ϕ be
the vector of hyperparameters and

D={X=[x1, ..., xnD
] ∈ RnD×nx ,Y=[y1, ..., ynD

] ∈ RnD×1},

the data set where nD is the number of measurements.
Then the training consists of maximizing the log-marginal
likelihood ϕ∗ = argmaxϕ ln p(Y|X, ϕ), where

ln p(Y|X, ϕ) =− 1

2

(
ln(|K + σ2I|)

+ (m−Y))T ln(K + σ2I)−1(m−Y))

+
nD

2
ln(2π)

)
,

where nD is the data set size and K is the variance matrix
where [K]i,j = k(xi, xj) and m = [m(x1), ...,m(xnD

)].
The prediction is then calculated at a query point x∗ by
building the joint distribution as(

y
g∗

)
= GP

((
m

m(x)

)
,

(
K + σ2I k

kT k(x∗, x∗)

))
,



where k = [k(x1, x
∗), ..., k(xnD

, x∗)]T. The predicted mean
and variance is finally given by the conditional posterior
distribution p(g∗|X,Y) = N (µ(x∗),Σ(x∗)), where

µ(x∗) = m(x∗) + kT(K + σ2I)−1(Y−m(X)), (3)

Σ(x∗) = k(x∗, x∗)− kT(K + σ2I)−1k. (4)

In our case, the measurements Y are given for all j ∈
[1, ..., nD − 1]

yj = g(xi, ui) + wj = B†(xj+1 − f(xj , uj)).

Note that in (2) g is assumed to be scalar valued since
multiple outputs are nontrivial to handle in the GP frame-
work. Hence, commonly a GP regressor is trained for every
output dimension, hence obtaining nd regressors. Note
that x = [x, u]. The resulting multivariate GP will be

d(x, u) ∼ N (µd(x, u),Σd(x, u)), (5)

where mean and variance are build by concatenating the
mean and variances for all nd GP, i.e. µd = [µ1, ..., µnd

]
and Σd = diag

(
[Σd

1, ...,Σ
d
1]
)
.

2.2 Stochastic Model Predictive Control

With the learned GP regressor d : Rnx × Rnu → Rnd we
can now formulate the stochastic MPC as follows

max
Π(x)

E

(
N−1∑
k=0

l(xk, uk) + e(xN )

)
, (6a)

s.t. xk+1 = f(xk, uk) +B (d(xk, uk) + w) , (6b)

uk = π(xk), x0 = x(k), (6c)

Pr (xk+1 ∈ X ) ≥ px, (6d)

Pr (uk ∈ U) ≥ pu. (6e)

Problem (6) is an infinite-dimensional problem and gen-
erally computationally intractable. In the following, we
will approximate this problem in a tractable deterministic
problem as in Hewing et al. (2020). Here only the main idea
is given. For details, refer to the mentioned paper. First, we
define the ancillary control to consider a feedback control
action into the future that keeps the predicted uncertainty
small

πi(xi) = µu
i +Ki(xi − µx

i ), (7)
where Ki is a gain matrix, µx

i the mean of the state,µu
i the

mean of the input for time i. The optimization variable
are µu

i , ∀i ∈ [0, N − 1]. Finding Ki is not trivial. A
linear-quadratic regulator can be used, for example, by
linearizing the system around some points of an (approxi-
mated) trajectory of the system. For small nonlinearities,
a constant K can also be chosen.

2.3 Approximation of the Stochastic Problem

We approximate the state, input and disturbance as jointly
Gaussian distributed(

xi
ui

di + wi

)
= N

(µx
i

µu
i

µd
i

)
,

 Σx
i Σx,u

i Σx,d
i

(Σx,u
i )T Σu

i Σu,d
i

(Σx,d
i )T (Σu,d

i )T Σd
i +Σw

i

 ,

where Σu
i = KiΣK

T
i and Σx,u

i = Σx
i K

T
i . Next, the

nonlinear known model of the system is linearized around
the mean, which leads to the following update equations

µx
i+1 = f(µx

i , µ
u
i ) +Bµd

i ,

Σx
i+1 = [∇f(µx

i , µ
u
i ), B] Σi [∇f(µx

i , µ
u
i ), B]

T
.

Now we are left with defining µd
i ,Σ

d
i ,Σ

x,d
i and Σu,d

i . There
are different methods that can be used (see Hewing et al.

(2020) and references therein), in our case the Taylor
approximation is used. Hence we obtain

µd
i = µd(µx

i),(
Σx,d

i

Σd
i

)
=

(
Σx

i(∇µd(µx
i))

T

Σd(µx
i) +∇µd(µx

i)Σ
x
i(∇µd(µx

i))
T

)
,

where

µx
i =

(
µx
i

µu
i

)
, Σx

i =

(
Σx

i Σx,u
i

(Σx,u
i )T Σu

i

)
.

Now that variance, covariance matrices and means are de-
fined, we proceed with definition of the chance constraints.

Constraints Tightening The classic approach is reformu-
late the constraints in terms of the state and input mean
µx and µu and then tighten the constraints based on the
error between real state or input an its respective mean.
Hence, the constraints become

µx
i ∈ X̄ , X̄ = X ⊖Rx,

µu
i ∈ Ū , Ū = U ⊖Ru,

where Rx and Ru are the probabilistic i-step reachable set
with probability p, that bounds the state and input error,
i.e., Pr(eji ∈ Rj |e0 = 0) ≥ pj , j ∈ {x, u}. This ensure
that if µx

i ∈ X̄ then Pr(x ∈ X ) ≥ px (same applies for
the input). The calculation of the reachable set and the
tightening of the the constraint can be computationally
expensive in general. Nevertheless, for some important
classes of constraints, and thanks to the approximation
of joint Gaussian distribution of states and inputs, it can
be done efficiently. In biotech in particular, constraints are
often half-space constraints, i.e. hTx ≤ b (for example the
controller has to respect a given maximum of minimum
concentration of metabolites). In this case the constraints
can be efficiently tightened online as follows hTx ≤ b −
ϕ−1(px)

√
hTΣx

i h where ϕ−1 is the quantile function of a
Gaussian distribution and px is the chosen probability.
Note that the constraints are a function of the state
variance matrix Σx.

Objective function We consider the following quadratic
cost terms

l(xi, ui) = ∥xi − xr
i ∥2Q + ∥ui − ur

i ∥2R, (8)

in our case, we will use the expected values, which read

E(l(xi, ui)) =∥µx
i − xr

i ∥2Q + tr (QΣx
i )+

∥µu
i − ur

i ∥2R + tr (RΣu
i ) ,

E(e(xN )) =∥µx
N − xr

N∥2E + tr (EΣx
N ) .

Now we have all the ingredients to define an approximated
deterministic version of the stochastic problem (6).

2.4 Approximated Stochastic MPC

The approximated MPC problem is given by

max
µu

E

(
N−1∑
k=0

l(xk, uk) + e(xN )

)
(9a)

s.t. µx
k+1 = f(µx

k, µ
u
k) +Bµd

k, (9b)

Σx
k+1 = [∇f(µx

i , µ
u
i ), B] Σi [∇f(µx

i , µ
u
i ), B]

T
, (9c)

µx
k+1 ∈ X̄ (Σx

k+1), µu
k ∈ Ū(Σx

k), (9d)

µx
0 = x(k), Σx

0 = Σx(k), (9e)

where µu = [µu
0 , ..., µ

u
N−1] is the sequence of control inputs.

As usual in MPC, the first element µu
0 is applied to the
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Fig. 1. Block diagram of the control strategy. SMPC:
stochastic MPC.

plant and Problem (9) is solved again. In bioreactors,
usually not all the states can be measured and need to
be estimated. Furthermore, the estimate is uncertain and
this uncertainty should be taken into account. For this the
current state x(k) and current variance Σx(k) is estimated
using an unscented Kalman filter (UKF) (see (Wan and
Van Der Merwe, 2000) for the details). The model used by
the UKF is the following

xk+1 = f(xk, uk) + µx(xk, uk) + wk, (10)

yk = h(xk) + vk, (11)

where yk is the measurement, h(xk) the measurement
function and µx(xk, uk) is the mean of the GP. Zero-mean
Gaussian distributed measurement and process noise are
assumed. Note that in the model used in the UKF, only
the mean of the GP is used.

3. CASE STUDY: PROTEIN PRODUCTION

As a case study, we use the model of a continuous reactor
for the production of foreign protein using genetically
modified Saccharomyces cerevisiae SEY2102 (Tholudur
and Ramirez, 1996) adapted for a continuous process. The
model is given by

Ẋ = µX −DX, (12a)

Ṡ = −7.5µX −D(S − Sf ) (12b)

Ṗt = RfpX −DPt, (12c)

Ṗm = ϕ(Pt − Pm)−DPm, (12d)

where X is the biomass in g/l, S the substrate in g/l and
Pt is the total protein amount in unit culture volume basis
and Pm the target protein. The reactions rates used for the

simulated plant are: µ = 21.87s
(s+0.4)(s+62.5) , Rfp = se−5s

s+0.1 , ϕ =
4.75µ
0.12+µ . To simulate model mismatch we add structural

errors in Rfp and ϕ as follows

Rfp =
se−5s

s2 + 0.1
, ϕ =

4.75µ

(0.12 + µ)(0.08 + µ)
(13)

It is assumed that only X,S and Pt are measured
online while Pm is not measured. The goal is reach-
ing a reference known steady-state conditions of xref =
[2.73, 0.08, 13.62, 13.12] and uref = 0.06. A feedback gain
matrix K (cf. (7)) was found by using an LQR controller
with the linearized model around the steady-state condi-
tions and kept constant for all the prediction horizon. The
concentration of Pm cannot be greater than 14 hence an
upper bound of 14 is added to the optimization problem
for this variable. Gaussian distributed random noise with
a variance of 0.01 is added to the measured states X,S
and Pt. Here, without loss of generality, we train the GP
before the process begins, hence the training is offline. The
data points are generated by running five batches with a
MPC that uses the wrong model and tries to reach the

previous mentioned references. The GPs are trained with
47 data points.

Implementation using HILO-MPC: HILO-MPC can be
used to easily set up and solve problem (9). Here, we
show an example of code for our case study. Note that
for brevity the plant model is not reported and the values
of the variables are omitted. For the complete code refer
to the HILO-MPC website 1 .

from hilo_mpc import SMPC, GPArray, Kernel, UKF,
SimpleControlLoop↪→

from hilo_mpc.library.models import ecoli_plant_model,
ecoli_model↪→

# Get the approximated model
model = ecoli_model()
model.discretize('rk4', inplace=True)

# Get the plant model
plant = ecoli_plant_model()

# Load the data
data = scipy.io.loadmat('data.mat')
Y_train = data['Y_train']
X_train = data['X_train']

# Train the GPs. Here, 'GPArray' describes the
# concatenated output of the separately trained
# single output GPs.
gps = GPArray(model.n_x)
for k, gp in enumerate(gps):

kernel = Kernel.squared_exponential(variance=...,
length_scales=...)↪→

gp.initialize(feature_names, label_names[k],
kernel=kernel)↪→

y_train = Y_train[k, :]

gp.set_training_data(X_train, y_train)
gp.setup()
gp.fit_model()

"Set up the UKF"
# Summing a GP to the model will automatically
# add the mean of the GP to the model.
model_ukf = model + B @ gps
ukf = UKF(model_ukf)
ukf.setup() # Set up the UKF
ukf.R = ...
ukf.Q = ...
ukf.set_initial_guess(x0=..., P0=...)

"Set up the Stochastic MPC"
mpc = SMPC(model, gps, B)
mpc.horizon = ...

mpc.quad_stage_cost.add_states(names=..., weights=...,
ref=...)↪→

mpc.quad_terminal_cost.add_states(names=...,
weights=..., ref=...)↪→

mpc.set_box_constraints(x_lb=..., x_ub=..., u_lb=...,
u_ub=...)↪→

mpc.setup(options={'stoc_approx': 'joint_gaussian'})

"Run the simulation for 500 time steps"
scl = SimpleControlLoop(plant, mpc, ukf)
scl.run(500) # Simulates the system
scl.plot() # Shows the results

1 www.ccps.tu-darmstadt.de/research_ccps/hilo_mpc



Results: Figure 2 and 3 show the results of the simula-
tions. Figure 2 shows the real noise-free concentrations, the
predicted means of the states and 2σ standard deviation
on the predicted means. Note that, thanks to the feedback
gain, the uncertainty does not increase with the prediction
and the constraint is satisfied at list with probability of
95% (i.e. a standard deviation of 2σ). Figure 3 compares
the results of the stochastic MPC and of the nominal MPC,
i.e., using the wrong reactions rates in (13) without the GP
correction. In the case of the nominal MPC the reference
cannot be reached.

4. CONCLUSIONS AND FUTURE RESEARCH

In this paper we used a hybrid modeling approach that
uses Gaussian processes in a stochastic MPC approach.
This allowed the use of data to capture unknown system
dynamics and furthermore consider model uncertainty.
HILO-MPC was used to simulate a continuous bioreactor
that produces foreign protein with a recombinant S. cere-
visiae and some preliminary results are shown. Through
its easy and minimal syntax the toolbox facilitates the
use of machine learning supported optimal control prob-
lems. In future HILO-MPC releases, we plan to provide
also other stochastic MPC approaches using, for example,
Monte Carlo sampling or Polynomial Chaos Expansion
to propagate the uncertainty. Furthermore, the study on
the applicability of such methods for biotechnological pro-
cesses will be further refined.
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Fig. 2. Result of one iteration of the stochastic MPC. The black lines are the states of the real system and the red lines
are the mean of each state predicted by the stochastic MPC. The red area shows the uncertainty of this prediction,
where the bounds are defined as 2σ standard deviation from the mean.
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Fig. 3. Comparison between stochastic MPC and nominal MPC. The black lines are the results of the stochastic MPC,
and the red lines of the nominal MPC.


