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Abstract: Multiobjective optimization has already been shown to be an appropriate tool to characterize
and tune systems subject to multiple trade-offs among competing objectives. Here, we consider the
dynamic regulation of a merging metabolic pathway motif. This motif appears in a wide range of
metabolic engineering applications, including the production of phenylpropanoids highly appreciated
by the pharma, nutraceutical and the cosmetic industries. We present an approach to use multiobjective
optimization for the optimal tuning of the gene circuit parts composing the biomolecular controller and
biosensor in the dynamic regulation of the metabolic pathway. We show how this approach can deal with
the trade-offs between performance of the regulated pathway, robustness with respect to perturbations,
and stability of the feedback loop. Our results suggest that the strategies for fine-tuning the trade-
offs among performance, robustness, and stability in dynamic pathway regulation are complex and it
is not always possible to infer them by simple inspection. This renders the use of the multiobjective
optimization methodology not only useful but necessary.
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1. INTRODUCTION

Metabolic engineering often seeks to obtain high levels of
products of interest through genetic modification of microor-
ganisms. That is, using microbial cell as an optimized factory.
Natural cells use complex regulatory networks to preserve ro-
bust growth and endure environmental changes by dynamically
adapting cell metabolism (Liu et al., 2018). These regulation
strategies are the long-term result of evolution and in most cases
they are not compatible with the addition of exogenous genes
highly expressed to reach the production levels demanded by
the industry.

Optimization methods like eg. Flux Balance Analysis (FBA),
that make use of mathematical models of metabolism with only
stoichiometric information and some basic regulatory informa-
tion, have proved very valuable in predicting how cells adapt
their metabolism according to different environmental condi-
tions. These methods provide information on maximum theo-
retical yields, optimal flux distribution to maximize the flux to-
wards some metabolite reaction bottlenecks, and required ways
of intervention on gene expression leading to fluxes towards
final products that achieve specified levels in productivity, titer
and yield (Otero-Muras and Carbonell, 2021). This approach
seeks the careful optimal selection of the constant expression
levels for both the exogenous genes in the pathway of interest
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and the endogenous ones with relevant interactions. Yet, being
a static regulation approach, it fails to address the dynamic and
highly uncertain nature of the problem. Indeed, the static strat-
egy to regulate a metabolic pathway relies on an optimization
process that is tailor made for a particular situation. Therefore,
it is not able to respond to cell and environmental changes
occurring during fermentation in a bioreactor (Wehrs et al.,
2019).

Achieving robust optimal production in microbial cell facto-
ries requires considering dynamic regulation of the pathway
of interest. Dynamic feedback regulation is a very interesting
strategy to construct pathways with the ability to self-tune upon
changing environmental conditions and to overcome many of
the ongoing challenges faced in metabolic engineering (Liu and
Zhang, 2018; Hartline et al., 2020). For instance, finding the
right enzyme levels that maximize production while avoiding
pathway bottlenecks or accumulation of toxic intermediates
is often a challenge. Feedback regulation circuits can address
these problems by dynamically changing enzyme expression
in response to metabolic inputs and continuously regulating
the activity in the pathway in response to either intracellular
or bioreactor perturbations. This will enable industry to attain
higher process performance indices as compared to static regu-
lation (Stevens and Carothers, 2015) and can lead to robust and
efficient microbial production at the industrial level (Liu et al.,
2018; Segall-Shapiro et al., 2018).

Despite the growing number of reported successful cases, en-
gineering dynamic control strategies in biological applications
remains a major challenge (Gao et al., 2019). There are al-
gorithms that simulate and analyze the dynamic of complex
metabolic networks using multi-objective optimal control prin-



ciples (Tsiantis and Banga, 2020). Yet, there are not generally
applicable algorithms for designing dynamic metabolic regu-
lation systems. The regulation topology is generally pathway-
specific, depending both on the potential presence of toxic path-
way intermediates and the pathway topology (Hartline et al.,
2020). Several typical metabolic topology motifs are usually
considered: linear, branched and merging (Blair et al., 2012).
Most existing work has dealt with the dynamic regulation of lin-
ear pathways (Oyarzún and Stan, 2013; Liu and Zhang, 2018)
or branched ones (Liu et al., 2018).

Here we consider the dynamic regulation of a branch-in from
a metabolic pathway. In this metabolic motif, two substrates, a
main precursor and an essential metabolite, are converted to an
intermediate product which is subsequently transformed into a
target product. In many practical situations, the secondary es-
sential metabolite plays additional roles in the cell metabolism.
Therefore, it is subject to environmentally-induced fluctuations.
Over-expressing the enzyme that synthesizes this secondary
metabolite or redirecting the flux towards it is not a feasible
solution in cases where its accumulation is toxic for the cell,
leading to growth inhibition.

Multi-objective optimization has already demonstrated to be
an appropriate tool for characterization of gene circuit parts
(Boada et al., 2019b,a), and for the design of gene circuits with
a desired behavior (Boada et al., 2016, 2017, 2021). Here, we
used multi-objective optimization for the optimal tuning of the
gene circuit parts composing the biocontroller and biosensor
in a dynamic metabolic regulation feedback loop. We show
how this approach can deal with the trade-offs between per-
formance of the regulated pathway and robustness with respect
to fluctuations in the secondary metabolite. We highlight that
performance indices must include not only the standard steady
state industrial ones (eg. titer), but also indices related to the
time-response transient (ie. stability). As the complexity of
the dynamic biocontrollers and biosensors integrated in the
feedback loop regulation increases, the stability and transient
performance issues that high order dynamics introduce must
be taken into account. We considered the case where having
transcription factor (TF) based biosensors for producing the
target product is not always possible. Alternatively, extended
TF-based biosensors can be used. These introduce an additional
pathway from the target product to be regulated to another
measurable metabolite (Boada et al., 2020). Yet, these extended
biosensors introduce extra dynamics in the feedback loop. To
regulate the enzyme level that catalyses the conversion of the
two substrates into the product, we considered the use of the an-
tithetic controller, a biomolecular integral feedback controller
that achieves quasi-perfect adaptation (Briat et al., 2016; Aoki
et al., 2019).

We demonstrate our approach by a simple illustrative path-
way that captures the essential topological features of merg-
ing metabolic pathways (Fig. 1A). We designed a feedback
regulation strategy encompassing a simple TF-based biosen-
sor to obtain readouts of the product and a simplified model
of the biomolecular antithetic controller. The final titer of the
target product and robustness with respect to fluctuations in the
secondary metabolite are evaluated. We use a realistic model
of the antithetic controller previously introduced in (Boada
et al., 2020). The extra dynamics introduced by the biocon-
troller force us to take into account the transient dynamics of
the regulated feedback loop in the design process. A library
of designs is obtained, each one corresponding to a different

trade-off. Our results suggest that the strategies for fine-tuning
the trade-off between performance, robustness and stability in
dynamic pathway regulation are complex, not being possible
to obtain a solution by simple inspection. This renders the use
of the multiobjective optimization methodology not only useful
but necessary.

2. MATERIALS AND METHODS

2.1 Dynamic regulation of a branch-in metabolic pathway

To illustrate the broad scope and usefulness of our approach, we
study a branch-in pathway with common features of a typical
merging motif. Figure 1A depicts the production of a metabolite
P from a precursor substrate S1 and a secondary substrate S2.
The reaction is catalyzed by the enzyme E. This metabolic
pathway can be described using the dynamic model in (1).

d[S1]

dt
= VS1

− VS1,S2
− µ[S1]

d[P ]

dt
= VS1,S2 − µ[P ] (1)

d[X]

dt
= µ[X]

(
1− [X]

Xmax

)
where [Si] and [P ] are the substrates and product concentra-
tions. [X] is the number of cells in the population. [S1] is the
main substrate and [S2] the secondary substrate. The first order
dilution term represents the effect of cell growth on the concen-
tration of substrates and products, being µ the specific growth
rate of the cell. Xmax accounts for the maximum capacity of the
population. The metabolic fluxes are given by the kinetic terms:

VS1
= KS1

(2)

VS1,S2
= kcat[E]

[S1][S2]

Km12 +KmS2
[S1] + KmS1

[S2] + [S1][S2]
(3)

where we assumed that the uptake of the precursor S1 has
constant rate KS1

(2), and the substrate S2 is normally available
at a non-limiting concentration. The flux VS1,S2

in Fig. 1A
follows Michaelis-Menten kinetics, where [E] is the concentra-
tion of the pathway enzyme, kcat is the enzyme catalytic rate,
KmSi

are the Michaelis-Menten constants for the substrates,
and Km12 = KmS1

KmS2
. All the parameter values are listed

in Table 1.

In the case of static pathway regulation (Fig. 2A, grey line), the
flux VS1,S2

has a constant maximum value determined by the
amount of the constitutively expressed heterologous enzyme E.
As its expression level is independent of any metabolite in the
pathway, the production of P is affected in the presence of a
sudden change in the availability of the secondary substrate S2

(right plot of Fig. 2A in dashed grey lines).

On the contrary, in the case of dynamic pathway regulation
(Fig. 2A in orange line), the expression level of the enzyme
E depends on the amount of the product metabolite. A biosen-
sor provides product metabolite readouts and a biomolecular
controller changes the enzyme expression level as a function
of the difference between the current amount of product and
the target one encoded in the controller. Thus, when there is a
change in the substrate S2 the production of the metabolite P
is affected. Yet, it is able to recover (up to some extent) closer
to its previous value (Fig. 2A, right plot, solid orange line).



Different control architectures can be implemented with com-
binations of activation and repression feedback loops. Here,
we focus on a class of biomolecular controller, the antithetic
controller Aoki et al. (2019), that allows for quasi-perfect adap-
tation. Figure 1B shows the antithetic controller regulating the
amount of enzyme E using a simple TF-based biosensor to
obtain readouts of P .

The control action is encoded by free σ molecules that activate
the expression of the enzyme E through its promoter Pσ . We
modeled the promoter using a generalized Hill function as in
Boada et al. (2020), including the effect of the plasmid copy
number CN on the promoter activation function. The resulting
dynamics of the enzyme E is:

Fig. 1. Illustrative model system. (A) Metabolic pathway for
production of the metabolite P . The main substrate S1 and
the secondary one S2 are converted into the product P
by the catalyst enzyme E. In the static regulation strategy
(black lines) the expression level of the enzyme E remains
constant in time. Conversely, in the dynamic regulation
strategy (orange line), the expression of E depends on
the amount of product P . (B) Biosensor and antithetic
controller configuration for dynamic pathway regulation
in bacteria. The amount of free σ molecules determine the
expression of the enzyme E. A TF-based biosensor detects
the product levels and counteracts expressing the anti-σ
molecule. When P decreases, the controller reduces the
amount of expressed anti-σ, therefore the free σ level rises
up-regulating the enzyme.

Table 1. Model parameters values

Parameter Description Value
a0 E constitutive expression 0.154 min−1

TF Biosensor TF concentration 0.154 molec
CN Plasmid copy number 10 copies
kσ Expression strength 10 min−1

dc degradation rate [σ · aσ] 1× 10−3 min−1

kdp dissociation constant TF to P 1.5× 104 molec
γ dissociation constant [σ · aσ] 0.01 molec−1 min−1

dσ , daσ , dE protein degradation rate 3× 10−4 min−1

kcat F3H catalytic constant 0.42 min−1

KmS1
Michaelis constant E− S2 1e-3 molec

KmS2
Michaelis constant E− S1 1e-3 molec

d[E]

dt
= CNa0 +CNa1

[σ]2

(kd20CN)
2
+ [σ]2

− (dE + µ) [E]

(4)
with the parameter values in Table 1. The acting molecule σ
is constitutively expressed (thus encoding for a sort of target
set-point value) and binds the anti-σ molecule to form an
inactive complex, effectively reducing the amount of free σ.
The resulting dynamics of the free σ molecules is:

d[σ]

dt
= CNkσ − γ[σ][aσ]− (dσ + µ) [σ] (5)

where the parameter values are listed in Table 1. The dynamics
of the anti-σ molecule is:

d[aσ]

dt
= CNkaσ

CN
2
(
1 + [P ]

kdp

)2

CN
2
(
1 + [P ]

kdp

)2

+ [TF]2
− γ[σ][aσ] (6)

− (daσ + µ) [aσ]

Fig. 1B illustrates how the TF-based biosensor detects the
product P and expresses the anti-σ molecule as a function of
it. As the concentration of P decreases, so does the amount
of expressed anti-σ. Thus, the amount of free σ increases, up-
regulating the expression of the enzyme E.

The model in Eq. (4-6) shows how the dynamics of both TF-
based biosensor and the antithetic biocontroller depend on their
composing parts (see the gene circuit in Fig. 1B). We only tuned
those parts which can be experimentally modified in the lab.

2.2 Multi-objective optimization

A multi-objective problem is often faced by building an aggre-
gate function to assemble the objectives in a unique index or
vector that contains a weight for each objective. However, the
solution thus obtained is determined by the selection of these
weighting values. An alternative option is to use a truly multi-
objective optimization design where all objectives, equally im-
portant, are optimized simultaneously (Miettinen, 1999). In-
stead of one rarely unique solution, a set of the best solutions,
known as Pareto Front, is obtained. All solutions in this front
are Pareto-optimal and only differ from each other in the trade-
off of objectives each one represents. Multi-objective optimiza-
tion requires at least three fundamental steps (Miettinen et al.,
2008): (1) the multi-objective problem definition (MOP), (2)
the optimization process, and (3) the multi-criteria decision
making process (MCDM). The overall multi-objective opti-
mization design enables to analyze current trade-offs between
the objectives and select the most suitable solutions (Reynoso-
Meza et al., 2013).



Multi-objective problem definition. As in Miettinen et al.
(2008), a Multi-objective Problem (MOP) can be stated as
follows:

min
θ

J(θ) = [J1(θ), ..., Jm(θ)] (7)

subject to:
K(θ) ≤ 0

θi ≤θi ≤ θi, ∀i = [1, ..., n]

where J(θ) is the objective vector, m is the number of objec-
tives, θ = [θ1, θ2, ..., θn] is the decision vector that contains
the decision variables for multi-objective optimization; K(θ)
are the inequality and equality constraint vectors; θi, θi are the
lower and upper bounds in the decision variables space Θ. The
MOP (7) has a set of solutions, the Pareto Set ΘP , whose values
in the Pareto front are a function of the decision variables.
Each solution in this set corresponds to an optimal objective
vector in the Pareto Front JP. All solutions in the the Pareto Set
are Pareto-optimal non dominated solutions, that is, they differ
from each other in the objectives trade-off each one represents.

3. RESULTS

3.1 MOP definition of the branch-in pathway

For the optimization process, we considered two objective
functions to characterize the trade-offs between reaching a
desired titer target for P while reducing the production loss
after a perturbation on the level of the secondary metabolite S2

(Fig. 2).

For the titer (J1, left plot in Fig. 2A), we looked for the differ-
ence between the titer of the product P in the bioreactor and a
desired target value. In other words, J1 is the target titer error.
For the production loss (J2, right plot in Fig. 2A), we focused
on the relative production loss (amount of product expressed
per cell) after a perturbation on S2. The corresponding expres-
sions for both objectives to be jointly minimized are:

J1 = |Target−K[P ]unperturbed(T )| (8)

J2 =

∣∣∣∣ [P ]unperturbed(T )− [P ]perturbed(T )

[P ]unperturbed(T )

∣∣∣∣ (9)

where [P ]unperturbed(T ) is the product concentration at the
end of the experiment (time T), K is a constant to convert
into titer taking into account the growth of the culture and
the molecular weight of the product P , [P ]perturbed(T ) is the
product concentration after the perturbation in the secondary
metabolite. As J1 describes the difference between the desired
target titer and the actual one, low values of J1 imply an
increased titer. On the other hand, J2 is related to the loss in
production after a perturbation. Therefore, small values of J2
correspond to low production loss after a perturbation, that is,
better rejection of the perturbation on the secondary metabolite.

We selected the following biosensor and biocontroller param-
eters to be tuned, considering they are accessible to be ex-
perimentally changed in the biological implementation of the
system: expression strength for the enzyme E, a1; the disso-
ciation constant between σ and the enzyme promoter, kd20;
and the expression strength for anti-σ , kaσ . Additionally, the
specific growth rate, µ, was included as decision parameter to
account for the dependency of the results on cell growth and the
subsequent dilution effect. Table 2 lists the biological bounds
set for each decision variable.

Table 2. Bounds for the branch-in pathway MOP

Bound kaσ (min−1) kd20 (molec) a1 (min−1) µ (min−1)

Lower 700 100000 90 0.005
Upper 1500 350000 160 0.01

The goal is to obtain a library of possible designs, each one
corresponding to a different trade-off between the cost indices
J1, J2. The resulting solutions are all equally optimal in the
sense of Pareto (Boada et al., 2019b). That is, when one of the
objectives improves the others necessarily deteriorate, so that
the selection of the most appropriate solution depends on the
designer. Hence, the MOP can be stated as:

min
θ∈ℜ4

J(θ) =[J1(θ), J2(θ)] ∈ ℜ2

subject to :equations (1− 6)

We computed the values of the selected parameters as solu-
tions for the multiobjective optimization problem min(J1, J2)
subject to biologically plausible bounds on the values of the
parameters. The optimization problem was solved using a ge-
netic multiobjective optimization algorithm based on differen-
tial evolution.

3.2 MCDM: choosing a design from the library

The resulting Pareto front (Fig. 2B) has three distinct regimes:
(i) large titer target error and low production loss, (ii) small titer
target error and high production loss, and (iii) a best trade-off
regime between the two competing objectives. The convexity
of the Pareto front indicates that the optimization problem is
well-posed, in the sense that both objective functions oppose
each other across the whole space of optimal solutions. We
selected five solutions that represent the mentioned regimes.
These solutions are highlighted in the Pareto front in Fig.
2B. The objective values of the selected solutions are shown
in Fig. 3A, and their corresponding tuned optimal values for
the controller and biosensor parameters including the growth
rate are depicted in Fig. 3B. Thus, the set of solutions of the
optimization constitute a library of optimally tuned controller-
biosensor pairs.

A detailed inspection of the library of the controller and biosen-
sor pairs obtained (Fig. 3B) reveals that the relations between
parameters and objectives are not necessarily monotonous. For
example, the dissociation constant kd20 should be smaller in
order to reduce the production loss after perturbation (J2). Yet,
there is no monotonous trend in neither the anti-σ expression
strength kaσ nor in the E enzyme expression strength a1.

Altogether these results suggest that strategies for fine-tuning
the trade-off between target titer error and the production loss
in dynamic pathway regulation are complex. Thus, it would
not have been possible to obtain a set of parameters that
simultaneously optimize the objectives by simple inspection or
standard single- or lumped-objective optimization, even for this
simplified case.

4. CONCLUSION

Dynamic regulation of metabolic pathways is a key strategy
to achieve optimal production in microbial cell factories while
coping with cell and environmental fluctuations. The appropri-
ate dynamic regulation topology will be very specific to the



Fig. 2. (A) Objective functions defined for maximizing the production of P up to a target titer value (J1) while minimizing
the production loss after perturbations (J2). (B) Pareto front with optimal solutions for the dynamical pathway regulation.
Solutions on the right side have larger titer target error J1 (ie. lower titer) and a small production loss after perturbation J2
(ie. higher titer after the perturbation). Moving along the Pareto front towards the left, the titer target error decreases and the
production loss increases. Solutions in the middle of the Pareto front have the best trade-off between the competing objectives
J1 and J2.

Fig. 3. Pareto solutions. Pareto front and Pareto set of selected solutions. (A) Pareto front showing the solutions of the
multiobjective problem. The values of the objectives J1 and J2 (x-axis) are represented for different solutions (y-axis). (B)
The Pareto set represented with a plot for each tuned parameter. The tuned values of the parameters (x-axis) are shown for
each selected Pareto solution (y-axis). The set of solutions constitutes the library of biocontrollers and biosensors obtained
with the multiobjective optimization tuning process.

topology and characteristics of the metabolic pathway to be
regulated. Yet, some basic metabolic motifs that often appear
in practical industrial applications and their appropriate dy-
namic regulation topology can be identified. In addition, all
dynamic regulation schemes share a set of common features
that determine to great extent the appropriate methodological
tools required for the optimal selection of the gene circuit parts
composing them. In particular, there is the common need to
address a set of multiple goals related to the performance of the
system, in terms of both the production of the targeted product
and the rejection of perturbations affecting it. Moreover, the
stability issues that arise as result of using feedback regulation
strategies must be addressed. This is even more important as we
use complex biomolecular controllers and metabolic extended
biosensors that introduce extra dynamics that may compromise
the transient time response and stability of the regulated system.

Here we have shown a general approach using multi-objective
model-based optimization for building libraries of gene circuit
parts that achieve optimal performance of a dynamically regu-
lated merging metabolic pathway. This metabolic motif appears
in many situations of practical interest. In particular, this is a
pervasive motif in the pathways of phenylpropanoid-derived

natural products. In this case, the multi-objective optimization
approach obtains devices within the resulting libraries that can
have different combinations of parameter values but similar
performances in the Pareto sense. This is a sign of the inherent
robustness obtained with negative feedback control. Interest-
ingly, depending on the available biological parts, one imple-
mentation can be more feasible than another one, increasing the
importance of having such variety of elements in the library.

Our results show the importance of design models considering
the metabolic kinetics together with the biosensor and biocon-
troller dynamics with enough degree of granularity. Not only
they better assist in the in vivo implementation of the system
as compared to coarse-grain models, but also force to take into
account the transient and stability issues often disregarded.

The need of sufficiently detailed models arguably includes the
use of host-aware models. Indeed, the library of designs ob-
tained might suffer some modifications, in case we considered
the interactions between the regulated metabolic pathway and
the host cell caused by competition for cell resources (Santos-
Navarro et al., 2021). Our goal here was to present the general
multi-objective optimization approach, with emphasis on the
tuning of the biomolecular controller and biosensor. The ad-



ditional use of host-aware models will not change the general
framework.

Altogether our results suggest that strategies for fine-tuning the
trade-offs among target performance, robustness and stability in
complex dynamic pathway regulation topologies are intricate
and impossible to obtain by simple inspection. This suggests
the multi-objective optimization methodology as an useful and
necessary tool to fulfill all trade-offs. As a consequence, it
will not be generally possible to obtain widely applicable
optimal simple design guidelines that can assist in the in vivo
implementation. Instead, the expected outcome of the tuning
process should be libraries of gene circuit components that
achieve specific trade-offs for specific nominal environmental
situations.
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