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Abstract: Model-based optimization typically obtains the optimum based on a nominal identified model.
However, in the presence of uncertainty, the nominal optimum leads to suboptimal operating conditions
that furthermore can be highly sensitive to uncertainties. Hence, uncertainty should be considered in
the optimization and, furthermore, experiments should be designed to reduce the uncertainty most
important for optimization. Herein, we propose a general framework that combines model-based robust
optimization with optimal experiment design. The proposed framework can take advantage of prior
knowledge in the form of a mechanistic model structure, and the importance of this is demonstrated
by comparing to more standard black-box models typically employed in learning. Through optimal
experiment design, we repeatedly reduce uncertainties in the region where the likelihood of improvement
on the worst-case performance is maximized. This makes the proposed method an efficient model-based
robust optimization framework, especially with limited experiment resources. The effectiveness of the
method is illustrated by a cell culture development example in continuous biopharmaceutical production.
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1. INTRODUCTION

Optimization problems in biology, e.g., cell culture develop-
ment for biopharmaceutical production [Hu (2020)], are often
approached based on trial and error. Such approaches are time-
consuming and furthermore lead to suboptimal conditions. To
obtain the optimum in a systematic fashion, model-based opti-
mization methods, in which first a nominal model is identified
and then the optimization problem is solved based on it, can be
employed.

However, due to the existence of various uncertainties, the
nominal optimum also leads to suboptimal conditions. Indeed,
in bioprocess applications, the available models are typically
highly uncertain; due to process complexity and limited experi-
ment resources, such model-plant mismatch is inevitable. There
may also exist measurement uncertainty and implementation
errors when implementing the optimal solution. In many cases
the objective function will be highly sensitive to uncertainty and
the system hence operated at suboptimal conditions, far from
the optimal ones. Hence, it is important to take uncertainties
into account in the optimization.

Robust optimization methods aim at obtaining a robust op-
timum that has the best worst-case performance within the
considered uncertainty set. Although it might appear conser-
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vative at first glance, it can guarantee the performance of e.g.,
production rate of products of interest such as therapeutic an-
tibodies by mammalian cells in the presence of uncertainties,
while there are no such guarantees using nominal optimization.
Existing model-based optimization methods that seek robust
optima usually leverage one-shot open-loop optimization meth-
ods, ignoring the possibility to perform additional experiments
to reduce uncertainties (see e.g., Bertsimas et al. (2018); Bertsi-
mas and Nohadani (2010); Gabrel et al. (2014); Bertsimas et al.
(2011, 2010a,b); Ben-Tal and Nemirovski (2002)). However, in
bioprocess applications, the experiments are costly and usually
conducted in sequence. Hence, it is important to design the next
experiments based on all available information, such that the
robust optimum can be sought efficiently in terms of experiment
resources.

In order to combine optimization with optimal experiment de-
sign, a number of black-box optimization methods have been
proposed [Shields et al. (2021); Sabug et al. (2020); Frazier
(2018)]. These methods are essentially based on similar ideas as
Bayesian optimization: build a surrogate model of the unknown
black-box objective function, quantify the corresponding model
uncertainty, and then decide the location where the next ex-
periments are performed so as to reduce the uncertainty in the
most promising regions. The key advantage of such methods
is the efficienct search for the global optimum of an objective
function that is expensive to evaluate experimentally.



The black-box approaches described above are powerful for ap-
plications that lack prior knowledge about the system. However,
in many cases, e.g., in most bioprocess applications, valuable
prior knowledge is available, e.g., in the form of mechanistic
model structures. As we demonstrate in this paper, in cases
where black-box models contain insufficent information for
optimization, mechanistic models can determine the robust op-
timum in relatively few experiments. Prior knowledge can in
principle be combined with black-box models also, see e.g.,
Perrone et al. (2019), but such methods are rather involved and
may not fully utilize the prior knowledge available.

We here propose a general framework that employs mechanistic
model structures directly in the robust optimization method,
and combines this with optimal experiment design. This en-
ables a better exploitation of prior knowledge, which is use-
ful especially when the mechanistic model contains significant
structural information and only few experiments are allowed.
We remark that the model identification and experiment design
considered here are for the sole purpose of optimization. By
applying the proposed framework, we demonstrate that

(1) the robust optimum can be distinctly different from the
nominal optimum; the robust optimum should be pre-
ferred when a performance guarantee is important.

(2) the prior knowledge available in a mechanistic model can
be instrumental in determining the optimum for cases
where black-box models are insufficient.

(3) the proposed framework is efficient in terms of required
experiment resources:
(a) at each experiment step, the robust optimum with

the best worst-case performance can be obtained effi-
ciently based on all available information;

(b) the proposed optimal experiment design reduces the
uncertainty in the region where the likelihood of
the improvement on the worst-case performance is
maximized.

We remark that the proposed framework is general and not
limited by specific choices of modeling, robust optimization
or experiment design methods. Moreover, although our main
motivation here is optimization in bioprocess applications, the
proposed framework is completely general and can be applied
directly to other applications, and is particularly relevant to
those for which experimental data are expensive.

The rest of the paper is organized as follows. We first provide a
motivating example in Section 2, then formulate the considered
problem in Section 3. In Section 4, we introduce the proposed
framework. In Section 5, we illustrate the effectiveness of the
method on a cell culture development example in continuous
biopharmaceutical production. Finally, we provide some con-
clusions and discussion in Section 6.

2. MOTIVATING EXAMPLE

We first consider a simple numerical example to illustrate
the impact of uncertainty on the optimization problem and
the importance of exploiting prior knowledge. Consider the
problem of minimizing the objective function

f puq “ rpau´bq2` cs ¨ rpdu` eq2`gs, (1)
within the input interval u P r´3,3s, where the real parameters,
to be estimated from measurements, are a “ 1,b “ 1.5,c “
0,d “ 1,e “ 2.5,g “ 1. We assume Gaussian measurement
noise at each measurement of the function values,

Fig. 1. Comparison between robust and nominal optimum;
between model-based and black-box optimization. The
meaning of the curves are described in Section 2. In
Table 1 the true, nominal and robust optima, with the
corresponding worst-case and nominal objective function
values, are shown.

f̂ puq “ f puq`ν , ν „ Np0,σ2q, (2)

where σ “ 10 and f puq is the noise-free function value. Ini-
tially, we have 6 noisy measurements represented by the red
dots in Fig. 1. The true function is represented by the green
curve.

To illustrate the difference between the robust and nominal op-
timum, we apply nonlinear least square with the given function
structure to identify a nominal function (blue curve in Fig. 1),
and obtain the nominal optimum. We then obtain the upper
and lower bounds of the identified function within the 95%
confidence ellipsoidal parametric uncertainty set (dash curves
in Fig. 1). The robust optimum is the input corresponding to
the minimum of the upper bound of the function. The optima
are summarized in Table 1. As shown in Fig. 1 and Table 1, in
the presence of uncertainty, the function value at the nominal
optimum can be the worst within the considered input inter-
val. This implies that the nominal optimum might have a poor
performance in the presence of uncertainty. On the other hand,
the robust optimum has the minimum worst-case function value
and is less sensitive to uncertainty. To guarantee performance in
the presence of uncertainty, the robust optimum is the preferred
choice.

To illustrate the advantage of utilizing prior model structure
knowledge over black-box optimization, we obtain a Gaussian
process (GP) model using the noisy measurements and Gaus-
sian kernel [Frazier (2018)]. Note that no prior knowledge is
incorporated in the GP model. Both the mean and the 95%
confidence interval of the fitted GP model (yellow curve and
grey area in Fig. 1) show small variation over the considered
input interval. As we demonstrate in Section 5.1, when addi-
tional experiments are performed, the variation becomes even
smaller and therefore the GP fails to provide useful information
for optimization.

Table 1. True, nominal and robust optimization
using 6 initial experiments in motivating example.

True Nominal Robust
optimum location 1.50 1.88 -1.85

worst-case function value 144.6 171.9 39.9
nominal function value -42.1 -48.1 1.2

We next propose a general framework to seek the robust op-
timum and design further experiments to maximally reduce
uncertainty in the most promising region for optimization.



3. PROBLEM FORMULATION

In the presence of uncertainty, we consider obtaining a robust
optimum that provides the best worst-case performance guar-
antee, by solving the, possibly nonconvex, robust optimization
problem

min
uPU

max
δP∆

f pu,x,θ `δ q

s.t. g jpu,x,θ `δ q ď 0,@δ P ∆, j P t1, . . . , Iu,
hpu,x,θ `δ q “ 0,

(3)

where u PRm and θ PRp are the inputs and nominal (identified)
parameter values of the system, respectively; U Ď Rm is the
set of feasible inputs; x P Rn represents the steady state of the
system; δ PRp represents parametric uncertainties on θ that be-
long to the uncertainty set ∆; f pu,x,θ`δ q is the objective func-
tion to be minimized; hpu,x,θ ` δ q “ 0 represents the steady-
state equation of the system, which corresponds to the nominal
identified one if δ “ 0; g jpu,x,θ ` δ q ď 0, j P t1, . . . , Iu rep-
resents a set of inequality constraints to be satisfied robustly,
i.e., for any possible realizations within the uncertainty set; I
is the number of considered inequality constraints. We remark
that the true parameter values θ̄ are unknown and can be any
possible realization within the uncertainty set, i.e., θ̄ “ θ ` δ

for some δ P ∆. Note that, in the presence of such uncertainty,
nominal optimization cannot provide any performance guaran-
tee.

We consider solving the robust optimization problem (3) under
the following mild assumption.
Assumption 1. We assume that

(1) the parameters θ and the uncertainty set ∆ can be uniquely
estimated;

(2) the robust optimization has at least a local optimum.

Solving the robust optimization problem (3) is known to be
challenging in general. However, many methods have been
developed to seek the robust optimum in tractable ways by us-
ing e.g., heuristics [Bertsimas and Nohadani (2010); Bertsimas
et al. (2010a,b)] or convexification [Chen et al. (2017)]. We
remark again that existing model-based methods solve (3) in
an open-loop manner, i.e., further experiments are not designed
using the obtained information. We here propose a general
model-based framework, which incorporates optimal experi-
ment design, to solve (3) efficiently and reduce uncertainties
by sufficiently exploiting available information within a limited
number of experiments.

4. MODEL-BASED FRAMEWORK FOR ROBUST
OPTIMIZATION

The proposed model-based framework for robust optimization
consists of modeling, robust optimization and optimal exper-
iment design, as illustrated in Fig. 2. Given available data
tuseq,xsequ, we first obtain the nominal parameters θ , to which
we associate the nominal steady-state model hpu,x,θq “ 0, and
uncertainty set ∆, using system identification methods. Based
on the identified model and uncertainty set, we then obtain the
robust optimum u˚ and corresponding best worst-case objective
function f ˚ by solving the robust optimization problem (3).
Then, we evaluate the likelihood of the improvement on the
worst-case performance, design and conduct a batch of exper-
iments in the region where this likelihood is maximized, and
obtain new data tunew,xnewu. We then use all the available data

Fig. 2. Model-based framework for robust optimization.

to update the model as well as the uncertainty set. The proce-
dure is repeated until no further improvement on the worst-case
performance is possible, or the maximum number of allowed
experiments is reached.

4.1 Modeling

We first introduce the modeling module used to identify and
update the nominal model and the corresponding uncertainty
set. To identify the steady-state model and the uncertainty set
using all available data from previous experiments tuseq,xsequ,
we solve a nonlinear least squares problem

θ “ argmin
θ̂

ÿ

pui,xiq

}hpui,xi, θ̂q}
2
2, (4)

using all the available data pui,xiq P tuseq,xsequ. To avoid con-
servativeness of the uncertainty set, the correlations between
the parametric uncertainties should be considered. Hence, we
consider the 95% confidence ellipsoidal parametric uncertainty
set

∆“ tδ P Rm | δ
T

Σ
´1

δ ď χ
´2pα,mqu, (5)

where Σ is the covariance matrix of the vector of parameters
θ that can be directly obtained by solving the nonlinear least
squares (4); m is the number of parameters; χ´2pα,mq is the
inverse of the chi-square cumulative distribution with m degrees
of freedom and significance level α “ 0.05. We here consider
(5) as the deterministic uncertainty set for robust optimization.
It is remarked that the above update method can be replaced by
other suitable methods, such as set membership identification
[Milanese and Taragna (2005)], in the proposed framework.

4.2 Robust optimization

After obtaining the identified model and the corresponding un-
certainty set, the robust optimum with the worst-case perfor-
mance guarantee can be determined by solving (3).

As mentioned in Section 3, solving (3) is challenging in general,
but many methods can obtain the robust optimum in tractable
ways. As shown in Bertsimas and Nohadani (2010), the global
robust optimum for nonconvex problems can be searched effi-
ciently. First note that (3) is equivalent to

min
uPU

max
δP∆

f pu,x,θ `δ q

s.t. max
δP∆

g jpu,x,θ `δ q ď 0,@ j P t1, ¨ ¨ ¨ , Iu,

hpu,x,θ `δ q “ 0.

(6)

We here adopt an approach based on a local search of the
robust optimum, mostly drawn from Bertsimas et al. (2010a,b),
from multiple starting points in the input space, in which we
also consider steady-state equality constraints. We here only



provide an overview of the robust optimization algorithm, for
the sake of clarity and ease of explanation. The interested reader
is referred to Bertsimas et al. (2010a,b) for additional details.
We remark that the particular robust optimization method can
be replaced by other methods in the proposed framework.

The robust optimization algorithm can be summarized as fol-
lows: starting from different initial inputs, we perform a local
search of robust optima, for which in each step we move in a
direction that points away from infeasible regions and inputs
that would worsen the worst-case objective function value. We
stop when there are no feasible directions towards which to
move. After obtaining different local robust optima, starting
from different initial inputs, we select the one corresponding
to the best worst-case objective function value.

We next detail the different parts of the above described algo-
rithm.

Initialization Let u1 be an initial point within the input space.

Perturbations on current input To determine the direc-
tion that reduces the worst-case objective function value
max
δP∆

f pu,x,θ `δ q and avoids potential constraint violation, we

explore the neighborhood around the input uk P Rm, at step k,
by generating inputs around uk. These inputs can be generated
with different methods, such as component-wise perturbation,
random perturbation, specific region exploration technique etc.
We here generically consider U k

p as a set of perturbed inputs
around uk.

Neighborhood exploration To ensure constraint satisfaction,
for each perturbed input uk

p PU k
p , we obtain

max
δP∆

g jpuk
p,x

k
p,θ `δ q, (7)

s.t. hpuk
p,x

k
p,θ `δ q “ 0.

where j “ 1, ¨ ¨ ¨ , I and xk
p is the corresponding state obtained

by solving the steady-state equation at the particular parameter
realization θ ` δ , when the input uk

p is applied. This can be
obtained by using e.g., multiple gradient ascents from different
initial parameter values within ∆. If there exists potential con-
straint violation within the uncertainty set, i.e.,

D j P t1, . . . , Iu s.t. max
δP∆

g jpuk
p,x

k
p,θ `δ q ą 0, (8)

we record the corresponding perturbed input in a set M k. To
reduce the worst-case objective function value, we obtain the
worst-case objective function value for each perturbed input uk

p
as

max
δP∆

f puk
p,x

k
p,θ `δ q,

s.t. hpuk
p,x

k
p,θ `δ q “ 0,

where xk
p is obtained as mentioned above. If the worst-case

objective function value of uk
p is not smaller than that of the

current input uk, i.e.,

max
δP∆

f puk,xk,θ `δ q ďmax
δP∆

f puk
p,x

k
p,θ `δ q, (9)

we record the point puk
p,max

δP∆

f puk
p,x

k
p,θ `δ qq in a set Y k.

Move towards the next input To reduce the worst-case objec-
tive function value and ensure feasibility, the direction towards
the next input uk`1 is selected such that it points away from

the points in M k and Y k, which is obtained by solving the
following second-order cone program (SOCP) [Bertsimas et al.
(2010a)]

min
dk,β

β ,

s.t. }dk}2 ď 1,β ď´ε,

d1kp
uk

p´uk

}uk
p´uk}2

q ď β ,@uk
p P tM

k,Y ku,

(10)

where ε is a small positive scalar. The interpretation of the
optimal d˚k in (10) is the direction that forms the largest possible
angle with the points in M k and Y k. After obtaining d˚k , the
next input uk`1 is then given by

uk`1 “ ProjU tu
k`ad˚k u, (11)

where a is a predefined fixed step size chosen by the user to
be coherent with the set of explored perturbed inputs U k

p , and
ProjU tvu represents the projection of v inside the feasible in-
puts set U . If (10) is infeasible, the seeking of robust optimum
should stop, since we cannot determine a viable direction to up-
date the input. A similar algorithm has been used in Bertsimas
et al. (2010a) to seek local robust optima.

Multiple local search We limit ourselves to local optima here,
but the approach can be extended to global optimization by
employing, e.g., simulated annealing based optimization [Bert-
simas and Nohadani (2010)]. In our case, we repeat the search
of a local robust optimum starting from different initial points
in the input space. The local robust optimum corresponding to
the minimum worst-case objective function value f ˚ is then
selected.

4.3 Optimal experiment design

After obtaining the robust optimum based on the current avail-
able information, we design the next experiments to efficiently
reduce uncertainties through model and uncertainty set update.

Given limited experiment resources, we would like to reduce
uncertainties in a data efficient fashion, that is, instead of reduc-
ing uncertainties globally, the experiments should be focused
on regions where the objective function has a small worst-case
value and where the uncertainty is large. This is called exploita-
tion and exploration, respectively, in contexts such as Bayesian
optimization [Frazier (2018)]. It is important to design further
experiments such that there is a tradeoff between exploitation
and exploration. We assume, in this context, that the objective
function can take any value within the uncertainty set, with
equal probability.

We here design the next experiments in the region where the
likelihood of the expected improvement of the best worst-
case performance is maximized, to achieve the exploitation
and exploration tradeoff automatically. Note that although the
experiment design method is similar to Bayesian optimization
[Frazier (2018)], we here consider a deterministic model-based
approach to obtaining robust optimum, rather than using a
black-box model that may not contain sufficient information for
optimization, as we will demonstrate in Section 5.

We first need to obtain the upper and lower bounds within the
uncertainty set ∆ of the function f pu,x,θ`δ q, for each feasible
input. In general, this can be computationally demanding, so
in order to reduce such computational burden, we sample the
input space by obtaining the bounds only for the feasible inputs



uk
p already explored in Section 4.2. The upper bound corre-

sponding to uk
p has already been obtained during neighborhood

exploration in robust optimization, while the lower bounds can
be obtained by solving

min
δP∆

f puk
p,x

k
p,θ `δ q,

s.t. hpuk
p,x

k
p,θ `δ q “ 0.

(12)

Let the upper and lower bounds corresponding to uk
p be f̄ k

p

and f k
p

respectively. Since for each given input uk
p, we assume

that the probability of any realization of the objective function
within the uncertainty set is equal, the expected value of the
objective function with the input u“ uk

p is given by

Ep f k
pq “

f̄ k
p` f k

p

2
, (13)

while the corresponding uncertainty interval of the objective
function value is given by

∆ f k
p
“ f̄ k

p´ f k
p
. (14)

Similar to the expected improvement acquisition function in
Bayesian optimization [Frazier (2018)], we select the center of
the next experiment region by solving

uexp “ argmax
uk

p

maxtp0, f ˚´Ep f k
pqqu∆ f k

p
. (15)

We recall that the inputs uk
p, over which the maximization in

(15) is done, are the ones already explored in the robust op-
timization step, hence they already belong to U . The method
favors locations where the expected best worst-case objective
function value is small compared to f ˚, i.e., the objective func-
tion value corresponding to the current robust optimum, and
where the uncertainty interval of the possible worst-case ob-
jective function value is large. Therefore, the tradeoff between
exploitation and exploration is achieved automatically.

If maxt0, f ˚ ´ Ep f k
pqu “ 0, @uk

p P U k
p , it means that there

is little further improvement to be obtained on the current
robust optimum by conducting new experiments. Otherwise,
we design and conduct a batch of steady-state experiments in a
neighborhood around uexp, i.e., a sequence of input tunewu and
the corresponding steady-state measurements txnewu, to further
reduce uncertainties in the region.

After collecting the new data tunew,xnewu, the uncertainties in
the region can be reduced by re-identifying the steady-state
model using all available data including those from previous
experiments.

Note that the acquisition function can be replaced by other
function forms that are more suitable for particular applications,
for example by trying to achieve a different trade-off between
exploitation and exploration.

4.4 Algorithm summary

The algorithm of the proposed model-based framework for
robust optimization is summarized as follows:

(1) with the initially available data tuseq,xsequ, select the fixed
step size a in (11) and the maximum allowed number of
experiments N;

(2) identify nominal parameters θ and steady-state model
hpu,x,θq “ 0 by solving (4), and construct the 95% confi-
dence ellipsoidal parametric uncertainty set ∆ using (5);

(3) obtain the robust optimum u˚ and the corresponding
worst-case objective function f ˚ based on the available
information, using the algorithm described in Section 4.2;

(4) design and conduct a new batch of steady-state experi-
ments in a neighborhood around uexp to further reduce
uncertainties in the region, where uexp is determined as in
(15). These new data tunew,xnewu are added to the already
available data tuseq,xsequ;

(5) repeat 2) - 4) until maxt0, f ˚´Ep f k
pqu “ 0, @uk

p PU k
p or

the number of experiments exceeds N;
(6) perform steps 2) and 3), based on all the available data

tuseq,xsequ, to obtain the best robust optimum given the
available experiment resources.

Remark 2. As already mentioned previously, the proposed
framework is not limited by the specific choices of modeling,
robust optimization, or experiment design methods made here.
Indeed, each of them can be replaced by methods better suited
to a specific application.

5. EXAMPLES

We first revisit the motivating example of Section 2 and then
consider a more realistic example in cell culture medium devel-
opment for continuous biopharmaceutical production.

5.1 Motivating example revisited

As shown in Section 2, based on the initially available informa-
tion, the nominal optimum has a small function value, but also
potentially poor performance due to large uncertainty around
the nominal optimum. It is therefore logical to attempt to re-
duce the uncertainty around the nominal optimum in the next
experiment. We here apply the proposed method to efficiently
design the next experiments in order to repeatedly reduce the
uncertainty in the most promising region for optimization.

We assume that the available experiment resources allow us
to perform N “ 2 additional batches of experiments, with one
single experiment in each batch. Due to the limited number of
experiments, it is of outmost important to efficiently design the
next experiment to reduce the uncertainty in the region where
the likelihood of the expected improvement of the best worst-
case performance is maximized. By maximizing the acquisition
function in (15), the location of the next experiment is deter-
mined at u “ 1.99 which is close to the nominal optimum, as
illustrated in Fig. 3 (a). As shown in Fig. 3 (b), after conduct-
ing the new experiment in batch 1, the uncertainty around the
region of interest is indeed greatly reduced.

As illustrated in Fig. 3, the proposed method repeatedly com-
putes the robust optimum and designs new experiments to re-
duce the most relevant uncertainty to optimization. The robust
optimum and the next experiment at each batch of experiments
are summarized in Table 2, where we compare the results from
the robust and nominal optimization, by comparing the worst-
case of the objective function value when the inputs obtained
from the robust (Worst-case w. robust below) or the nominal
(Worst-case w. nominal below) optimization are applied. After
2 batches of experiments, the robust optimum is u˚ “ 1.62
which is close to the true optimum u “ 1.5. The lower figure
in Fig. 3 (c) shows that if more experimental resources are
available, we should conduct experiments at u “ 1.78, to fur-
ther reduce uncertainties and get more information around the
region of the true optimum. We note that although the nominal



optima are close to the true optimum, the performance cannot
be guaranteed based on the available information. On the other
hand, the robust optimum at each batch is always with the
best worst-case performance and converges to a neighborhood
around the true optimum as more experiments are conducted.

Note that the GP model identified at each batch fails to provide
useful information for optimization and reduce uncertainties,
since both the corresponding mean (yellow curve) and confi-
dence interval (grey region) are essentially constant. This is
mainly due to the fact that the employed kernel of the GP,
which here corresponds to the standard choice, is not able to
fully utilize the information available in the data. However, the
proposed model-based approach is able to identify the robust
optimum and design new experiments to reduce the most im-
portant uncertainty. Thus, prior knowledge in the form of a
model structure as considered here can prove crucial to locate
the optimum and design informative experiments for optimiza-
tion.

Fig. 3. Results of the proposed method in Example 5.1. Fig. (a),
(b), (c) are the results of initial experiments, batch 1 and
batch 2 of experiments respectively. The meaning of the
curves are described in Section 2.

Table 2. Results with robust and nominal optimiza-
tion and experiment design in Example 5.1.

Init. exp. Batch 1 Batch 2
Robust optimum u˚ -1.85 1.38 1.62
Worst-case w. robust 39.9 26.2 9.2
Nominal optimum 1.88 1.70 1.73

Worst-case w. nominal 171.9 28.0 9.5
Next experiment location uexp 1.99 1.74 1.78

Fig. 4. Two substrates and two products metabolic network.

5.2 Application: robust perfusion culture medium optimization
in biopharmaceutical production

In biomanufacturing using mammalian cells for the production
of biopharmaceuticals, a particular case of continuous produc-
tion operation mode, perfusion process, is becoming popular
due to its potential to maintain high productivity for an ex-
tended period of time. One of the key problems in this context
is the determination of the optimal cell culture medium compo-
sition [Zhang et al. (2021)]. The culture medium determines the
state of the biochemical reaction network of the cells, and there-
fore the rates at which products of interest are produced. Exist-
ing methods to solve this problem are typically time-consuming
and lead to suboptimal operating conditions due to the fact
that available models typically are highly uncertain and applied
optimization methods mainly are based on trial and error [Hu
(2020)]. Furthermore, in a bio-pharmaceutical context, it is im-
portant to have guarantees on the yield of products of interest,
something which can be obtained using a robust optimization
approach. Moreover, due to resource limitations, only a limited
number of experiments are typically allowed for the purpose of
optimization. Thus, it is important to take both uncertainty and
limited resources into account in the medium optimization. To
tackle the problem, we here apply the framework proposed in
Section 4.

Consider the simple example of the metabolic network illus-
trated in Fig. 4 with two substrates S1 and S2, two products Pd
and Pu and the two reactions:

R1 : S1`2S2 Ñ 0.5Pd ,

R2 : S2 Ñ Pu.

We use the uppercase (lowercase) letters to represent the sub-
strates and the products (their concentrations). The objective
is to obtain the optimal culture medium composition, consist-
ing of the feed of the substrates S1 and S2, that maximizes
the desired product concentration pd while minimizing the
undesired product concentration pu at the steady state of the
metabolic network. The corresponding objective function, to be
minimized, can be formulated as:

f ppd , puq “ ´λ pd`p1´λ qpu,

where λ P r0,1s is a weight on the importance of maximizing
pd relative to minimizing pu. The steady-state equations for the
metabolic network are:



´v1px,θq ¨b´Fs1`Fu1 “ 0,
´2v1px,θq ¨b´ v2px,θq ¨b´Fs2`Fu2 “ 0,

1
2 v1px,θq ¨b´F pd “ 0,

v2px,θq ¨b´F pu “ 0,

(16)

where b is the biomass concentration at steady state; v1 and
v2 are the rates of the reactions R1 and R2; F is the perfusion
flow rate; x “ rs1 s2 p1 p2s

J is the vector of the steady-state
substrates and products concentrations; u “ ru1 u2s

J is the
feeding culture medium which we aim to optimize. We assume
that the rates v1 and v2 have the following structures:

v1px,θq “ v1,max
s1

ps1`θ1q¨p1`s1θ2q
¨

s2
ps2`θ3q¨p1`s2θ4q

¨ 1
p1`θ5 pdq

,

v2px,θq “ v2,max ¨
s2

ps2`θ6q¨p1`s2θ7q
¨ 1
p1`θ8 puq

,

where the parameters θ are the nominal ones, which are esti-
mated and hence inherently subject to uncertainties. Due to the
existence of uncertainties, we seek the robustly optimal feeding
culture medium u within the available experiment resources.

Let x, x be the imposed lower and upper bounds on the steady-
state concentrations, respectively, and u, u be the imposed lower
and upper bounds on the feeding medium concentrations, re-
spectively. The robust optimization problem is then formulated
as
min

u
max
δP∆

´λ pd`p1´λ qpu (17)

s.t. uď uď u
max
δP∆

px´ xq ď 0

max
δP∆

px´ xq ď 0

´ v1px,θ `δ q ¨b´Fs1`Fu1 “ 0
´2v1px,θ `δ q ¨b´ v2px,θ `δ q ¨b´Fs2`Fu2 “ 0
1
2

v1px,θ `δ q ¨b´F pd “ 0

v2px,θ `δ q ¨b´F pu “ 0
where the uncertainty set ∆ is defined as in (5). Note that x
indirectly depends on the uncertainty δ , since it is obtained by
solving the steady-state equations that depend on the particular
uncertainty realization. We next solve (17) using the framework
described in Section 4. The nominal parameter values and the
setup of the framework are summarized in Appendix A.

We assume there exist 25 initial experiments, and the available
experiment resources allow us to perform N “ 3 batches of ex-
periments, with 5 experiments for each batch. The experiments
are with 10% uniformly distributed relative measurement noise.
To illustrate the results, following each batch of experiments
we compare the obtained robust optimum with the nominal
one obtained from a nominal optimization using the estimated
parameters. As shown in Table 3, the robust and nominal opti-
mum correspond to widely different feeding culture medium
compositions. In the presence of uncertainty, the worst-case
performance of the input obtained through nominal optimiza-
tion is significantly worse than the one obtained through robust
optimization. Thus, to guarantee a certain yield of the product
of interest under uncertainty, the medium composition corre-
sponding to the robust optimum should be selected. In Fig. 5,
the worst-case objective function values obtained in the two
cases are compared. It is noted that the worst-case objective
function value decreases with new experiments, i.e., the worst-

case performance is improved, as new information is taken
into account by the robust optimization. This also implies that
uncertainties are repeatedly reduced by the proposed optimal
experiment design. This demonstrates that the proposed frame-
work is an efficient and attractive alternative for bioproduction
applications.

Table 3. Results of robust and nominal opti-
mization, in Example 5.2 in different experiment

batches.

Init. exp. Batch 1 Batch 2 Batch 3

Input w. robust opt.
„

0.55
0.50

 „

0.89
1.77

 „

0.79
1.43

 „

0.67
1.46



Worst-case w. robust 0.0405 0.0154 0.0115 0.0111

Input w. nominal opt.
„

0.94
3

 „

1.21
3

 „

1.14
3

 „

0.85
2.83



Worst-case w. nominal 0.1041 0.0557 0.0601 0.0522
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Fig. 5. Comparison between the results of the nominal opti-
mization (blue) and the robust optimization (red), in Ex-
ample 5.2. It is noted that, for each batch, the robust
optimization leads to a lower worst-case of the objective
function.

6. CONCLUSION AND DISCUSSION

In this work, we proposed a general model-based framework
combining robust optimization with optimal experiment design.
We demonstrated that by employing a mechanistic model struc-
ture in the robust optimization we could better utilize the avail-
able information and also design more informative experiments
for the purpose of optimization, as compared to standard black-
box approaches. We stress that uncertainty should explicitly be
taken into account both in the optimization and in the design
of experiments. The proposed method determines a robust op-
timum that provides worst-case performance guarantee in the
presence of uncertainty, and furthermore efficiently design fur-
ther experiments to reduce the uncertainty that is most relevant
to optimization. The framework is general and not limited by
specific modeling, robust optimization or experiment design
methods, which can all be changed in a modular fashion. We
have illustrated the effectiveness of the proposed framework by



studying a feeding cell culture medium optimization example
relevant to continuous biopharmaceutical production.

In the context of black-box optimization, robust variants have
been proposed previously, e.g., [Bogunovic et al. (2018)]. How-
ever, as demonstrated here, adding prior knowledge in the form
of mechanistic model structures can be crucial to determine
both the robust optimum and also the most informative experi-
ments for optimization.

Although we only considered parametric uncertainties in this
work, the proposed framework can be directly extended to other
types of uncertainties, including uncertainty that cannot be
reduced by obtaining more data, e.g., input uncertainties. This,
however, would require more involved methods for the model
and uncertainty set update, since the identification problem
would become of error-in-variables type. We leave this for
future work.

Regarding the computational complexity of the framework, it is
remarked that this strictly depends on the particular choices for
the different modules of model identification, robust optimiza-
tion and experiment design. In the case described in Section 4,
the main contribution to the computational complexity is the
robust optimization scheme. In fact, at step k of the local search,
up to M ¨ I maximizations are performed, where M is the size
of the perturbed inputs set and I is the number of inequality
constraints, to explore the neighborhood of the current input
and check for potential constraint violations. Following this,
another set of up to M maximizations are performed, to obtain
the worst-case objective function values, corresponding to fea-
sible perturbed inputs. Then the SOCP problem (10) is solved,
to determine the update direction towards which the input is
moved. This is repeated for N different initial conditions, and
for each of these K possible steps of the local search algorithm
are performed (a stopping criterion can be met before). This
implies that to solve the global robust optimization problem,
we may need to solve up to M ¨ pI ` 1q ¨K ¨N maximization
problems. Despite being computationally demanding, we note
that the complexity increases only linearly with the number of
constraints and strictly depends on the number M of perturbed
inputs.

In future work, we will consider possible extensions of the
framework to enable more general uncertainties. With regards
to biopharmaceutical production, we plan to apply the method
experimentally, involving mammalian cell lines.
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Appendix A. SIMULATION SETUP AND PARAMETERS
IN EXAMPLE 5.2

The true parameters of the metabolic network are b “ 1.6,
θ “ r0.5 1 3 1 0.75 3 2.75 2 0.25sJ, v1,max “ 3, v2,max “
3.5, F “ 0.25. In the optimization problem, the weight in
objective function is λ “ 0.9; the input bounds are u “
r0.5 0.5sJ and u “ r3 3sJ; the concentration bounds are
given by x “ r0 0 0 0sJ and x “ r25 25 8 8s

J. In the
proposed framework, after each batch of experiments, we
seek a local optimum starting from 4 different initial points
r1 1sJ , r1 2sJ , r2 1sJ , r2 2sJ, using 40 steps with constant
step size a “ 0.15; for experiment design, we design 5 new
experiments for each batch, which are generated by

ProjU puexp`σvq,
where ProjX pxq is the projection of the point x in the set X ;
U “ tu P R2 | uď uď uu; σ “ 0.25 and v P r´1,1s2.


