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Abstract: The paper proposes a modular-based approach to constraint handling in process optimization
and control. This is partly motivated by the recent interest in learning-based methods, e.g., within
bioproduction, for which constraint handling under uncertainty is a challenge. The proposed constraint
handler, called predictive filter, is combined with an adaptive constraint margin to minimize the cost
of violating soft constraints due to uncertainty and disturbances. The module can be combined with
any controller and is based on modifying the controller output, in a least squares sense, such that
constraints are satisfied within the considered horizon. The proposed method is computationally efficient
and suitable for real-time applications. The effectiveness of the method is illustrated by a simple heater
example and a nonlinear and time-varying example in penicillin fed-batch production optimization.
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1. INTRODUCTION

Recently, learning-based optimization and control methods
have received increased interest in biochemical applications,
mainly due to their efficient learning ability in highly uncertain
systems, e.g., [Shields et al. (2021); Kim et al. (2021); Ma et al.
(2021); Mehrian et al. (2018)]. Such learning algorithms are
typically explorative and hence likely to violate constraints that
are critical for safety or economic considerations.

In bioproduction systems, there are usually constraints on e.g.,
concentrations, temperature etc., and it is often optimal to
operate at or close to such constraints. These constraints can be
temporally violated but such violations are typically associated
with significant economic costs. Due to large uncertainties
in biochemical systems, high-cost constraints are likely to be
violated, especially with explorative learning algorithms. To
minimize the cost of such constraint violations, in the presence
of uncertainty (e.g., disturbances), we propose to combine the
predictive filter [Wabersich and Zeilinger (2018)], a modular
approach that can ensure constraint satisfaction with arbitrary
controllers, with an adaptive constraint margin.

Note that predictive filters are used in e.g., autonomous driv-
ing applications [Tearle et al. (2021)], and that the margin
adaptation employed here is based on the margin optimization
proposed for economic model predictive control in Trollberg
et al. (2017). Our main contribution is the combination of the
predictive filter and the margin adaptation such that the modular
constraint handler can minimize the cost of soft constraint vio-
lations without prior knowledge on the uncertainties by learning
the optimal constraint margins directly from data.

‹ This work has been supported by the VINNOVA Competence Centre Ad-
BIOPRO, contract 2016-05181.

Different from existing methods, the proposed method is a
simple and universal module that can easily be applied to sys-
tems with arbitrary controllers or optimizers, such as learning-
based algorithms. Notably, the proposed method only alters
the control signal when necessary. This ensures a minimal
modification of the desired closed-loop behaviour given by the
preferred controller or optimizer while satisfying constraints
with no prior knowledge on the uncertainties. The proposed
method is computationally efficient and therefore suitable for
online applications. It can adapt the optimal constraint margins
according to the size of uncertainties including unmeasured dis-
turbances, and can readily be applied in complex applications,
e.g., time-varying nonlinear systems without prior knowledge
on the uncertainties, as we demonstrate in Section 5.

Several methods have been proposed to handle constraints
in the presence of uncertainty. If some prior knowledge on
the uncertainty is available, e.g., the uncertainty belongs to a
given bounded set or distribution, constraints can be handled
by using e.g., robust and stochastic model predictive control
(MPC) [Bayer et al. (2014, 2016); Mesbah (2016); Wu et al.
(2018); Parisio et al. (2016); Lucia et al. (2014); Bayer et al.
(2018); Mesbah et al. (2014)]. However, in practice, such prior
knowledge on the uncertainty is rarely available. In such cases,
one can handle constraints by adaptive methods [Bujarbaruah
et al. (2020); Trollberg et al. (2017); Oldewurtel et al. (2013);
Chachuat et al. (2008)]. All these methods rely on particular
controller structures, such as MPC, and are therefore not gen-
erally applicable to control algorithms such as those based on
learning methods. For such controllers, predictive filters [Tearle
et al. (2021); Wabersich and Zeilinger (2018)], whose purpose
is to satisfy hard safety constraints, can be applied. Predictive
filters have recently also been considered for dealing with soft
constraints, but then primarily to avoid infeasibility [Wabersich



and Zeilinger (2021a); Wabersich et al. (2021)]. There also exist
works on robust extensions of the predictive safety filter (see
e.g., [Wabersich and Zeilinger (2021b)]), but these are all based
on some prior knowledge of the uncertainty characteristics.
Apart from the works above, we also note that in the context of
learning-based control, there exist works focusing on parameter
adaptation with economic considerations [Kim et al. (2021);
Kordabad et al. (2021b); Gros and Zanon (2019); Kordabad
et al. (2021a); Alhazmi et al. (2021); Zanon and Gros (2020);
Piga et al. (2019)]. However, rather than high-cost constraint
satisfaction for arbitrary systems, they consider obtaining oper-
ational conditions to optimize economical performance using
learning methods. To our knowledge there exist no methods
for constraint satisfaction that can be applied in systems with
arbitrary controllers and adapt optimal constraint margins for
soft constraints directly from data, and without prior knowledge
on the uncertainty.

The rest of the paper is organized as follows. We first provide a
motivating example in Section 2, then formulate the problem in
Section 3. We then introduce the learning-based predictive filter
in Section 4. In Section 5, we illustrate the effectiveness of the
method on two biochemical applications. Finally, we provide
conclusions and discussion of the work in Section 6.

2. MOTIVATING EXAMPLE

We first provide a simple water tank heating control example
to illustrate the impact of uncertainty on constraint satisfaction,
and demonstrate the need for constraint satisfaction methods
that can learn the optimal constraint margins and be applied to
systems with arbitrary controllers. Consider a nonlinear water
tank process whose dynamics are modeled by [Trollberg et al.
(2017)]

A
dh
dt
“ Fin´Fout ,

dT
dt
“

FinpTin´T q
Ah

´
KphO`AqpT ´Tambq

CAh
,

Tin “ T0`pPe`Pbq{pCFinq,

τb
dPb

dt
“´Pb`Pmax

b
Psp

b
100

,

(1)

where the states x are the water level h, the temperature in the
water tank T , and the effect of combustion heater Pb; the inputs
u are the tank inflow Fin, the effect of the electric heater Pe,
and the set-point of the combustion heater given in percentage
Psp

b ; the disturbances d are the outflow from the tank Fout , the
water temperature at inlet T0, and ambient temperature Tamb;
other parameters are the specific heat of water C, the specific
heat transfer coefficient from the hot part of the tank to air K,
the cross-sectional area A, the circumference of the tank O, the
combustion heater time constant τb, and the maximum effect of
the combustion heater Pmax

b . To summarize, we have

x“

«T
h
Pb

ff

, u“

»

–

Fin
Pe

Psp
b

fi

fl , d “

« T0
Fout
Tamb

ff

.

Assume the nominal optimization gives an optimal operating
condition Topt “ 35˝C which is also the upper limit. If the
temperature T exceeds the optimal value Topt, it will induce a
significant economic loss, which is here motivated by biochem-
ical applications in which the temperature usually is process
critical. The ultimate goal of the proposed method is to provide
constraint satisfaction for learning-based controllers that cannot

handle constraints explicitly. However, for the convenience of
illustration, we here apply a simple decentralized PI controller
to track Topt.

As shown in Fig. 1, when using the PI controller to track
Topt, there are as expected frequent violations of the constraint
T ď Topt that leads to large costs as illustrated by the cost Lk in
the lower part of the figure. In order to handle the constraints,
we apply a separate module named predictive filter [Wabersich
and Zeilinger (2018)] which modifies the desired control signal
if there exists a potential constraint violation within the predic-
tion horizon; otherwise, the desired control signal is not altered.
As can be seen from the figure, the constraint violation is less
severe but still frequent, mainly due to various uncertainties 1

that cannot be completely characterized a priori. Therefore, it is
advisable to introduce a constraint margin to reduce the impact
of uncertainties. For this purpose, we introduce a constraint
margin θT P R such that the modified constraint in the predic-
tive filter is T ď Topt ´θT . As shown in Fig. 1, with θT “ 0.6,
there is now no violation of Topt. However, the constraint margin
is conservative since the resulting T is far from the optimum
Topt . Thus, it is important to adapt the margin such that the
combined cost of constraint violations and cost of operating
away from the optimum is minimized.
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Fig. 1. The performance of PI controller (blue), PI controller
with predictive filter with θT “ 0 (red) and θT “ 0.6
(green) in the presence of uncertainties including distur-
bances. The yellow line represents the optimal value Topt“
35˝C. The lower figure is the corresponding constraint
violation cost (described later).

3. PROBLEM FORMULATION

Consider a discrete-time nonlinear process model
xk`1 “ f pxk,ukq`∆k, (2)

where k P N represents the time step of the discrete-time sys-
tem; x PRnx is the state vector of the plant; u PRnu is the control
input; f p¨q :RnuˆRnx ÑRnx represents the nonlinear dynamics
of the plant; ∆k P Rnx represents the uncertainty at time step
k. A key assumption of this paper is that the magnitude and
characteristics of ∆k is unknown a priori. The system is subject
to constraints

ghpxk,ukq ď 0,hpxk,ukq “ 0,
gepxk,ukq ď 0,

(3)

where ghpxk,ukq ď 0,hpxk,ukq “ 0 are hard equality and in-
equality constraints; gepxk,ukq ď 0 are inequality constraints

1 The considered uncertainties are described in Section 5.



that can be temporarily violated but with significant violation
cost. Let the cost of violation of gepxk,ukq ď 0 at sample k be

Lk “ λ
T maxp0,gepxk,ukqq, (4)

where λ P Rnλ is a constant vector that reflects the constraint
violation cost.

We here assume that the system (2) is regulated by a task-
specific controller that generates a desired control signal ud

k at
sample k. Although the constraints can be integrated into the
controller using e.g., MPC, we consider the case where the
controller does not directly handle constraints, since we aim
at solving constraint violation in general cases. To satisfy the
constraints, it is necessary to modify ud

k in case of a predicted
violation. However, to maintain the closed-loop behaviour as
close as possible to the desired one, the modification of ud

k
should be minimal.
Assumption 1. Since we aim at solving constraint violation
problems in general cases, we do not assume linear dynamics,
i.i.d. disturbance, etc. Rather we make the following reasonable
assumptions:

(1) the size and characteristics of ∆k is unknown a priori;
(2) the closed-loop system is stable;
(3) there exist at least a local optimum of the cost (5).

Problem 1. Under Assumption 1, use uk with the minimal mod-
ification of ud

k to satisfy all hard constraints while minimizing
the long-term cost of violating gepxk,ukq ď 0, defined as

J “ lim
nÑ8

1
n

n
ÿ

k“1

L̄k, (5)

with
L̄k “ Lk`Pk, (6)

where Lk is the cost of violating the constraint, as defined in
(4), and Pk reflects the cost of operating away from the optimal
operational conditions. The purpose of Pk is to avoid over-
conservative constraint margin and make a trade-off between
constraint satisfaction and optimal operating conditions.

In this work, we propose a method based on the predictive
filter [Wabersich and Zeilinger (2018)] combined with online
learning of constraint margins to solve Problem 1.

4. LEARNING-BASED PREDICTIVE FILTER

In the absence of uncertainty, the high-cost constraint satis-
faction problem can be solved using a safety predictive filter
[Tearle et al. (2021); Wabersich and Zeilinger (2018)]. In the
presence of uncertainty, one can employ robust extensions of
the safety predictive filter [Wabersich and Zeilinger (2021b)]
for the constraint satisfaction problem, if a priori knowledge
on the uncertainty magnitude and characteristics are available.
However, such a priori knowledge on the uncertainty is usually
not available in practice.

To solve Problem 1, we here propose an adaptive predictive
filter framework, as shown in Fig. 2. We introduce a constraint
margin θ P Rnλ for the high-cost constraints, i.e., gepxk,ukq`
θ ď 0, which is learned online directly from available data
using the constraint adaptor. Given a learned θ , the constraint
satisfaction is then ensured with the minimal modification of
the desired closed-loop behaviour by the predictive filter. Note
that although one can also introduce some margins on e.g.,
setpoint of the PI controller in Section 2, the predictive filter

provides a more robust and less conservative margin due to its
predictive ability.

Controller

Predictive Filter

Plant

Constraints
Adaptor

θ

Learning-based Predictive Filter

x

u

ud

Fig. 2. The learning-based predictive filter framework

4.1 Predictive filter

Given a constraint margin θ , we apply a predictive filter to
improve constraint satisfaction gepyk,ukq`θ ď 0, for arbitrary
desired control signals generated by a task-specific controller.
This is repeated at every sample.

The predictive filter [Wabersich and Zeilinger (2018)] applies a
mechanism that is independent of a task-specific objective. The
basic idea is that, given a desired control signal and the current
state measurement or estimate, we first determine whether it
will satisfy all constraints, including gepxk,ukq`θ ď 0, within
the given horizon. If all constraints are satisfied within the
horizon, the desired control signal is applied directly. If a
constraint violation is predicted, we obtain the closest control
signal sequence that satisfy the constraints within the horizon,
and apply the first control signal in the modified sequence to
the plant. Formally, given a constraint margin θ , the predictive
filter is given by

min
ui|k

}ud
k ´u0|k}2

s.t. for all i“ 0, . . . ,N :
x0|k “ xk,

xi`1|k “ f pxi|k,ui|kq,

ghpxi|k,ui|kq ď 0,hpxi|k,ui|kq “ 0,
gepxi|k,ui|kq`θ ď 0,

(7)

where ud
k is the desired control generated by the task-specific

controller at time step k; N is the prediction horizon of the
predictive filter; the subscript i|k represents the ith step ahead
prediction where the predictive filter is initialized at time step
k. The predictive filter generates the optimal control sequence
tu˚i|ku. Then, the first optimal input signal u˚0|k in the optimal
control sequence is applied to the plant. If all the constraints
can be satisfied within the prediction horizon, the control signal
ud

k is directly applied to the plant, since ud
k “ u˚0|k; otherwise,

the desired control signal ud
k is modified to u˚0|k that is closest to

ud
k in the sense of 2-norm and ensures constraint satisfactions

within the horizon. By repeatedly applying the predictive filter



at each time step, the satisfaction of the constraints can be guar-
anteed [Tearle et al. (2021); Wabersich and Zeilinger (2018)].

In bioproduction applications, hard constraints can usually be
enforced by physical saturations. Motivated by this, we here
focus on learning the optimal constraint margin for high-cost
soft constraints. Also note that we assume that the modification
of the desired input through the predictive filter is bounded in a
way such that the closed-loop system is stable, for any feasible
choice of θ . We refer the interested readers to e.g., Wabersich
and Zeilinger (2018) and Wabersich and Zeilinger (2021b) for
discussions on e.g., feasibility of the predictive filter.

The remaining problem is then to determine the optimal con-
straint margin θ that minimizes the impact of uncertainties on
constraint violations without being conservative. We next apply
the constraint adaptor to learn the optimal constraint margin.

4.2 Constraint adaptor

The constraint adaptor learns the optimal constraint margin θ

that minimizes (5) based on online measurements. We here
consider the finite-difference stochastic approximation (FDSA)
[Spall (1998, 2005); Kushner and Clark (2012)] to adapt the
constraint margin θ . Note that the proposed framework is
general and the learning method can be replaced by other,
possibly more effective, methods. Below we briefly outline the
FDSA-based adaptation method. More details can be found in
Trollberg et al. (2017).

Assume there exist at least a local optimum of J defined in (5)
with respect to θ , and that J is well defined for any feasible
choice of θ . The FDSA method seeks the local optimum of J
by approximating the gradient BJ{Bθ by its finite-difference ap-
proximation denoted as DJ. More specifically, at each iteration
of FDSA, we component-wise perturb the applied constraint
margin in the predictive filter, then approximate the gradient
BJ{Bθ based on the online measurements of (6) corresponding
to the perturbed margins. The constraint margin is then adapted
along the direction of the gradient approximation DJ. The local
optimum of J can be obtained by applying the FDSA recur-
sively. We next formally introduce the FDSA method.

At the jth iteration of FDSA update, the lth component of the
finite-difference approximation of the gradient is given by

rDJpθ j,c jqsl “
J`j,l´ J´j,l

2c j
, (8)

where θ j is the constraint margin value at the jth iteration;
c j is the perturbation size on θ to approximate the gradient
using finite difference; J`j,l and J´j,l are the long-term constraint
violation cost (5) with θ j ` c jel and θ j ´ c jel as constraint
margins in the predictive filter, respectively, with e j as the
standard basis vector, and can be approximated by averaging
the online measurements of (6) over large samples.

Similar to gradient descent, the FDSA method recursively
updates θ based on

θ j`1 “ θ j`a jDJpθ j,c jq, (9)

where a j is the step size along the gradient approximation
DJpθ j,c jq. The convergence of θ can be guaranteed under
some conditions on the step size sequences ta ju and tc ju,
[Spall (1998, 2005)]:

(1) c j Ñ 0 as j Ñ 8, to diminish the error in the finite-
difference approximation of the gradient over time;

(2) limnÑ8
řn

j“1 a j “8, to avoid premature convergence;
(3) limnÑ8

řn
j“1 a jc j ă 8 and limnÑ8

řn
j“1 a2

j{c
2
j ă 8, to

reduce the adaptation rate by ensuring the step sizes
decrease over time.

Note that the FDSA-based method does not require gradient
information of J to update θ , but instead adapts θ directly
from online measurements. As we will show in Section 5, the
FDSA can converge relatively fast to the optimal θ . It implies
that the optimal margin can be learned efficiently in terms
of computational burden. Therefore, the proposed method is
suitable for online applications.

We remark that although the proposed predictive filter resem-
bles a simple MPC, it focuses solely on constraint satisfaction
for arbitrary desired controllers. Also, the proposed framework
is general and not limited by specific choices of the learning
method.

5. EXAMPLES

To demonstrate the effectiveness of the proposed method, we
first revisit the nonlinear water tank control example in Sec-
tion 2. Then, we consider a nonlinear time-varying example in
fed-batch penicillin fermentation optimization.

5.1 Water tank control - motivating example revisited

Uncertainties We consider the following uncertainties in the
process [Trollberg et al. (2017)]. The disturbance d is governed
by

9d “

«

´1{τT 0 0
0 ´1{τF 0
0 0 0

ff

d`d0`νd , (10)

where the time constants are τT “ 20s, τF “ 20s; the nominal
value is d0 “ r15 1 25sT ; the stochastic part

νd „ rUp´0.5,0.5q β pBp1,0.5q´0.5q Up´0.5,0.5qsT ,
(Bp1,0.5q is the Bernoulli distribution) keeps constant over the
sampling interval and is updated at each sampling instance. We
introduce 30% relative input uncertainties, i.e., the actual inputs
to the plant are given by Finp1`νFq, Pbp1`νbq, Psp

b p1`νb,spq
where νF ,νb,νb,sp „Up´0.3,0.3q.

Note that we consider a number of uncertainties on a nonlinear
system, including modelling error, discretization error, distur-
bances and input uncertainties. The size and characteristics of
these are assumed unknown a priori. Hence, constraint handling
is hard using existing methods.

Constraints We consider the following constraints:

ghpx,uq “

»

—

—

—

—

—

—

—

—

—

–

h´20
Fin´10
Pe´200

Psp
b ´100
0´h

0.01´Fin
0´Psp

b
0´Pe

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ď 0, gepx,uq “ T ´35ď 0, (11)

where ghpx,uq contains hard constraints on the states and the in-
puts, while gepx,uq represents high-cost soft constraints. We as-
sume the input and state hard constraints are enforced by phys-
ical saturations. We therefore only adapt the constraint margins



of the high-cost soft constraints gepx,uq in the predictive filter.
The objective is to minimize the impact of the uncertainties
on the high-cost constraint violations, i.e., gepx,uq ą 0, with
a minimal modification of the desired control signal generated
by the PI controller. Obviously, the constraints above cannot be
handled using the simple PI controller.

Results To achieve the objective, we apply the learning-
based predictive filter described in Section 4. In the constraint
adaptor, we introduce θT P R as the constraint margin of the
high-cost constraints gepx,uq. The desired control signal ud P

R3 is generated by the decentralized PI controller with input
saturations. In the predictive filter, we apply the linearized
model around the given setpoint with sampling time Ts “
30s. The prediction horizon is chosen to N “ 5. The optimal
constraint margin θT is learned online using the FDSA method.
For each θT value considered in the gradient approximation
step, we measure the violation cost with penalty term (6) where
λ “ 100 and Pk “ maxp0,Topt ´ T q from 200 samples, and
then take the average of these costs as an approximation of (5)
for the corresponding θT value in the gradient approximation
step. As shown in Fig. 3 (in blue), θT quickly converges to
θ˚T “ 0.26 with a low violation cost within few iterations,
starting from θT,0 “ 0 where the constraint violation cost is
relatively high. Note that when using the PI controller without
constraint handling (in yellow, Fig. 3), the violation cost is
around 6 times larger than the case when using the predictive
filter with θT,0 “ 0. This shows that constraint handling as such
is important under uncertainty.

When running the process, the violation cost should be moni-
tored constantly. If the violation cost is close to 0 for a period of
time, the current margin θT may no longer be optimal due to the
change of the uncertainties. Therefore, a new optimal θT should
be learned by resetting the step size sequences in (9). For exam-
ple, in Fig. 3 (in red), after reducing the size of the uncertainties
by 30%, a new optimal margin θT “ 0.2 is learned, starting
from the previous optimal margin θ˚T “ 0.26. This shows that
the proposed method has the ability to adjust optimal constraint
margin according to a change in the uncertainties.

The proposed method provides the minimal modification on
the control signal provided by the controller in order to satisfy
constraints. To illustrate this, we compare the performance of
the decentralized PI controller with and without the learning-
based predictive filter in the presence of the same uncertainties.
As shown in Fig. 4 (a), the actual temperature seldom exceeds
Topt “ 35˝C using the learning-based predictive filter with θ˚T “
0.26, while the violation is severe and quite frequent using the
PI controller only. Note that, due to the minimal modification
on the desired input, the temperature, when using the learning-
based predictive filter, is still around Topt “ 35˝C with a similar
behaviour as in the case with the PI controller only.

5.2 Application to fed-batch penicillin fermentation

Fed-batch fermentation is common for production in the phar-
maceutical industry, in which substrates are supplied to the
bioreactor without outflow during operation [Bonvin (1998)].
An important problem in fed-batch fermentation is how to min-
imize undesired side reactions and thereby improve quality of
the product. To minimize undesired side reactions, constraints
on the maximum substrate concentrations should be imposed
[San and Stephanopoulos (1989)]. At the same time, there
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Fig. 3. The trajectory of constraint margin θT and constraint
violation cost measurement L (obtained by averaging (4)
of 200 samples for each θT ) during learning iterations
using the FDSA method in the water tank example.

0 500 1000 1500 2000 2500 3000

34

35

36

T
 [
°
C

]

(a)
no filter

filter

0 500 1000 1500 2000 2500 3000

time [s]

0

50
L

k

0 500 1000 1500 2000 2500 3000
0

50

P
e
 [
k
W

]

(b)

0 500 1000 1500 2000 2500 3000
0

5

F
in

 [
l/
s
]

0 500 1000 1500 2000 2500 3000

time [s]

0

50

100

P
bs
p
 [
%

]

Fig. 4. Comparison of the decentralized PI controller
with(red)/without(blue) the learning-based predictive filter
with the same unknown uncertainties. The predictive filter
is with the converged constraint margin θ˚T “ 0.26. Fig.
(a) shows the temperature setpoint tracking and constraint
satisfaction performance; Fig. (b) shows the correspond-
ing input signals. The solid yellow line represents the
constraint Topt “ 35˝C.

should be constraints on the minimum substrate concentrations
to ensure cell growth and production of the desired product
[Srinivasan et al. (2003)]. This is a challenging task due to the
fact that available models are highly uncertain and the size and
characteristic of the uncertainties are usually not fully known.

We consider the constraint satisfaction problem in fed-batch
penicillin fermentation with several sources of uncertainty. The
objective is to ensure substrate constraint satisfaction, while
maximizing the penicillin concentration in the bioreactor at
the end of the fermentation. We employ a nominal optimal
feeding strategy proposed as in Srinivasan et al. (2003) and



combine it with the proposed predictive filter and adaptive
constraint margin. Compared with the water tank example, the
main difference is that the plant is time-varying and a nonlinear
model is employed in the predictive filter.

We adapt the fed-batch penicillin fermentation model presented
in Srinivasan et al. (2003); Lucia and Engell (2013); Bajpai and
Reuss (1981)

dX
dt
“ µpSqX´

F
V

X ,

dS
dt
“´

µpSq
YX

´
γX
Yp
`

F
V
pSin´Sq,

dP
dt
“ γX´

F
V

P

dV
dt
“ F,

(12)

where µpSq “ µmS
Km`S`pS2{Kiq

; X is the biomass concentration; P
is the product concentration; V is the volume of the bioreactor;
µm,Km,Ki,γ are kinetic parameters; Yx and Yp are yield coeffi-
cients; F is the feed rate; Sin is the inlet substrate concentration.

We consider F as the control input, i.e., u“ F . The objective is
to ensure the inequality constraint S P rSmin,Smaxs, i.e.,

gepx,uq “
„

S´Smax
Smin´S



ď 0 (13)

is satisfied for arbitrary feeding strategy u. The imposed upper
bound Smax “ 0.6 g/l is to minimize undesired side reactions,
while the imposed lower bound Smin “ 0.2 g/l is to ensure cell
growth and production of the desired product. By ensuring
constraint satisfaction, we improve product quality and hence
the economic profit in the presence of uncertainty, including
disturbances. We here consider the growth phase in fed-batch
fermentation such that the biomass concentration reaches the
desired value Xmax. We assume that the desired feeding strategy
is given by the nominal optimal nonlinear feedback control
proposed in Srinivasan et al. (2003)

ud “
V

Sin´S
p

1
Yx

µpSqX´
1

Yp
γXq|S“?KiKm , as X ď Xmax, (14)

where Xmax “ 3.7g{l. The initial operating conditions and pa-
rameters are summarized in Appendix B. We consider similar
uncertainties as in Srinivasan et al. (2003):

(1) YX is a time-varying parameter that varies every 2 hours
within the range [0.3,0.5];

(2) Sin is normally distributed with mean 200g{l and standard
deviation 25g{l, which is assumed to change very 2 hours;

(3) we also introduce 10% relative input uncertainties on u
that vary between samples, i.e., the actual input is given
by p1`νuqu where vu „Up´0.1,0.1q.

We assume the characteristics and size of the uncertainties
above are unknown a priori.

Results To ensure constraint satisfaction without prior knowl-
edge on the uncertainties and with minimal modification of
the nominal optimal feeding strategy, we apply the learning-
based predictive filter. We introduce θ “ rθupper θlowers

T
P R2

as the constraint margin of the high-cost constraints gepx,uq.
The desired feeding strategy ud P R is given by (14). In the
predictive filter, we apply the nominal nonlinear model (12)
with sampling time Ts “ 2h. The prediction horizon is chosen
as N “ 5.

The optimal constraint margin θ is learned online using the
FDSA method. For each θ value considered in the gradient
approximation step, we measure the violation cost (4) with
λ “ r1 1sT from 20 parallel fed-batch experiments using the
optimal feeding strategy (14) together with the corresponding
predictive filter, and then take the average of these costs as
an approximation of (5) for the corresponding θ value in the
gradient approximation step. As shown in Fig. 5, by using the
FDSA method, a value in the region of minimum violation cost
θ˚ “ r0.08 0.11sT is learned online starting from the initial
guess θ0 “ r0.02 0.02sT , where the constraint violation cost
is relatively high. Although it is relatively time-consuming to
learn the optimal margin θ in this example, we remark that
the experiments can be conducted in parallel and, as shown in
Fig. 6, θ converges to a region of low violation cost within only
10 iterations. Note that, without constraint handling (in yellow,
Fig. 6), the violation cost is around 10 times larger than with
the case using the predictive filter with θ0. This demonstrates
the importance of constraint handling.

Fig. 7 shows the comparison of the optimal feeding strategy
(14) with and without the learning-based predictive filter in
the presence of the same uncertainties. For the first 50 hours,
the input is the same as the nominal feeding strategy without
predictive filter, since there is no potential constraint violation
within the horizon. After 50 hours, the substrate concentration
exceeds the given upper limit Smax “ 0.6g{l in the case without
the predictive filter, while the predictive filter modifies the
feeding strategy such that the potential constraint violation is
avoided. Notably, both penicillin and biomass concentrations
are very close to those for the case without predictive filter, due
to the minimal modification of the desired input. This implies
that, by adding the learning-based predictive filter module, the
optimization performance is not altered significantly from the
desired one, but the constraints with high violation cost due to
production of undesired byproducts can be satisfied.

We stress that this example serves to demonstrate the gener-
ality and potential of the proposed method for more complex
applications. While the case with many fed-batch bioreactors
with similar behavior may not be realistic, our ultimate goal is
to provide constraint satisfaction for explorative learning based
methods in continuous bioproduction which is fully realistic
with the proposed method.

6. CONCLUSION AND DISCUSSION

In this paper we proposed a universal modular approach to con-
straint handling, based on a predictive filter combined with con-
straint margin adaptation to minimize the cost of soft constraint
violations. The main advantage of the proposed method is that,
as a universal module, it can be easily applied to a system with
arbitrary controller and can ensure constraint satisfaction with
minimal modification of the desired closed-loop performance.
This provides a simple approach to enable systems to complete
tasks using arbitrary controllers or optimizers, such as learning-
based algorithms, while satisfying constraints. We illustrated
the potential of the proposed method using a water tank ex-
ample and a fed-batch penicillin optimization example. The
efficiency of the constraint margin adaptation and constraint
satisfaction, while largely maintaining the desired closed-loop
behaviour, demonstrates the potential of the proposed method
for application in complex control and optimization systems
that do not explicitly handle constraints.
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Fig. 5. The relation between constraint violation cost J and θ

values in the fed-batch penicillin fermentation example.
The constraint violation cost J for each θ is obtained
by averaging (6) of 50 parallel fed-batch experiments
using the feeding strategy (14) with the corresponding
predictive filter, and represented by different colors. The
dash line represents the trajectory of θ during online
learning process from 20 parallel fed-batch experiments
(See Fig. 6), and the red dot represents the converged θ

using the FDSA method.
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Appendix A. DECENTRALIZED PI CONTROLLER
DESIGN

In the water tank example, we apply the linearized model
around the setpoint an operating point Tref “ 35˝C, href “
8.5 dm, Pb,ref “ 83.6 kW. To design a decentralized PI con-
troller, we first apply Relative Gain Array (RGA) to determine
suitable pairing between inputs and states. The RGA of the
linearized system is given by

ΛpGpωqq “

«0 1 0
1 0 0
0 0 1

ff

, @ω (A.1)

which suggests that it is suitable to control T , h, Pb using Pe,
Fin, Psp

b respectively. For each pairing, we design a PI con-
troller such that the crossover frequency is ωc “ 1{200 rad/s. In
simulation, we apply the discretized decentralized PI controller
obtained by discretizing the continuous-time decentralized PI
controller using zero-order hold with sampling time Ts “ 30s.

Appendix B. PARAMETERS OF FED-BATCH PENICILLIN
FERMENTATION EXAMPLE

Table B.1. Nominal parameters of the bioreactor
model [Srinivasan et al. (2003)].

µm,0 “ 0.02 h´1 Km,0 “ 0.05 g{l Ki,0 “ 5 g{l
Yx,0 “ 0.5 grXs{grSs Yp,0 “ 1.2 grPs{grSs γ0 “ 0.004 h´1

Table B.2. Initial operating conditions of the pro-
cess [Srinivasan et al. (2003)].

X0 “ 1 g{l S0 “ 0.5 g{l P0 “ 0 g{l V0 “ 150 l


