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Abstract:  Process and energy industries have been recognised as adopters of high levels of automation 

compared to other sectors. Nonetheless, human cognitive input still plays a critical role in the operation of 

process plants and replication of these cognitive capabilities remains a key challenge for advancing 

automation levels. In this paper, we provide an analysis of process and energy industries based on a scenario 

of reduced availability of skilled labour and increased demands for safety, sustainability, and resilience. 

We consider the different mechanical, sensing, situational awareness, and decision-making tasks involved 

in the operation of plants and map them to possible realisations of unmanned and autonomous systems. We 

discuss the implications of current technology capabilities and future technology development perspectives, 

the factors influencing the complexity of operation in process plants, and the importance of human-machine 

collaboration. As part of autonomous system capabilities, we consider adaptation as a key capability and 

we make a connection to adaptation of model-based solutions. We argue that reaching higher and wider 

levels of autonomy requires a rethink of the design processes for both the physical plants as well as the way 

automation, control, and safety solutions are conceptualised. 
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1. INTRODUCTION 

The COVID-19 pandemic has highlighted several weaknesses 

of current industrial production and supply chains (Kamin and 

Kearns, 2021). Among these weaknesses, strong dependence 

on human presence in working environments was revealed 

both by local lockdowns and sicknesses but also because of the 

limitations of cross-border travel of seasonal workers. The 

supply chain related problems highlighted the challenges of 

around-the-clock operation in factories, warehouses, and 

ports, and additionally strengthened the position of the 

proponents of more decentralised and localised production and 

supply chain operations (Sarkis, 2021; Nikolopoulos et al., 

2021). A common expectation emerging from these 

observations is an acceleration in the adoption of automation 

technologies (Leduc and Zheng, 2020). The observed shortage 

of workers following the pandemic and the need for 

continuous operation will motivate building industrial 

workflows, which can be carried out with minimum 

dependence on human effort. The decentralised and localised 

systems mentioned in connection with supply chains, will 

likely lead to an increased need for skilled labour, unless they 

are achieved in a more automated way compared to traditional 

centralised plant operations. 

These developments are not exclusively brought by the 

pandemic. It is highly likely that pre-pandemic investments in 

automation and digitalisation have already prevented a worse 

economic outcome from the pandemic. Since several years, 

automation technologies have been seen as means to bring 

back manufacturing to high-cost-countries and counter the 

impact of retiring experienced employees. Some industries, 

such as offshore oil and gas, have already been looking to 

automation and remote operations to reduce safety risks but 

also to handle a shortage of qualified workers and the 

correspondingly high cost of manned operation (Casey, 2021). 

For process and energy industries, we see further pressure for 

change due to concerns about sustainability and climate 

change. For instance, the oil and gas industry is looking into 

carbon capture and hydrogen production to stay relevant in a 

zero-emissions future (Dawood et al., 2020). Coal fired power 

plants are likely to be repurposed as energy storage systems, 

to work with alternative fuels, or to be phased out 

(Hoffschmidt and Thess, 2018). Chemical process industries 

are under pressure to reduce their emissions and switch to 

sustainable feedstocks and energy sources (Schiffer and 

Manthiram, 2017). Steel production is being re-envisioned to 

use hydrogen and renewable electricity instead of fossil fuels 

and alternative fuels are being investigated for the production 

of cement (Bhaskar et al., 2020; Fennell et al., 2021). New 

processes and sectors are being developed for chemical 

recycling, for the processing of novel energy carriers such as 

hydrogen and ammonia, and for air capture and sequestration 

of CO2 (Thiounn and Smith, 2020; Fasihi et al., 2019). 

The intersection of the trends of reduced availability of labour, 

increasing demands for sustainability, and the necessity to 

combat climate change brings up the possibility of designing a 

new generation of processes and plants with an embedded 



consideration of advanced automation and possibly unmanned 

operations. Therefore, we believe it is timely to provide an 

analysis of the current state of automation and operations in 

the process and energy industries and discuss how higher 

levels of automation can be achieved and what implications 

such higher levels of automation will have. 

The remainder of this paper is divided into three sections. In 

Section 2, we first provide an overview of the tasks involved 

in the operation of process plants and then look at the role 

human actors and automation currently play for the completion 

of these tasks and the future possibilities for increasing 

mechanisation and automation of sensory tasks. In Section 3, 

we focus on the automation of human cognitive input for 

unmanned and autonomous operations with considerations of 

complexity, process modelling, need for adaptation, and the 

relation of human operators and engineers with autonomous 

systems in collaborative and complementary settings. We 

conclude the paper in Section 4 with an outlook based on our 

observations and provide a discussion for research and 

development efforts for autonomous systems and advanced 

automation in the process and energy industries. 

2. OVERVIEW OF PROCESS PLANT OPERATIONS 

Process plants have a lifecycle following a sequence of design, 

engineering, construction, operations, and decommissioning 

phases. From an automation perspective, all of the tasks over 

this lifecycle could be considered for automation. In this work, 

we focus on operations and on the tasks associated with this 

phase. As capital-intensive investments, process plants are 

expected to operate for long periods. Further to that, they tend 

to undergo modifications, expansions, and technology changes 

during their operational phase. These efforts for continuous 

improvement and upgrading make up a significant portion of 

the efforts spent by plant engineers and managers. The changes 

introduced to the plants combined with the unavoidable loss of 

performance resulting from operational wear and tear make it 

challenging to build automation solutions for process plants, 

because the automation solutions themselves need to be 

adapted regularly throughout the operational life of process 

plants. Automation of the tasks during the engineering phase 

is therefore closely connected the automation of tasks related 

to the adaptation of the automation system during operation 

and some of the analysis and discussion in this work can be 

extended to that phase in the plant lifecycle as well. 

2.1 Role of human actors in current process plant operations 

Figure 1 shows an overview of the facilities in a typical process 

plant without the support and service functions for the plant 

personnel. Functioning of these facilities require efforts in four 

main task groups, namely (i) operations, (ii) maintenance, (iii) 

continuous improvement, and (iv) emergency response. These 

effort categories apply to all facilities including the various 

information and operation technology (IT and OT) elements as 

well as to the software and algorithms contained within those 

elements. Considering the work done by the plant personnel, 

we examine these four categories from the perspective of the 

role of manual labour, use of human sensory capabilities, and 

use of human cognitive capabilities. 

Role of manual labour: 

In a state-of-the-art process plant many operations-related 

tasks are actuated by the automation and safety systems with 

some involvement of manual labour, mostly via the operation 

of machinery such as cranes or forklifts. It is also common for 

operators to wash and clean equipment or to remove debris and 

scaling. In tasks related to maintenance and continuous 

improvement, most work tends to involve human labour. 

Repair, removal, and replacement of parts or machines are 

carried out by workers and technicians assisted by necessary 

tools and machinery. Work in mechanical workshops is mostly 

manual and laboratories also require manual human 

interaction. Finally, emergency response for fire can be 

automated in some plants but, in most cases, human physical 

intervention is considered as a contingency. Emergency 

response to leaks and other environmental risks as well as the 

responses to perimeter security threats generally involve 

human physical engagement. 

Role of human sensory input: 

Most sensing needs for the operation of process plants are met 

by the automation and safety systems and the associated 

instrumentation. Use of add-on or Internet-of-Things (IoT) 

sensing solutions as well as increased innate diagnostic 

capabilities for process machinery have also reduced in-situ 

monitoring and inspection needs (Ahrend et al., 2019; Sosale 

and Gebhardt, 2021). Nevertheless, plant operators are often 

required to tour facilities for observations and for collecting 

samples and measurements. They are responsible for detecting 

the abnormalities that can be observed from outside the 

process vessels. Some operations are carried out in partially or 

fully exposed settings such as settling pools, conveyor belts, 

or rotating kilns. Monitoring and inspecting these processes 

tend to require higher sensory effort from human operators 

compared to others, which are completely enclosed. In some 

settings operators observe processes remotely from video 

feeds. Monitoring and inspection of the hardware components 

for IT and OT systems as well as the electrical infrastructure 

is carried out by technicians.  

For maintenance related tasks, the characterisation of 

equipment condition requires a visual inspection in most cases. 

Performing maintenance actions and their subsequent 

validation relies on human sensing as well. Detection of fire or 

environmental emergencies is mostly instrumented but if the 
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plant. Overlaps indicate dependencies or connections 

between the different systems and services. 



response effort involves human physical engagement, it also 

implies a coordination via human sensory capabilities. 

Detection of perimeter security threats is possible via cameras 

or motion detectors, but situational assessment requires human 

perception.  

Role of human cognitive input: 

Even though process plant operations are highly automated for 

basic control functions, they heavily depend on human 

cognitive input for sustaining operations (Bauer and Schlake, 

2017). Control room operators are responsible for coordinating 

automatic control functions and monitoring the operation of 

the plant together with all the auxiliary units. They respond to 

alarms and alerts, handle disturbances, and ensure that the 

plant operation is safe and follows the specified operational 

targets.  

Some plants are equipped with advanced process control 

capabilities, such as model predictive controllers (MPC), 

which could take part of the cognitive burden from plant 

operators, but plant operators still monitor and supervise these 

advanced functions (Qin and Badgwell, 2003). Automation 

systems of today cannot handle most abnormal events without 

operator intervention. In such cases operators decide and 

implement a course of action, usually within a limited time 

window and with limited situational awareness. In case the 

operators cannot regain control of the plant, safety systems 

ensure automatic safe shutdown of the process operation. 

Operators, plant engineers, and managers are also required to 

optimise operational decisions. Some plants employ tools such 

as real time optimisers (RTO), which could automate the 

optimisation tasks with the operators and engineers monitoring 

and supervising the performance of these solutions (Müller et 

al., 2017). Planning and scheduling of process plant operations 

are determined by human dispatchers with help of specialised 

software tools to varying degrees. Other cognitive aspects such 

as the management of financial operations rely on human 

cognition. Similarly, the state of the IT systems is monitored 

especially for cybersecurity threats. Some of these IT security 

applications could be automated but are supervised by 

engineers and technicians (Longley, 2019). 

For maintenance tasks, engineers and plant managers can be 

assisted to varying degrees by specialized condition 

monitoring tools. In some cases, these systems can directly 

determine maintenance actions and even prescribe changes to 

operation strategies under human supervision but in most other 

cases, maintenance decisions are entirely specified by humans. 

Maintenance, upgrading or reconfiguration of IT and OT 

software systems are carried out by specialists partially 

assisted by software solutions except for general software and 

security updates, which are provided automatically or 

remotely by corresponding service providers. Similarly, for 

continuous improvement some plants have access to historical 

data and analytical tools to calculate various performance 

indicators, but final interpretations and decisions are carried 

out by engineers and managers (Qin and Chiang, 2019).  

For fire and environmental emergencies, automatic response 

systems exist but in case the emergency cannot be contained, 

human decision making is required. Perimeter security 

depends entirely on human decision making as well. 

2.2 Future of automation for manual labour and human 

sensory input 

The automation of manual work using robotics and robotic 

teleoperation applications in process and energy industries is 

an actively developing area (Caiza et al., 2020). These 

developments for operations such as material handling or 

process cleaning applications (Giske et al., 2019; Figliolini et 

al., 2019) can enable removing the dependence on manual 

labour and eliminate the risk to human life due to work in 

confined spaces in a process plant. Similar automation 

developments could reduce the need for manual labour in 

factory analytical laboratories (Prabhu and Urban, 2017).  

In general, mechanisation of regular operations related manual 

labour is likely to be feasible in most plants due to the repeated 

and plannable nature of the involved tasks. On the other hand, 

both operations related troubleshooting such as removal of 

clogging objects or handling of a jammed machine and the 

manual labour associated with maintenance tasks pose more 

serious challenges for direct automation. The troubleshooting 

work will be difficult to automate due to the high variability of 

the involved sub-tasks. The maintenance work can involve the 

replacement of motors, pumps, valves or other similar 

equipment. The construction of dedicated mechanisation 

means for these tasks will have very low utilisation rates and 

the costs are likely to be high due to the involved payloads. In 

such cases, having either redundant or more durable equipment 

and a reduced dependence on frequent maintenance would be 

more attractive than a highly complex mechanical solution, if 

a reduction of manual labour for these tasks is necessary. Some 

on-site tasks, such as the work in mechanical workshops, can 

also be shifted off-site with suitable logistics solutions. 

Perimeter security can be handled to a large extent via a 

combination of passive hardening and active robotic means 

(Huang et al, 2019). Extension of current automation 

capabilities for firefighting and environmental response could 

also be feasible in the future (Ausonio et al., 2021; Bogue, 

2021). In summary, we see the automation of manual work in 

process and energy industries to be less constrained by 

technology capabilities, as compared to the other task 

categories and to be more of a cost and design challenge. 

The automation of monitoring, sensing, and inspection tasks in 

the process and energy industries has seen a significant 

increase in technology development over recent years, 

particularly due to rapid advances in machine learning 

methods (Salazar et al., 2020; Bae et al, 2018; van Kessel et 

al., 2018). With a combination of drone-, legged robot-, or rail-

based sensing platforms and the adaptation of digital twins, the 

dependence on routine field inspections by human operators 

could be significantly reduced or eliminated. On the other 

hand, similar to the mechanical labour case, the dependence on 

human perception for activities such as troubleshooting, or 

maintenance is harder to replace due to the complexity and 

variety of the involved tasks. For these tasks, remote 

inspection and observation again via robotic means could be a 

way to take them off-site. The measures for reducing the 

dependence on maintenance mentioned above in the 



mechanical labour discussion would also eliminate the need to 

provide on-site human perception for those activities as well.  

Similar to the conclusion for mechanical work, the trajectory 

of current technology developments indicates that in the near 

future dependence on on-site human perception could be 

feasible to substitute to a large extent in a cost-effective way, 

but we do recognise that there are still open problems and 

challenges for increasing the reliability and wider applicability 

of the referenced technology developments. 

2.3 Future of automation for human cognitive input 

Despite the high degree of automation and the extended reach 

of process control systems in modern plants, human situational 

awareness and decision-making still play the key role in all 

task types. The analysis of the future automation potential for 

these tasks requires the consideration of a number of additional 

topics such as autonomous systems, the role of complexity, the 

need for adaptation and a more detailed analysis of the 

technical challenges involved. These topics will be covered in 

the remaining sections of this paper. 

3. UNMANNED AND AUTONOMOUS OPERATIONS 

We focus now on the automation of human cognitive input for 

process plant operations. We base our analysis of future 

automation systems on the assumption of a future shortage of 

qualified personnel. This assumption would cover cases of 

remote or inaccessible plant sites as well as the case of a future 

pandemic. A different but equally justified future perspective 

could prioritise efficiency and maximisation of profit, without 

necessarily using autonomous systems. These two 

perspectives are likely to overlap to a certain extent since it is 

a well-known fact in the industry that most upsets in plant 

operations are due to human error (Nivolianitou et al., 2006). 

This is not surprising when the majority of oversight for plant 

operations are residing with humans, and in most cases 

operator errors stem from organisational or system design 

faults. Nonetheless, the computational capabilities, speed of 

response, and consistency of an algorithmic solution for a 

particular task are superior to those of a human. Consequently, 

in the case when an algorithmic solution is available, it can be 

argued that such solutions will lead to a reduced number of 

upsets, higher efficiency, and increased profits, which will 

make them attractive even when a shortage of workers is not a 

consideration. However, this marginal increase in profit has to 

be scrutinised against the marginal cost of building the 

algorithmic solutions, whereas when increased automation is 

treated as a hard constraint due to a shortage of qualified 

personnel, it will be scrutinised against the economic 

feasibility of operating the plant itself. We will use these 

results to look at complexity as a key dimension to assess 

algorithmic capabilities and autonomous systems. 

3.1 Unmanned operations 

Remote operation offers the possibility of taking the cognitive 

input of human operators off-site from process plants. This 

possibility can be used to co-locate the workplace with the 

availability of the workforce, but it can also be used to utilise 

the workforce to work with multiple sites. The likelihood of 

the latter arrangement will be reinforced with increasing 

degree of automation, which already today leaves the operators 

in a passive supervisory mode for extended periods. 

Most process plant operators working on-site are separated in 

the control room from unit operations, therefore moving them 

off-site should not create a significantly different working 

environment. At the same time, in case of upsets operators 

might need to look for sensory input beyond the available 

signals in the control system. In addition to the various 

possible future developments discussed in Section 2.2, 

additional technologies such as virtual reality headsets with a 

real-time connection to a camera feed, for example from a 

drone, can be useful in such a setting for the operators to 

collect the specific information they need.  

The reaction rates of control room operators in process plants 

are usually not time critical and remote operation will be 

robust to communication bandwidth problems. However, a 

disruption in remote communications will leave the plant 

without any human supervision. Unlike the autonomous 

system level definitions for vehicles such as cars or aircraft, 

where the expectation is for a human to take over a task from 

an autonomous system, this situation would require an 

autonomous system to take over from a human. Alternatively, 

an on-site safety solution can be considered to safely shut-

down or pause operations in such a situation. 

3.2 Autonomous systems 

Gamer et al. (2020) provided an in-depth analysis of 

autonomous systems in the context of industrial plants. They 

proposed a level-based taxonomy to describe the relative 

position of human operators and the autonomous system with 

respect to tasks and responsibilities under varying situations 

with Level 0 corresponding to no autonomy, and Level 5 to 

autonomous operation under all circumstances. In this work 

we will not go into the details of levels of autonomy and focus 

instead on the aspects of autonomous systems covering the 

relationship of autonomy and plant complexity, role of plant 

models, adaptation requirement of autonomous systems, and 

the interaction of autonomous systems and operators. 

Fig. 2. A conceptual plot showing the relationship between 

plant complexity and automation capability. The impact of 

current and future technology limits is illustrated with several 

example cases. 
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We define autonomy as the ability of an automation system to 

complete a task without human intervention. In the context of 

this paper, we can use this definition for any complete task 

happening over a perception-situational awareness-decision 

making- action chain. This can apply to a feedback control 

loop in contact with the physical plant or it could apply to an 

inventory management application making inventory 

observations in a database and generating orders in another 

database. Autonomous systems and an overall degree of 

autonomy can then be assumed to emerge from the aggregation 

of these autonomous tasks. Some of these tasks might not be 

possible to carry out autonomously under all circumstances 

and can require a human to take over, which connects our 

approach to the taxonomy of the levels of autonomy for 

autonomous vehicles, but it also allows the coexistence of 

multiple autonomous entities in a single plant. This approach 

also allows application of the analysis presented in Section 2 

by considering autonomy as the automation of cognitive tasks 

carried out by human operators, engineers, and technicians. 

3.3 Autonomy and complexity 

The effort and hence the cost required to build an autonomous 

solution for a given task scales in proportion to the complexity 

of that task. This relationship is expected to follow an 

exponential trend with the cost growing rapidly with 

increasing task complexity. Therefore, it is essential to 

understand task complexity when working with autonomous 

systems. Plants in process and energy industries exhibit 

varying complexity levels. We divide the main factors 

increasing complexity into three groups: 

(i) Complexity in plant and process design. A high number of 

material recycle streams, a high ratio of recycle flows, a 

high number of process units the recycle streams span; 

many connections over a heat integration network; a high 

number of unit operations sharing the same auxiliary 

systems such as a steam supply; reduced number and 

reduced volume of buffer capacities; reduced number of 

redundant process units; degradation of equipment 

condition due to design aspects e.g. presence of corrosive 

substances, dust, coking; and a high ratio of solid or 

multiphase fluid handling increase complexity. 

(ii) Complexity in plant operation. A high number of products 

or product grades; frequent variations in product and 

product grade changes; and frequent and large variations 

in plant loads increase complexity. 

(iii) Complexity in plant interfaces. Uncertain and high 

variation in feedstock characteristics or quality; and 

uncertain and high variation in auxiliary sources such as 

the electrical grid voltage or a heating/cooling utility 

increase complexity. 

The total number of process units and variables will also 

increase complexity but not as much as the factors from the 

three groups mentioned above (Wall, 2009). We consider the 

complexity of the automation system as an independent factor 

in this analysis and focus on the maximum possible level of 

automation but the need for a minimum level of automation 

can also be argued for managing the other complexity factors.   

Figure 2 demonstrates the relationship between plant 

complexity and the aggregate cognitive capability of the 

automation systems. The vertical lines indicate a performance 

level. For a given plant, the distance between its level of 

automation shown as a point in the plot and the performance 

level at which it operates is the cognitive load carried by the 

plant operators and engineers. The solid curve and the dashed 

curve represent the current and possible future technology 

boundaries, respectively. These boundaries illustrate the 

relationship between the feasible degree of automation 

capability and a given level of plant complexity. As an 

example, a pulp and paper mill will appear as a highly complex 

plant and will not be possible to automate to a level of 

unattended operation within current technology boundaries 

(Case A). Conversely an air separation unit will appear as a 

less complex plant and could be automated to a level of 

unattended operation (Case D).  

The four cases in Figure 2 show the possible impact of future 

automation technology. Case B is used to highlight the 

possibility of achieving a higher degree of automation by 

reducing the complexity of a plant within a given technology 

boundary. This could be achieved for example by adding a 

buffer storage or adding a redundant component. The resulting 

situation will reduce the cognitive burden on personnel and 

could be carried out with fewer people. As mentioned at the 

beginning of Section 3, the cost and benefit analysis for such 

a change will require the consideration of the circumstances of 

the plant. Generally, most factors that increase complexity are 

present in a plant to increase the efficiency and flexibility of 

the operation and to reduce costs, therefore a reduction in 

complexity will come with penalties. 

Case C is used to highlight that not all plants might adopt a 

high level of automation and appear at the technology 

feasibility boundary for their level of complexity. For such 

cases future technology advances can reduce the cost of 

adopting automation technologies and can change the 

economic optimum in favour of a higher degree of automation 

capability. The corner cases capture high complexity plants 

(Case A) and plants that are already operating unattended for 

Fig. 3. An example of a plant consisting of three units controlled 

via a combination of human operators and autonomous agents 

of varying autonomy levels. The figure illustrates the 

automation hierarchy and the exchange of information between 

the different entities. 
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long periods (Case D). In Case D, technology advances could 

lead to an increase of the performance of the autonomous 

system in the form of increased output or fewer number of 

outages. In Case A, automation technology advances could 

lead to the realisation of a more complex plant without 

changing the balance of the cognitive load between humans 

and autonomous systems. 

3.4 Role of plant models for autonomous systems 

Use of plant models for process monitoring, control, and 

optimisation is well established. Automation of many 

cognitive tasks involving situational awareness and decision 

making is likely to involve the extension of the capabilities of 

such models. Therefore, future technology advances will 

depend on the advances in plant modelling. As mentioned in 

Section 2, state-of-the art plants today have access to 

technologies such as digital twins and simulators, which are 

used to generate insights and assist human personnel with their 

cognitive tasks. Simulations are being used extensively by 

autonomous driving technology companies to develop and test 

autonomous systems (Rong et al., 2020). A challenge for 

process plants is that their behaviour is not always possible to 

model accurately especially regarding dynamic responses. 

This presents a possible obstacle for building autonomous 

solutions for greenfield plants and could require extensive data 

collection and testing campaigns as part of the commissioning 

phase, further increasing costs. As we defined autonomous 

systems in Section 3.2 to emerge from the aggregation of many 

autonomous tasks, simulated testing of autonomous solutions 

for process plants will require a closed-loop integration of 

these tasks with a plant simulator. However, in case of partial 

horizontal autonomy, where some unit operations are 

controlled by an autonomous system and others by human 

operators, the testing process will require the input of human 

decisions – which could further complicate testing efforts. 

Most critical decision-making tasks carried out by plant 

operators involve the handling of abnormal operations. Often 

such decision-making tasks involve discrete actions, such as 

turning machinery on or off, diverting flows, or activating or 

deactivating control functions. For handling these problems in 

an autonomous way, both model-based and model-free 

decision-making approaches will require a plant model 

capable of simulating the abnormal operation scenarios of 

interest. The widely used simulation packages in process and 

energy industries have currently very limited capabilities for 

simulating such scenarios and future technology developments 

should address these shortcomings for reaching higher levels 

of autonomous operations. 

3.5 Autonomy and adaptation 

Any industrial process is subject to deterioration and change 

over its lifetime. The significance of these changes is a factor 

of complexity as mentioned in Subsection 3.3. Reaching 

acceptable operating performance without taking into account 

these changes is difficult. The difficulties arise especially in 

plants where the changes are significant. This will especially 

be important for model-based autonomous solutions, where 

the models need to be updated or adapted to the changes in the 

plants. The updating of plant models is another cognitive task. 

For highly autonomous systems this task could also be made 

autonomous (Mercangöz et al., 2020). The need for adaptation 

applies beyond plant models to any operations related task that 

is handled by autonomous systems, which will require the 

appropriate characterisation and monitoring of the 

performance of the different autonomous systems to drive the 

adaptation processes. 

The need for adaptation connects autonomous systems closely 

with data-driven methods and analysis. Process monitoring 

and diagnosis solutions are successfully used today in the 

process and energy industries as a decision-aid tool (Qin, 

2012). Automation of the cognitive tasks using such tools will 

close the loop over operational and possibly also maintenance 

and continuous improvement related actions. Autonomous 

systems relying on reinforcement learning for decision-

making tasks would also have to utilise process data directly 

or indirectly (via a process model) to both improve their 

performance and to adapt to changing conditions. Data-driven 

solutions such as algorithms for generating forecasts for 

various external factors, can also be integrated to autonomous 

solutions and be used to facilitate adaptation processes. 

3.6 Autonomous system and human interactions 

The purpose of any autonomous system is to fulfil a goal 

specified by humans. Therefore, regardless of autonomy level 

any autonomous system has to have a human-machine 

interface where commands and objectives can be received. In 

an engineering setting, this interface must be able to return 

feedback for the commands and objectives to inform the 

operators about the state of the autonomous system, the 

feasibility of the commands, and to what extent and at what 

cost the objectives can be achieved. This information exchange 

is highly critical for those applications, where a human 

operator has to take over in case the autonomous system 

cannot fulfil its function but it is also important in situations, 

where a fully autonomous system is operating in a 

collaborative setting along human operators. We illustrate 

such a situation in Figure 3, which merges the autonomy levels 

from Gamer et al. (2020) with the automation hierarchy from 

ANSI-ISA (1995). In this example, the regulatory control for 

Unit 3 is under the responsibility of a Level 5 autonomous 

system, which does not need human supervision for carrying 

out its function. It has to receive commands and objectives 

from the plantwide control layer and in turn needs to provide 

information about its state. This is the first type of information 

exchange and since the plantwide control layer is autonomous 

at Level 3 – both a human operator and an autonomous system 

will be part of it. In addition, the neighbouring units to Unit 3 

are in a possible collaborative setting and Unit 3 could be 

envisioned to share information about its state and receive in 

return information about the state of its neighbours. This is a 

second type of exchange. Lastly as mentioned before, the 

plantwide control layer and the unit level control for Unit 3 are 

autonomous systems under human supervision and these 

systems must exchange information with the human operators 

responsible for the supervision task, which is the third type of 

information exchange. 

The information that can be exchanged with other autonomous 

or software systems could be designed to maximise system 



performance and does not need to be constrained. On the other 

hand, the information exchange with human operators and 

supervisors will depend on the context of interaction and for 

real-time operation needs to be constrained to the capability of 

the humans for handling this information. These questions 

involve many other considerations such as human trust in the 

autonomous system (Shahrdar et al., 2018) and will have to be 

studied in detail for future automation system designs. 

As the number of operators are reduced via the adoption of 

autonomous systems, fewer operators will be responsible for a 

larger number of process units. With increasing automation 

levels the engagement of these fewer human operators with the 

plants gets reduced. Sometimes referred to as the paradox of 

automation, this disengagement is thought to decrease the 

effectiveness of operators especially since they now have to 

selectively react to only the most critical situations as the 

automation system handles most other upsets. This could form 

a boundary beyond which it might not be possible to deploy 

autonomous systems in an incremental way. 

4. SHORT TO MEDIUM TERM OUTLOOK  

The analysis provided in this paper indicates that long periods 

of unattended operation for low-complexity process plants are 

already technologically possible today. One such plant has 

been showcased by Shell (Hill, 2020) and several subsea 

processing plants operate in very much the same way in the 

North Sea. Reducing plant complexity could make it possible 

for more plants to reach similar levels of automation, if the 

economic conditions and the need to reduce the dependence on 

human labour make it necessary. On the other hand, 

automating the situational awareness and decision-making 

tasks carried out by the human personnel is still an open 

problem. Advanced process control and optimization solutions 

of today are designed to meet the need of automating plant 

operation around nominal design conditions. Persistent or 

abrupt disturbances go beyond the current capabilities of 

autonomous solutions (Khan et al., 2020) and abnormal 

operating conditions such as a tripping unit or a strong 

disturbance such as a temporary power loss, are in most cases 

handled by the plant operators. For automating these tasks, 

expert systems with fixed logical structure are too rigid to 

cover the large variety of possible upsets but a combination of 

machine learning and symbolic artificial intelligence 

approaches could be a way to address this challenge. At the 

same time, training such solutions will require more advanced 

simulation and computational capabilities. The analysis we 

provide in this article points to a need of increasing multi-

disciplinary work for building autonomous process plants 

especially between engineering disciplines, computer science, 

and mathematics. Generally, the process and energy industries 

can make better use of ongoing technological developments. 

Conservatism towards advanced automation solutions creates 

a risk for falling behind in automation capabilities in 

comparison to discrete manufacturing or logistics applications. 
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