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Abstract: Statistical learning methods have been widely studied and practiced in the past
for inferential modeling. In recent years, deep learning methods have been implemented for
inferential sensor modeling. As a popular deep learning model, the long short-term memory
(LSTM) network is capable of handling data nonlinearity and dynamics and is therefore
applied for dynamic inferential modeling. In this paper, we analyze and compare LSTM with
other statistical learning methods for the dynamic NOx emission prediction of a 660 MW
industrial boiler. Support vector regression (SVR), partial least squares (PLS), and Least
absolute shrinkage and selection operator (Lasso) with embedded dynamics are compared with
LSTM for dynamic inferential modeling. The experimental results indicate that SVR, PLS, and
Lasso outperform LSTM. By disabling the LSTM gates to realize a simple memory structure,
the LSTM performance is significantly improved. The main goal of the paper is to demonstrate
that a deep neural network that is effective in other domains requires close scrutiny and detailed
study to show its superiority in process applications.
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1. INTRODUCTION

In modern process industries, the measurement of crucial
quality variables has been critical for process monitoring
and control (Kresta et al. (1994); Qin and McAvoy (1996);
Kano et al. (1998); Sun and Ge (2021)). Although hard-
ware sensors and laboratory tests are options to measure
the quality variables, they are often subject to technical
difficulties such as harsh environment, high maintenance,
high cost, and long time delays in the measurements, hin-
dering real-time requirements for process monitoring and
control. Therefore, inferential sensors have been popularly
used in the industry to map easy-to-measure online process
measurements to hard-to-measure quality variables. Aspen
Technology alone reported over 16,000 installed inferential
sensors in conjunction with the model predictive con-
trollers (Zhao (2021)). In addition, sensor validation func-
tions can be incorporated to validate and replace faulty
sensors (Qin et al. (1997); Pranatyasto and Qin (2001)).
As inferential sensors significantly improve the control of
product quality, they have been successfully applied in
various process industries (Ghosh et al. (2020)).

In the past three decades, many inferential sensor models
have been studied by researchers since process data are
more and more available. Some of the classical inferential
sensor modeling methods include PLS, canonical correla-

tion analysis, and artificial neural network (Sun and Ge
(2021)). In addition, sparse statistical learning methods
such as the Lasso effectively select relevant variables for
optimal prediction (Hastie et al. (2015)). To build dynamic
inferential sensors, PLS with lagged input and output
variables (Kano et al. (1998)), dynamic versions of PLS
(Kaspar and Ray (1993); Dong and Qin (2018)), and
recurrent neural networks (RNN) (Tan et al. (2019)) have
been developed.

Recurrent neural networks (RNNs) are neural learning
methods for dynamic inferential modeling. However, RNNs
suffer from the problem of gradient vanishing or gradient
explosion, which limits them to short sequence modeling.
Thus, the LSTM model was developed by Hochreiter and
Schmidhuber (1997) with successful applications in speech
recognition (Graves et al. (2013)) and handwriting recogni-
tion (Carbune et al. (2020)). In industrial processes, there
has been a proliferation of LSTM-based models that have
been employed in dynamic inferential sensor modeling.
For example, Yuan et al. (2019) proposed a supervised
LSTM network that the quality and input variables are
used to learn the hidden dynamics for inferential sensor
modeling. Tan et al. (2019) employed LSTM method to
predict the NOx emission of a 660MW pulverized coal-fired
power boiler. Alternative methods such as support vector
regression (SVR) were compared. However, dynamics was



left out in the SVR model, while LSTM is an inherently
dynamic model with many memory cells and recurrent
hidden nodes.

In this paper, statistical methods including SVR, PLS,
and Lasso models with embedded dynamics are applied
to the 660MW boiler data, and the results are compared
with LSTM for dynamic inferential modeling. Since LSTM
has complex memory and gate structures, as introduced in
the next section, they are prone to multiple local minima
in the gradient-based training. With extensive searches of
the optimal hyperparameters with various initialization of
the weights, our results show that the LSTM with the
optimal outcome is inferior to the competing statistical
methods with built-in dynamic relations. However, by
disabling some of the gates in LSTM, comparable results
are achieved with very simple LSTM models.

The rest of the paper is structured as follows. In Section
2, the LSTM, SVR, PLS, and Lasso are introduced for
dynamic inferential modeling. Then, the effectiveness and
performance of the introduced methods are evaluated and
compared through an industrial 660MW boiler case study
in Section 3. Section 4 analyzes the lack of performance of
LSTM in this application. Finally, conclusions are given in
Section 5.

2. METHODOLOGY

2.1 Long short-term memory

The LSTM network is a variant of RNN, which incorpo-
rates gate units into the state dynamics to handle the gra-
dient vanishing problem in RNN. Fig.1 shows the detailed
structure of the LSTM network. It comprises memory
cells, forget gates, input gates, and output gates. The cells
can store information over time, and the gates regulate
the flow of information into and out of the cells. From

Fig. 1. Structure of the long short-term memory network

the Fig. 1, at each point in time t, the inputs of the
LSTM network are the current input vector xt ∈ ℜm,
the previous hidden state ht−1 ∈ ℜs, and the previous
cell state ct−1. The cell state ct−1 is affected by the gates.
The forget gates regulate how much of the previous cell
state ct−1 should be forgotten. The input gates determine
the updated information of the cell state. The output gates
control the amount of information to flow from the current
cell state ct. The equations for the gates and the updates
of the cell state and hidden state are shown as follows:

ft = σf (Wfxt + Ufht−1 + bf ) (1)

it = σi(Wixt + Uiht−1 + bi) (2)

ot = σo(Woxt + Uoht−1 + bo) (3)

c̃t = σc(Wcxt + Ucht−1 + bc) (4)

ct = ft ◦ ct−1 + it ◦ c̃t (5)

ht = ot ◦ σh(ct) (6)

where ◦ represents element-wise multiplication, σf , σi,
σo, σc, σh are activation functions for the forget gate,
input gate, output gate, cell state and hidden state,
respectively. Generally, the sigmoid function is used as
the gates activation function, whereas σc and σh are
the hyperbolic tangent function. Wf , Wi, Wo and Wc

represent the input weights, Uf , Ui, Uo and Uc represent
the recurrent weights, and bf , bi, bo and bc denote the
biases.

In this study, the LSTM network for prediction is illus-
trated in Fig. 2. Xt denotes the model input sequence at
each time point t, consisting of the current and previous
operational variables. N is the number of time steps or
the size of the look-back window. In this study, the LSTM
layer is followed by a fully connected layer with linear acti-
vation functions to produce the output prediction ŷt. The
LSTM model is implemented on Keras with a TensorFlow
backend.

Fig. 2. LSTM network for NOx emission prediction

2.2 SVR, PLS and Lasso for dynamic inferential modeling

LSTM has internal long and short-term dynamic memory,
which makes it suitable for dynamic inferential modeling.
For a fair comparison, the simple SVR, PLS, and Lasso
models need to have built-in dynamics. Typically lagged
input and output variables should be used as augmented
model inputs for dynamic modeling. The dynamic inferen-
tial model can be expressed as:

ŷt = f̂(yt−1, yt−2, ...yt−n, xt, xt−1, ...xt−n) (7)

where n represents the number of lags, and f̂ is the
related inferential sensor model for SVR, PLS, and Lasso.
Although the Lasso is a basic algorithm from a family of
sparse learning methods (Hastie et al. (2015)), it is used as
a baseline sparse approach in this paper to compare with
LSTM.

SVR Support Vector Regression (SVR) (Drucker et al.
(1997)) is an application of SVM to regression problems.
The basic idea of SVR is to find a line or a hyperplane
in a high-dimensional feature space that minimizes the
distance to data points. The detailed procedures are as
follows.

Consider a set of training data (x1, y1), · · · , (xn, yn). The
general SVR function takes the following form:

f(xt) = W · Φ(xt) + b (8)



where W denotes the weights, Φ(·) represents a nonlinear
transformation from primal space to the high-dimensional
feature space, and b is the bias. The goal is to minimize
the following objective

min
W,b

R(f) =
1

2
∥W∥2 + C

m∑
i=1

Γ(f(xt)− yt) (9)

where C is a positive regularized parameter and Γ(·) is the
cost function. The ϵ-insensitive quadratic loss function is
defined as follows:

Γ(f(xt)− yt) =

{
|f(xt)− yt| − ϵ, |f(xt)− yt| ≥ ϵ

0, otherwise
(10)

After combining the equations (10), construct a La-
grangian dual function to solve the quadratic optimiza-
tion problem (9). The Kernel functions used in SVR are
specified in the high-dimensional feature space without
explicitly knowing the transformation Φ(·). The radial
basis function is used as the kernel for nonlinear regression,
which can be expressed by

k(xt, x) = exp(−γ∥x− xt∥2), (11)

where γ is a hyperparameter to be tuned.

PLS PLS (Geladi and Kowalski (1986)) regression is a
method that fits a linear regression model by projecting
the input data and the output data to a lower-dimensional
latent space. PLS regression method is suitable to handle
high-dimensional and collinear data. The algorithm imple-
mentation process is as follows.

Considering a pair of input and output data matrices X
and Y , PLS regression builds a linear model by decompos-
ing matrices X and Y into the bilinear form:

X = t1p
T
1 + E1;Y = u1q

T
1 + F1, (12)

where t1 and u1 represent the latent score vectors of the
first PLS factor, p1 and q1 are the corresponding loading
vectors. E1 and F1 are the residuals. Then the PLS builds
an inner linear relationship between u1 and t1:

u1 = b1t1 + r1, (13)

where b1 is the regression coefficient obtained by minimiz-
ing the residual r1. After calculating the first PLS factor,
this procedure is repeated to decompose the residuals to
obtain subsequent PLS factors. Assuming the procedure
ends with k factors, then the PLS decomposes the original
X, Y into

X = t1p
T
1 + t2p

T
2 + · · ·+ tkp

T
k + E, (14)

Y = b1t1q
T
1 + b2t2q

T
2 + · · ·+ bktkq

T
k + F, (15)

where Ŷ = b1t1q
T
1 + b2t2q

T
2 + · · · + bktkq

T
k represents

the prediction results, E and F are the corresponding
residuals.

Lasso Lasso (Tibshirani (1996)) is a regression analysis
method that performs variable selection via regularization
in order to improve the prediction accuracy of the resulting
statistical model. Lasso regression is a type of linear
regression that performs l1 regularization. l1 regularization
can result in sparse models with few coefficients. Larger
penalty results in coefficient values closer to zero, which
produces a simpler model. The goal of the Lasso is to
minimize:

n∑
t=1

(yt −
m∑
j=1

xtjβj)
2 + λ

m∑
j=1

|βj |, (16)

where λ is a regularization parameter that shrinks the l1
penalty term.

3. NOX EMISSION PREDICTION ON A 660MW
BOILER

3.1 Boiler process data description

The boiler process that equips with an analytical instru-
ment to measure NOx emission is shown in Fig. 3. The
measured data from a 660 MW tangential pulverized coal-
fired utility boiler is provided in Tan et al. (2019). It
includes 10,000 samples covering seven days of operations
with a sampling interval of one minute. There are 50
operational variables, such as pressure, temperature, flow
rate sensors, and boiler load. Before modeling, we pre-
process the data by cleaning the outliers and removing
constant variables. We scale the data to zero mean and
unit standard deviation. After preprocessing, 26 opera-
tional variables and past NOx emissions are used as the
model input.

Fig. 3. Schematic of an industrial boiler with NOx emission

The correlations of 26 process variables and A&B side NOx
emission are shown in Fig. 4. From Fig. 4, it is clear that
variables 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20,
21, 22 are correlated with NOx emission, and they are
also highly collinear. The collinearity is due to variable 1,
the boiler load, which leads to variations of other process
variables. In addition, NOx emissions at A and B sides
are highly correlated because they are produced by the
same process, although located at two separate sides at
the furnace exit.

In this study, we build an inferential sensor model to
predict NOx emissions of the A and B sides. 80% of the
data are used for model training, while the remaining 20%
are used for testing. The coefficient of determination (R2)
and root mean square error (RMSE) are employed as the
indicators to evaluate the model performance, which are
shown below.

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2, (17)

R2 = 1−
∑n

t=1(yt − ŷt)
2∑n

t=1(yt − ȳ)2
, (18)

where yt is the actual NOx emission value, ŷt represents
the predicted value, and ȳ = 1

n

∑n
i=1 yt. To calculate R2

for a test set, ȳ of the training data should be used.



Fig. 4. Correlation matrix heatmap

3.2 Results and Comparison

To build the LSTM model, there are three critical hyper-
parameters we need to tune: learning rate, time steps, and
the number of nodes. A grid search for the best RMSE is
used to select the optimal hyperparameters. The range of
candidate values and the optimal values of hyperparame-
ters are given in Table 1. These optimal hyperparameters
will be employed in the LSTM model.

Table 1. Search ranges and optimal values of
the LSTM network hyperparameters

Search range A side B side

Learning rate 0.1, 0.01, 0.001, 0.0001 0.001 0.001
Time steps 1, 2, ..., 10 3 6
No. of nodes 23, 24, ..., 210 512 1024

Grid search and five-fold cross-validation are employed
for the statistical methods to select the optimal model
hyperparameters before prediction. For the SVR model,
the range of both γ and C are 2−8, 2−7, · · · , 20, · · · , 28.
The range of lags is from 1 to 10. On the A side, the
best parameter combination is: lags=3, γ = 0.00390625,
C=64. On the B side, the best parameter combination is:
lags=2, γ = 0.00390625, C = 128. For the PLS model, on
the A side, the optimal hyperparameter combination is:
lags=5, the number of factors = 49. On the B side, the
hyperparameters are 4 and 32. For the Lasso model, we
need to determine the optimal penalty coefficient λ. The
logλ is composed of 60 points ranging from −8 to 0 with
the same interval. The selected lags of the A&B side are
6&7, and the corresponding optimal λ are 0.000440 and
0.000660, respectively.

Table 2. R2 values of the LSTM, SVR, PLS,
and Lasso models

Method LSTM SVR PLS Lasso

A side Training R2 0.9868 0.9962 0.9942 0.9937
B side Training R2 0.9900 0.9886 0.9857 0.9853

A side Test R2 0.8617 0.9336 0.9728 0.9688
B side Test R2 0.8963 0.9320 0.9661 0.9622

The prediction performance of LSTM, SVR, PLS, and
Lasso is compared in Table 2. From Table 2, test R2

values of statistical models are all greater than 0.93, which
indicates that combining dynamics with these traditional

static models performs well in dynamic industrial pro-
cesses. Additionally, PLS and Lasso have better prediction
accuracy than SVR in this application because PLS and
Lasso can effectively solve the data collinearity problem.
Comparing the test R2 values of LSTM and statistical
models, the results show that all statistical learning models
perform better than LSTM on both the A and B sides of
NOx emissions. The results are surprising, which leads us
to further investigate whether the LSTM structure and the
related gradient-based learning algorithms would perform
as expected.

The predicted NOx emission of training data and test
data with the LSTM model are illustrated in Fig. 5. It
can be seen that the blue line matches the grey dots
in the training data on both A and B sides. Test data
matching is not as good as the training data, especially in
the stationary regions.

Fig. 5. LSTM: A side (Top) and B side (Bottom) actual
& predicted training (in blue) and test (in red) data

In order to explore the performance of Lasso, we show
the detailed Lasso prediction results in Fig. 6 for both A
and B sides. The predictions on the training data (blue
curve) and the testing data (red curve) match well with
the actual NOx emission, which shows excellent prediction
performance.

Fig. 7 shows the variable selection results with the Lasso.
Around 100 variable coefficients of each model are close
to zero. The coefficients with large absolute values are
concentrated in the most recent instants, suggesting that
the prediction results are mainly related to the recent data.
From Fig. 7, Variable 1 (boiler load) strongly relates to
the NOx emission. Through the coefficients of Variable 1
and other highly correlated variables will be arbitrarily
selected by lasso, it is indeed the critical factor for NOx
emission in the actual industry process. Moreover, the
coefficient of Variable 27 (lagged NOx emission) decreases
with the increase of lag time, which means the current
NOx emission is highly correlated with its recent emission.
Further Variable 25 is strongly associated with NOx on
Side A, while Variable 26 is strongly associated with NOx
on Side B.



Fig. 6. Lasso: A side (Top) and B side (Bottom) actual &
predicted training (in blue) and test (in red) data

Fig. 7. Variable coefficients of the Lasso models on A
side (Top) and B side (Bottom). The size of the dots
represents the magnitude of the coefficients, with red
color indicating positive coefficients and black color
indicating negative coefficients.

4. DISSECTING LSTM FOR THE NOX PREDICTION

LSTM should outperform statistical models because of
its strong ability to learn process dynamics. However,
the application to a 660MW boiler for NOx emission
prediction has shown the opposite results. This section
dissects the internal states of LSTM for the simplest cases
and inspects why it cannot outperform these statistical
learning methods in this application.

Greff et al. (2016) has demonstrated that the gates
and activation functions enhanced the performance of
LSTM with applications in speech recognition, handwrit-
ing recognition, and polyphonic music modeling. In order
to test whether the gates and activation functions in the
inferential sensor application also perform as they were de-

signed. Two simplest LSTM cases have been experimented
with for A side NOx emission prediction to inspect the
roles of the gates and activation functions. The LSTM
network is the same as in Fig. 2, but we use only one
hidden layer with one LSTM node. The two LSTM cases
are:

LSTM Case I: Fixing Input Gate and Output Gate as
it = 1 and ot = 1.

LSTM Case II: In addition to Case I, disabling the Forget
Gate with ft = 0 and choosing a linear activation function
σh(x) = x. In this case, the LSTM Equations (4) to (6)
are reduced to

ht = σc(Wcxt + Ucht−1 + bc). (19)

Note that this simple LSTM model still has recurrence
in the hidden LSTM node. Fig. 8 shows the cell weights
of the two LSTM cases, which represent the relationship
between the corresponding variables and the cell state.
From Fig. 8, the two cases have similar cell weights despite
the opposite signs. The hyperbolic tangent and weights
in the subsequent feedforward layer can flip the signs of
the hidden state values. Variables 1 (unit load) and 27
(lagged NOx emission) are much more significant than
other variables because they are weighted strongly. These
results are consistent with the Lasso estimated coefficients
and physical process knowledge, which indicates that the
neural network successfully learned the correlations be-
tween the response and the predictor variables. The pre-

Fig. 8. The cell weights of LSTM Case I (Left panel) and
LSTM Case II (Right panel)

diction performance of these two cases with one LSTM
node is compared with the full LSTM with multi-nodes,
as described in Section III. The training and test R2

values of the three LSTM architectures are summarized
in Table 3. Among the three models, Case II with the
disabled forget gate shows the best prediction accuracy,
which Case I with the enabled forget gate still performs
better than the full LSTM model. It is noted that the
optimized full LSTM model uses train-test validation to
avoid over-training, and the number of hidden nodes is op-
timized as well. Theoretically, the full LSTM model should
perform better than the two simple LSTM cases without
the input and output gates. However, the results of the
experiments reveal that these gates do not perform as
they are intended to do in this 660MW boiler application.
The results are consistent with Lasso and other statistical
learning methods. One potential reason accounting for the
result is that a simplified LSTM variant can avoid multiple
local minima in the gradient-based training.



Table 3. Comparison of R2 values of LSTM
with three different architectures

Architecture Full LSTM LSTM Case I LSTM Case II

Training R2 0.9868 0.9690 0.9680

Test R2 0.8617 0.9020 0.9100

5. CONCLUSIONS

In this paper, fair comparisons of dynamic inferential
modeling using LSTM and several statistical learning
models (including SVR, PLS, and Lasso) are reported
on an industrial 660MW boiler process to predict NOx
emission. The results show that SVR, PLS, and Lasso with
incorporated dynamics exhibit better prediction accuracy
than LSTM, even though extensive searches for optimal
LSTM hyperparameters were performed. On the other
hand, by disabling the LSTM input and output gates and
using a single hidden node, the performance is better than
that of the fully optimized LSTM with the input and
output gates and many hidden nodes. The performance
is sustained by further disabling the forget gate. With all
LSTM gates disabled, it is reduced to the external RNN
structure (Qin et al. (1992)). These experiments show that
the performance is improved by manually disabling the
gates. Moreover, the complexity in parameter tuning and
lack of transparent interpretation of LSTM could limit its
adoption in practice. On the contrary, statistical learning
methods such as Lasso show excellent prediction accuracy
and strong model interpretability.

Although LSTM is mathematically capable of learning
complex models, this study shows that it does not easily
recover simple statistical models from finite and noisy data
with gradient-based training algorithms. The absence of
superior performance by LSTM is also reported in Ljung
et al. (2020) where LSTM is compared to alternative
methods for system identification. The main message of
this paper is not to propose a new superior method but to
demonstrate that a deep learning model developed in other
domains requires scrutiny and detailed study to show its
superiority in process applications.
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