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Abstract: This paper proposes to use hybrid model predictive control (HMPC) for energy
management in hybrid electric vehicle (HEV) using an efficient formulation. HEV has two
sources of energy - electric motor and internal combustion engine (ICE) - allowing it an
additional degree of freedom to optimize the ratio between the use of two energy sources. HEV
energy management is crucial to exploit its potential to reduce fuel consumption and emissions.
However, it is challenging to achieve the optimal solution along with the fast dynamics of HEVs.
In this paper, instead of using a nonlinear, computationally expensive dynamic model of HEV,
a piecewise affine (PWA) model is used to depict its behavior, implemented with multiple linear
regression. The validation of the developed model is taken with standard drive cycles. Based
on the PWA model, an optimal control problem of HMPC was formulated as mixed integer
linear programming (MILP). Conventionally, mixed logical dynamical (MLD) system has been
used in the process control field, including early studies of HEV control. This paper applies
Big-M formulation which is efficient in its problem size and tight inequality relation for integer
variables. The performance of the HMPC controller was examined in a simulated environment
based on MATLAB/Simulink HEVP2 application. As a result, HMPC shows superior control
performance than the equivalent consumption minimization strategy (ECMS).

Keywords: Model predictive control; Dynamic modelling and simulation for control and
operation; Process control

1. INTRODUCTION

Hybrid electric vehicles (HEVs) are widely deemed as the
promising technology in future transportation field. Their
two different sources of power - an electric motor and an
internal combustion engine (ICE) - enable them to offer
better fuel economy and fewer emissions. For example,
the battery storage is able to capture the braking energy
in HEV, at the same time, allowing another degree of
freedom to accumulate or deliver energy. To realize such
improvements, the optimal energy management in HEV
system has been of a great interest in the recent automobile
industry. HEV energy management problem looks for the
optimal ratio of torque demand assignments to the two
energy sources. The problem is a nonlinear, constrained,
and dynamic optimization problem, and the performance
depends on the employed optimization strategy.

In early studies, Lin et al. (2003) applied numerical so-
lutions based on dynamic programming (DP) and Onori
et al. (2010) has simplified the problem using an equiva-
lence assumption between the electrical energy and the
fuel energy. The latter approach is named equivalence

consumption minimization strategy (ECMS) and has been
improved with adaptive parameter correction according to
the current condition by Gu and Rizzoni (2006). With the
known drive cycles, DP method gives the globally optimal
solution, which Sciarretta and Guzzella (2007) proposed
as a benchmark for the best achievable fuel economy in
HEV. However, the perfect information of the drive cycle
is unrealistic. On the other hand, ECMS is a closed-loop
controller, but its drawback is the absence of battery
level prediction power. To compromise between these two
methods, a prominent control approach is model predictive
control (MPC) in which the model-based optimization is
performed over a moving finite horizon (Borhan et al.
(2011)).

In this study, a hybrid MPC (HMPC) is applied to the
HEV energy management problem. HMPC is an MPC
method for hybrid dynamic systems involving integer or
binary variables. Hybrid dynamical models have been used
to depict various physical systems consisting of digital
controllers with discrete values or switching devices. Also,
they are useful to approximate nonlinear models, often
as piecewise affine (PWA) systems. This enables HMPC



applicable to nonlinear models. Ripaccioli et al. (2009)
showed that PWA system and HMPC is able to give a
successful control over HEV energy management. In his
study, HMPC consumed fuel lesser than a conventional
approach, without any knowledge of the future driving
cycle.

There are several modeling formulations to express PWA
systems in integer programming, including Big-M formu-
lation introduced by Nemhauser and Wolsey (1988). Big-
M formulation has been the most common approach to
program disjunctive conditions and is improved recently
by Vielma (2015) with a key idea of using multiple Big-M
parameters. Trespalacios and Grossmann (2015) applied
the improved Big-M formulation to mixed integer non-
linear programming (MINLP) problems such as optimal
scheduling problem of multi-product batch plant (CMU).
On the other hand, mixed logical dynamical (MLD) model
has been widely used in process control area, thanks to the
automated formulation provided in the language HYSDEL
(Hybrid Systems DEscription Language) by Bemporad
and Morari (1999). MLD model has been already applied
for HEV control by Ripaccioli et al. (2009) with success.

However, Marcucci and Tedrake (2019) claims Big-M for-
mulation to be a more effective way to formulate optimal
control problem for PWA systems in its relatively small
size and tighter inequality bound. They also showed that
Big-M formulation achieves a better and faster solution
in illustrative control examples. In HEV system, higher
quality of an optimal solution is desirable to increase its
drive range. To accomplish this desire, the Big-M formu-
lation of HMPC for HEV energy management problem is
proposed in this paper. Its performance was examined in
MATLAB/Simulink HEVP2 application and compared to
the conventional controller using ECMS.

2. MODEL FORMULATION

In HEV energy management problem is schematically
depicted in Fig. 1. MPC controller receives the driver’s
wheel torque demand, τwhl, as an input. The control
objective is to satisfy the demand while minimizing fuel
consumption and maintaining a safe level of SOC. The
controller gives the engine torque command, τeng, and
motor torque command, τmot, as outputs, letting the
engine and motor system implement the commands. For
this purpose, the system can be divided into 3 components
- 1) a battery model to predict the state of charge, 2) an
engine torque computation model to satisfy the drive cycle,
and 3) a fuel consumption rate map.

In this section, it is described how these models were
reduced to linear models and how accurate they are.

2.1 Piecewise Affine Model Identification

When a model is highly nonlinear, linear models cannot
represent its behavior. In such cases, PWA model can be
an option. PWA identification is implemented with input-
output data samples from the empirical model.

Consider a PWA dynamic model in the form:

xk+1 = Aixk +Biuk + ci (1a)

where Fixk +Giuk ≤ hi, i ∈ I, k = 0, ..N − 1, (1b)

where k is the time step starting from 1 to terminal time
N , and xk and uk stand for the state and control input
at time step k. The procedure to find the best model is a
series of linear regression with different polyhedra covering
the overall input space. This results in matrices Ai, Bi, Fi,
and Gi and vectors ci and hi with respect to each mode i
in a set of integers I.
In this paper, a PWA identification was implemented
based on a max absolute error with regard to the data
with more or less than 1% error on average.

The data for PWA identification was generated using
empirical models from Onori et al. (2016). As the purpose
of PWA identification is to embed it into the MPC
optimization problem, every state and control input data
were scaled in [0, 1] range.

2.2 Battery State of Charge Model

Battery state of charge (SOC) predicts the future SOC
level, which is used in the control objective to maintain a
safe SOC level. According to Onori et al. (2016), the SOC
dynamics are:
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dt
=
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where Qnom is the nominal charge capacity, I the battery
current which is positive during discharge, and ηcoul the
Coulombic efficiency known as charge efficiency. In Eq. 3,
the electric power, P , is a function of the motor speed,
wmot, and motor torque command, τmot, while the open
circuit voltage, Voc, and the resistance R0 depends on
SOC.

In this study, we assume that wmot is constant along
the prediction horizon, so PWA identification was taken
for each case with different wmot and saved offline. This
approach was proven in the setting of MPC by a work
of Borhan et al. (2011). To apply the saved PWA model,
whenever the new measurement was injected to HMPC,
the two closest PWA models for the current wmot were
used to interpolate.

For PWA identification, the data was produced by the
numerical integration of the above model in first-order
with a sampling time of 0.01s. The constant parameter

Table 1. Comparison of battery SOC model
PWA identification

Number of Absolute error
polytopes Average Maximum

1 1.67× 10−6 8.90× 10−3

4 1.67× 10−5 6.44× 10−5

9 8.56× 10−6 3.21× 10−5

16 4.76× 10−6 1.71× 10−5



Fig. 1. General scheme of HEV energy management problem

Fig. 2. Battery SOC system linear model identification on
the basis of FTP-75 drive cycle

values are given from HEVP2 application. After trying the
different number of polyhedra (Table 1), a simple linear
regression was used, because it shows a generally linear
relation with the previous state of SOC and power, given
a constant wmot. Its validation was done over the reference
city drive cycle of FTP-75, given the initial SOC level and
inputs along the track. Fig. 2 shows the PWA model’s
accuracy in a prediction horizon of 2474 seconds.

2.3 Fuel Consumption Rate Map

In HEVP2, the empirically developed map is used to
calculate the actual fuel consumption rate, cfuel, of a
vehicle. It is a function of engine torque command, τeng,
and vehicle speed, v. The engine torque command, τeng, is
computed from the relation between wheel torque demand,
τwhl, and motor torque command, τmot, which is given as:

τwhl = ratio(Gear)τmotηtm(τmot) + τengηtm(τeng). (4)

The function ratio represents the mechanical role of gear,
and ηtm is a transmission efficiency. According to the drive
cycle, or the driver’s demand velocity, a wheel torque
demand, τwhl, is decided, and also gear. Hence, only one
of τeng and τmot can be a free variable. As in the work of
Ripaccioli et al. (2009), τmot is used as a control input in

Fig. 3. Illustration for integrated PWA model for fuel con-
sumption rate prediction: τeng model and empirical
map are integrated into one big fuel consumption rate
model using τwhl, gear, τmot, and v

this study, as it has both positive and negative values. This
makes τeng a dependent variable following the function of:

τeng = fengine(τwhl, τmot). (5)

In the HMPC scheme, we don’t need an exact value for
τeng. Therefore, an integrated PWA model was developed
to predict fuel consumption rate directly out of τwhl, gear,
τmot, and v (Fig. 3). The PWA model is validated on the
empirical fuel map combined with the engine model with
0.67% error on average as shown in Fig. 4. The overall
prediction error is about 15% mainly in low-speed range.
This is due to the engine start-up mechanism. According
to Yan et al. (2012), the engine start-up process results in
different fuel consumption rates for different engine speed
accelerating trajectories. To cope with it, ECMS was used
as a backup controller in low speed region v ≤ 5m/s.

3. HYBRID MODEL PREDICTIVE CONTROL
DESIGN

In this section, an MPC controller is designed for HEV
energy management, based on the PWA model developed
in the previous chapter. To formulate the model into mixed
integer linear programming (MILP) problem, we applied
the Big-M formulation for optimal control problems de-
rived by Marcucci and Tedrake (2019).

3.1 Overall Hybrid Dynamical Model

The objective function for HEV energy management is
formulated as:



Fig. 4. Fuel consumption rate map comparison between (a) the empirical model and (b) PWA model PWA model at
gear 2, vehicle speed 30 m/s

J =

N−1∑
k=0

[
qfcfuel(k) + qτ |τmot(k)|

]
+ qfcfuel(N)

+ qs|SOC(N)− SOCref |+ qρρ, (6)

where ρ is a deviation penalty of SOC level from its lower
and upper bounds, i.e. SOClb−ρ ≤ SOC(N) ≤ SOCub+ρ
and ρ ≥ 0. The physical meaning of the control objective is
to minimize the fuel consumption rate while maintaining
a safe SOC level. The absolute function | · | genuinely has a
feature of PWA system, so it can be expressed in a similar
way as in the Big-M formulation.

Using the PWA model developed from the section 2, the
optimal control problem of HEV energy management can
be formulated as:

min
ξ

J(ξ, x(t), z(t)) = qT y (7a)

s.t. Ĥ1(z(t))ξ + Ĥ2(z(t))x0 ≤ ĥ(z(t)), (7b)

Ĝ1ξ + Ĝ2y ≤ ĝ, (7c)

ξ = [u0, µ0, x1, ..., uN−1, µN−1, xN ]T (7d)

x0 = x(t). (7e)

y =



cfuel(0)
|τmot(0)|
cfuel(1)
|τmot(1)|

...
|τmot(N − 1)|
cfuel(N)

|SOC(N)− SOCref |
ρ


, (8)

Here, N is the prediction horizon, x(t) is the state of the
HEV system at sampling time t, and z(t) is the vehicle
feedback information that will be used to interpolate the

pre-determined PWA matrices, namely gear, wmot and v.
Following the definition of y in Eq. 8, a weight vector, q,
and the matrices Ĝ1, Ĝ2 and ĝ are determined.

3.2 Big-M Formulation

To start with, set a polytope:

Di = {(x, u)|Fix+ Fiu ≤ hi}, ∀i ∈ I. (9)

If a current (x, u) pair is in the polytope Di, next state,
xk+1 follows the dynamics defined with the matrices
Ai, Bi, and ci. To distinguish which polytope should work
at the current (x, u) pair, define a vector µ with its i’th
element as a binary variable, µ(i), such that

µ(i) =

{
1, if (x, u) ∈ Di

0, otherwise.
(10)

To avoid confusion of notation, subscript index in a paren-
thesis v(i) refers to the i’th element of a vector v, and so
is M(i,j) of a matrix M . The disjunctive condition can be
integrated in inequalities using big-M matrices, M1,M2,
and M3, which is defined for two different mode indices
(i, j) ∈ I2:

M1,(i,j) = max
(x,u)∈Dj

(Ai −Aj)x+ (Bi −Bj)u+ ci − cj

(11a)

M2,(i,j) = max
(x,u)∈Dj

(Aj −Ai)x+ (Bj −Bi)u+ cj − ci

(11b)

M3,(i,j) = max
(x,u)∈Dj

Fix+Giu− hi. (11c)

Diagonal entries in big-M matrices are 0.

Now the PWA model of Eq. 1 can be expressed as MILP
constraints:



Aixk +Biuk + ci − xk+1 ≤ M1,(i,:)µk, ∀i ∈ I (12a)

xk+1 −Aixk −Biuk − ci ≤ M2,(i,:)µk, ∀i ∈ I (12b)

Fixk +Giuk ≤ hi +M3,(i,:)µk, ∀i ∈ I (12c)

1Tµk = 1, (12d)

where 1 refers to all-ones vector with appropriate size.
When (xk, uk) ∈ Di and µk,(i) = 1, the first two equations
act as an equality constraint for the dynamics in the
polytope Di at time step k.

Note that the big-M matrices should be computed when-
ever the HMPC receives new feedback information at every
sampling time since the system dynamics change according
to z(t). Computation of big-M matrices is a series of simple
linear programming (LP) problems as defined in Eq. 11,
which can be done in a second. However, this routine LP
solving step can be computed offline, exploiting its linear
property. For an arbitrary feedback input, ẑ = λz1 + (1−
λ)z2, one of its big-M matrices M ẑ

1,(i,j) is smaller than the

interpolation of pre-computed big-M matrices at z1 and
z2.

M ẑ
1,(i,j) = max

(x,u)∈Dj

(Aẑ
i −Aẑ

j )x+ (Bẑ
i −Bẑ

j )u+ cẑi − cẑj

= max
(x,u)∈Dj

[
(Az1

i −Az1
j )x+ (Bz1

i −Bz1
j )u+ cz1i − cz1j

+ (Az2
i −Az2

j )x+ (Bz2
i −Bz2

j )u+ cz2i − cz2j

]
≤ λMz1

1,(i,j) + (1− λ)Mz2
1,(i,j)

Compensating strength of the ineqaulity bound, the inter-
polation of pre-computed big-M matrices may substitute
M ẑ

1,(i,j). In this paper, HMPC uses the pre-computed big-

M matrices at the z values of the PWA model.

4. SIMULATION RESULTS

The closed-loop performance of the HMPC controller using
Big-M formulation (HMPC-BM) was simulated on HEV
P2 application environment in MATLAB/Simulink. FTP-
75 drive cycle was used in the simulation because it
is widely accepted as a standard. The LP problem for
big-M value and MILP optimization for overall HMPC
was done through MATLAB built-in function - linprog
and intlinprog. Also, the HMPC-BM controller includes
a heuristic rule in negative wheel torque demand. To fully
utilize the vehicle’s braking energy, the battery is charged
whenever the vehicle decelerates.

Under a prediction horizon of N = 5, the design pa-
rameters for HMPC-BM are the cost weight parameters,
qf = 5, qτ = 20, qs = 0, and qrho = 104. The SOC
reference tracking cost, |SOC(N)− SOCref |, is employed
by Ripaccioli et al. (2009). However, after a number of

Table 2. Design parameter tuning: SOC refer-
ence tracking cost over the first 500 seconds of

FTP-75 drive cycle

Case # qs qτ Average cfuel
1 0.2 0.2 33.2508 MPG
2 0.02 0.2 33.2484 MPG
3 0.002 0.2 33.2487 MPG

Fig. 5. SOC control performance of HMPC and ECMS for
FTP-75 drive cycle simulation

Fig. 6. Fuel consumption rate of HMPC and ECMS for
FTP-75 drive cycle simulation

experiments in Table 2, the SOC reference tracking cost is
meaningless, with the safety constraint cost of SOC range
violation using ρ. The SOC prediction power in HMPC-
BM’s longer prediction horizon makes the safety constraint
cost work.

The simulation result of a HMPC-BM with the setting is
shown in Fig. 5 - 7. Its control performance is compared to
the ECMS controller since it is the industrial standard at
this time. HMPC-BM acquired terminal SOC 13% higher
(here, % is a unit of SOC), while reducing the average
fuel consumption rate by 3% with regard to the one of
ECMS. In other words, HMPC-BM used the fuel energy
to satisfy the driving demand and to charge up the battery
more efficiently. This stems from the removal of SOC
tracking cost, which made the vehicle charging strategy
more flexible.

In Fig. 7, the motor torque command is compared within
a period of 400 seconds. The five largest peaks of motor
torque command from ECMS are not seen in the HMPC-
BM control trajectory. Even without SOC tracking cost
considered, the motor torque command cost provided
smooth control action.



Fig. 7. Comparison of optimal motor torque command
between HMPC and ECMS for FTP-75 drive cycle
simulation

5. CONCLUSION

This paper presents the use of efficient MILP formulation
for PWA systems in HEV energy management problem.
PWA system for HEV dynamics was acquired using the
empirical model and data from HEV P2 application and
showed less than 1% fitting error. The system is con-
verted into an MILP problem using Big-M formulation
which gives a smaller and stronger model to solve. The
efficacy of the developed HMPC-BM controller is shown
in the MATLAB/Simulink simulation environment. The
controller showed efficient use of the fuel and electric
energy in the given drive cycle with its safety constraint
and motor torque action cost.
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