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Abstract:Many chemical or biochemical processes exhibit strongly nonlinear dynamic behavior
in the desired region of operations. To develop e¤ective monitoring and control schemes for such
systems, it is necessary to develop a reliable model that captures dynamics as well as the
steady-state behavior over a wide range of operations. In this work, it is proposed to develop a
block-oriented Wiener-Hammerstein model parameterized using generalized orthonormal basis
�lters and deep neural network (GOBF DNN). A two-step procedure is developed to select
the generalized orthonormal basis �lters (GOBF) pole locations and estimate the deep neural
network (DNN) parameters. The e¢ cacy of the proposed modeling strategy is demonstrated
using the simulation study on a benchmark continuously operated fermenter system. The
proposed GOBF DNN model is able to capture the dynamic and steady-state behavior of the
plant over a wide range of operations. Comparison of performances based on the dynamic as well
as the steady-state indices clearly underscores the advantages of using a DNN over a shallow
neural net and a NARX model developed using DNN.
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1. INTRODUCTION

Many chemical or biochemical processes exhibit strongly
nonlinear dynamic behavior. In particular, output multi-
plicities (occurrence of multiple steady states for a �xed
set of input values) or input multiplicities (occurrence
of identical output steady states for multiple sets of in-
put values) can be observed in reactor systems involving
exothermic reactions. Nonlinear control schemes, such as
nonlinear model predictive control or nonlinear controller
synthesized using input-output linearization, have been
suggested in the literature for achieving e¢ cient control of
such systems (Henson et al. [1997]). The availability of a
dynamic model that can accurately capture the dynamic
as well as nonlinear steady-state behavior of the system
under consideration is critical for the success of any such
nonlinear control scheme.

The block-oriented nonlinear models with Wiener, Ham-
merstein, or Wiener-Hammerstein structures are fre-
quently used for control relevant black box model de-
velopment. Because of their relatively simple structure,
these models are viewed as �next-step-beyond-linear mod-
eling� (Pearson and Ogunnaike [1997]). In particular,
many variants of block-oriented models have been devel-
oped using generalized orthonormal basis �lters to pa-
rameterize the linear dynamic component (Patwardhan
[2014]). McArthur [2012] have proposed the use of Ham-
merstein and Wiener-Hammerstein models parameterized
using GOBF for industrial-scale systems. The nonlinear
static maps in the block-oriented models are constructed

using ordinal splines. Dasgupta and Patwardhan [2010]
have shown that GOBF based Wiener, Hammerstein, or
Wiener-Hammerstein models, can be used for capturing
the dynamics and nonlinear steady-state behavior of sys-
tems exhibiting input multiplicities.

The choice of functions used to parameterize the static
blocks in the block-oriented model plays an important role
in the dynamic and steady-state behavior of the identi�ed
models. Many available approaches use polynomial maps
for parameterizing the static blocks. However, this choice
may not be adequate for capturing the static nonlinearities
in the system over a wide operating range (Dasgupta and
Patwardhan [2010]). Alternatively, GOBF-Wiener models
have been developed using arti�cial neural networks for
parameterizing the static nonlinearities. Sentoni et al.
[1998] initially parameterize the linear dynamics using
GOBF while the state to output map is constructed
using a single hidden layer neural network. While SNN
appears to be a better choice for the static blocks than
the polynomial maps, their utility needs to be examined by
considering dynamic as well as the steady-state behavior
of the resulting model.

In recent years, there has been increasing use of Deep
Neural Networks (DNN) for developing control relevant
nonlinear dynamic models as DNN has been shown to
be a better choice than SNN for capturing nonlinear be-
havior. Mckay et al. [2021] have used DNN for captur-
ing dynamics of a distributed parameter electrochemical



system (Lithium-ion battery). In this work, we propose
to use of DNN for the development of MIMO Wiener-
Hammerstein (WH) models parameterized using GOBF.
The proposed GOBF-WH-DNN model is developed in two
steps. To begin with, a GOBF-WH models are developed
using a quadratic polynomial map. The pole locations of
the GOBF are �xed using this step, and the state sequence
generated using the linear dynamic component of the
GOBF-WH model serves as an input to the DNN model.
Thus, the nonlinear state to output map in the GOBF-WH
model is replaced by a DNN to arrive at GOBF-WH-DNN
model. The e¢ cacy of the proposed approach is evaluated
by conducting simulation studies on a benchmark continu-
ous fermenter system (Henson et al. [1997], Dasgupta and
Patwardhan [2010]). Dynamic as well as the steady-state
characteristics of the resulting model is used for the model
validation exercise. The ability of the proposed approach
to capture system behavior is compared with a GOBF-WH
model developed using SNN and a NARXmodel developed
using DNN.

This paper is organized into four sections. The develop-
ment of GOBF-WH-DNN model is presented in Section
2. In section 3, the performance of the proposed model
is demonstrated using a simulation study on a continuous
fermenter system. The major conclusion drawn from the
analysis of the simulation study is presented in section 4.

2. DEVELOPMENT OF BLACK BOX NONLINEAR
DYNAMIC MODEL

Consider a continuously operated non-linear process, gov-
erned by a mechanistic model of the form:

dZ

dt
= F (Z(t);U(t);D(t)) (1)

where Z(t) 2 Rs represents state vector, U(t) 2 Rm

represents manipulative input vector and D(t) 2 Rd

represents unmeasured disturbances vector. The discrete
time measurements available from the system (with a
regular sampling interval of T ) are represented as follows

Y(k) = G(Z(k)) + v(k) (2)
where Y(k) 2 Rr represents measured output vector
corrupted with measurement noise v(k); which is zero
mean random variable. In manipulated inputs are assumed
to be piecewise constant injected at a regular sampling
interval (T ). For the identi�cation of a black box dynamic
model, the plant is perturbed deliberately by introducing
multi-level perturbations in the manipulated inputs and
the corresponding input-output data are collected. The
inputs are manipulated at discrete time instantsftk = kT :
k = 0; 1; 2; :::g ( T is sampling time) and it is assumed that
the measurements of the outputs are available at same
sampling instants. Therefore, sequence of input data sets
UN � fU(k) : k = 0; 1; 2; :::; Ng and the corresponding
output data sets YN � fY(k) : k = 0; 1; 2; :::; Ng are
collected from the plant. The modeling exercise is aimed
at developing a MIMO discrete time black-box model of
the form:

Y(k) = [
(k);�] + e(k) (3)
using sets YN and UN : Here, f
(k) : k = 1; 2; :::Ng repre-
sent the regressor vectors and fe(k) : k = 1; 2; :::Ng repre-
sent sequence of model residuals . If regressor vector 
(k)
is chosen as function of past known inputs and past output

measurements, then structure of model is referred to as
nonlinear ARX (i.e. NARX) and if it is chosen as function
of past known inputs and simulated outputs from past
input only, then structure of model is referred to as Non-
linear output error (or NOE) (Dasgupta and Patwardhan
[2010]). This work aims at development of a MIMO model
with NOE structure.

2.1 Deep Neural Network

In this subsection, a deep neural net (DNN) is introduced
as algebraic (static) maps connecting an input X 2 Rn

with an output Y 2 Rs. The connection of DNN with the
proposed dynamic models will be discussed later. Thus,
consider deep neural network of p hidden layer described as
follows (Emmert-Streib et al. [2020]). LetW(i) represent
the weight matrix associated with the ith hidden layer
and let b(i) represents the bias vector associated with
the ith hidden layer where i = 1; 2; ::p. Then, de�ning
�(0) = X; the intermediate outputs of hidden layers can
be represented as follows:

�(i) = 	(i)(W(i)�(i�1) + b(i)) for i = 1; 2; ::p (4)

where 	(i) represents the activation function of ith hid-
den layer. There are various types of activation functions
suggested in the literature, such as sigmoidal, tanh, lin-
ear etc., that can be used to construct transformation
	(i)(Emmert-Streib et al. [2020]). The output Y is related
to �(p) by a linear relation as follows

Output layer: Y =W(p+1)�(p) + b(p+1) + e (5)
where e represents the approximation error vector. Thus,
the output is related to the input as follows:

Y = NN (X;�NN ) + e (6)
where

NN (X)�W(p+1)	(p)f	(p�1)

(:::	(1)(W(1)X + b(1)))g+ b(p+1) (7)

Here, �NN refers to NN parameters fW(i);b(i) : i = 1; 2; ;
; p + 1g. In this work, if p is chosen equal to 1, then
the resulting neural net is referred to as a shallow neural
network (SNN) and if number of hidden layer is more than
one, then it�s referred to as a deep neural network (DNN).
Now, for a given set of input vectors, XN ; and associated
output vectors, YN

XN =
�
X(0); X(1); ::: X(N)

	
YN =

�
Y(0); Y(1); ::: Y(N)

	
the identi�cation problem is to estimate the unknown
parameter weights and bias (i.e. �NN ) such that some
scalar function of

e(k)= Y(k) �NN
�
X(k);�NN

�
for k = 0; 1; 2; :::; N (8)

is minimized.

2.2 Linear Dynamic Component Modeling using GOBF

Let uj(k) = Uj(k) � Uj for j = 1; 2; :::;m represent
perturbation inputs and let yj(k) = Yj(k) � Y j for j =
1; 2; :::; r represent perturbation outputs where U and Y
represent some nominal steady state input and output,
respectively. Consider a MISO model relating inputs with



i�th output (To simplify the notations, we drop subscript
i from yi(k)).

y(k) =
mX
j=1

Gj(z)uj(k) (9)

where Gj(z) represents the strictly stable transfer func-
tion. Then, the each Gj(z) can be expressed as

Gj(z) �
nX
l=1

cjlFjl(z; �
(j)) (10)

where Fjl(z; �
(j)) represents an orthonormal basis for the

set of strictly proper stable transfer functions (denoted as
H2). A complete orthogonal set in H2 can be constructed
as follows Patwardhan and Shah [2004]:

Fj;l(z; �
(j)) =

r
(1�

����(j)l ���2)�
z � �(j)l

� l�1Y
s=1

�
1� �(j)�s z

�
�
z � �(j)s

� (11)

where �(j) is a vector of poles inside the unit circle
appearing in complex conjugate pairs. Patwardhan and
Shah [2004] have shown a state-space realization of
linear MISO model parametrized using GOBF can be
constructed as follows:

x(k + 1) =�x(k) + �u(k) (12)

y(k) =Cx(k) + e(k) (13)

where the matrices � and � are only function of GOBF
poles (i.e. �(j) : j = 1; 2; ::;m) and vector C consists of only
the Fourier coe¢ cients cjl (Patwardhan and Shah [2004]).
For MIMO system with r outputs, r such MISO models
can be stacked to arrive at a MIMO state space model of
the form (Patwardhan and Shah [2004])

X(k + 1) =�X(k) + �u(k) (14)

y(k) =CX(k) + e(k) (15)

where

y(k) = [ y1(k) y2(k) ::: yr(k) ]
T

X(k) =
�
x(1)(k)T x(2)(k)T ::: x(r)(k)T

�T
�= blockdiag

�
�(1) �(2) ::: �(r)

�
�=

�
�(1) �(2) ::: �(r)

�T
C= blockdiag

�
C(1) C(2) ::: C(r)

�
2.3 Development of Wiener-Hammerstein-DNN Model

It is proposed to develop Wiener-Hammerstein model
parameterized using generalized orthonormal basis �lters
(GOBF) (Dasgupta and Patwardhan [2010]) and deep
neural networks which has following generalized form:

X(k + 1) =�X(k) + ��[u(k)] (16)

y(k) = 
 [X(k)] + e(k) (17)

It should be noted that �[:] represents nonlinear map
between manipulative inputs and states as follows:

�(u(k)) = [ f1 [u(k)] f2 [u(k)] ::: fM [u(k)] ]
T (18)

Here, fj [u(k)] : Rm ! R for j = 1; 2; :::;M represent
some nonlinear functions of inputs. In this work, these are
chosen as polynomial functions as follows:

fi [u(k)] = ui(k) for i = 1; 2; :::m (19)

f(m+l) [u(k)] = ui(k)uj(k) (20)

for i; j = 1; 2; :::m and l = 1; 2; :::;m(m+ 1)=2
The nonlinear map between states and measured outputs
(i.e. 
[:] ) is taken as deep neural network as following


 [X(k)] = NN [X(k);�NN ] (21)

It is to be noted that the resulting model has NOE
structure and has better long range prediction abilities.
Since all eigenvalues of � are strictly inside the unit circle
by construction, it is straight forward to investigate the
steady state behavior of the resulting WH-GOBF-DNN
model. For any given steady state input us, steady state
output can be calculated analytically as following

Xs = [I��]�1��[us] (22)

ys =NN [Xs] (23)

The unknown parameters of the proposed model are
�OBF � f�(i;j) : i = 1; 2; :::r and j = 1; 2; :::;mg
and weights �NN : Given data sets UN � fu(k) : k =
0; 1; 2; :::; Ng and YN � fy(k) : k = 0; 1; 2; :::; Ng, In this
work we propose to identify these parameters sequentially.

� In the �rst step, we identify MISO GOBF-Wiener-
Hammerstein models of the form

x(i)(k + 1) =�(i)x(i)(k) + �� [u(k)] (24)

yi(k) =Q(i)
h
x(i)(k)

i
+ ei(k) (25)

where Q(i) [:] represents quadratic polynomial output
maps as described by Dasgupta and Patwardhan
[2010], using fUN ;YNg. This step yields estimates of
�OBF , say b�OBF :

� In the next step, we construct the set XN �
fX(k) : k = 0; 1; 2; :::Ng as follows

X(k + 1) = �
�b�OBF�X(k) + ��b�OBF��[u(k)]

(26)
where matrices (�;�) are constructed using b�OBF .
Then, a deep neural net is developed using XN as the
input set and YN as the output, i.e.

y(k) = NN [X(k);�NN ] + e(k) (27)

This step yields estimates of �NN . The deep neural
network is developed by selecting appropriate number
of hidden layers, number of neurons in each hidden
layer, and activation function for each layers.

2.4 Development of NARX Model using Neural Networks

Another popular form of neural network based nonlinear
discrete time model is with nonlinear ARX (NARX) struc-
ture (Bhat and McAvoy [1989]). Thus, for the purpose
of comparison, it is suggested to develop a MIMO NARX
model using deep neural networks, which has the following
generalized form:



Y(k) =NN [Y(k � 1); :::;Y(k � d);U(k � 1);
:::;U(k � d);�NN ] + e(k) (28)

where d represents number of delayed measurements and
inputs used for developing the model. Given data sets
fUN ;YNg ; parameters of the DNN based NARX model
are identi�ed using the back-propagation algorithm. For
the purpose of comparison with the proposed NOE model,
the following behavior of the NARX model will be inves-
tigated

� Model simulation: For a given sequence of inputs,
U(0); U(1),... the simulated model output is com-
puted as bY(k) =NN [ bY(k � 1); ::; bY(k � d);

U(k � 1); ::;U(k � d)] (29)

where bY represents the predicted output.
� Steady State behavior: For the NARX Model, it�s
not possible to estimate the steady states analytically.
For a speci�ed steady state input, say Us, the corre-
sponding steady state Ys is computed by simulating
output asbY(k) = NN [ bY(k � 1); ::; bY(k � d);Us; ::;Us] (30)

till bY(k)! Ys.

3. SIMULATION STUDY

Simulation study on a benchmark continuous fermenter
system (Henson et al. [1997], Dasgupta and Patward-
han [2010]) is conducted in this section. This system
exhibits input multiplicities and change in the sign of
the steady-state gain(s) in the desired operating region.
The identi�cation of three NN based models is carried out
using an input-output data set generated by simulating the
dynamic system behavior over a wide range of operations.
Two Wiener Hammerstein models parameterized using
GOBF are developed using this data: (i) WH model with a
deep NN as the state to output map (referred to as GOBF-
DNN) and (ii) WH model with a shallow NN as the state
to output map (referred to as GOBF-SNN). In addition,
a NARX model parameterized using DNN (referred to
as a NARX-DNN) is developed using the data set. The
performances of Wiener-Hammerstein and NARX models
are compared using the following performance indices

� Dynamic Sum Squared Error (DSSE):

DSSE =
NP
k=1

h
Y(k)� bY(k)iT hY(k)� bY(k)i (31)

Here, N represents the number of data points in
the model validation data set, Y(k) represents the
process output vector and bY(k) represents the simu-
lated model output vector.

� Static Sum Squared Error (SSSE):

SSSE =
NsP
i=1

h
Ys� bYs

iT h
Ys� bYs

i
(32)

Here, Ys represents the steady state process output
vector and bYs represents the model steady state out-
put vector obtained for a �xed Us and Ns represents
the number of steady state data points.

The simulation study is carried out in MATLAB 2021 on
a standard PC with i7 processor. Also, MATLAB nnstart
toolbox has been used to train neural network models.

3.1 System Description

The nonlinear dynamics of the fermentation process (Hen-
son et al. [1997], Dasgupta and Patwardhan [2010]) is
given by the following set of ODE equations:

dX

dt
=�DX + �(P; S)X (33a)

dS

dt
=D(Sf � S)�

1

Yx=s
�(P; S)X (33b)

dP

dt
=�DP + (��(P; S) + �)X (33c)

where X;S; P represents the biomass concentration, sub-
strate concentration, and product concentration respec-
tively, �(P; S) represents speci�c growth rate, Yx=s repre-
sents cell mass yield and (�, �) are assumed to be constant
i.e. independent of the operating conditions. The dilution
rate (D denoted as U1) and feed substrate concentration
(Sf denoted as U2) are manipulated inputs while biomass
concentration (X) and product concentration (P ) are mea-
sured outputs. The speci�c growth rate (�(P; S)), exhibits
both substrate and product inhibition, has the following
form

�(P; S) =
�m

�
1� P

Pm

�
S

Km + S +
S2

Ki

(34)

Here, �m; Pm;Km represents the maximum growth rate,
product saturation constant, and inhibition constant re-
spectively. The details of the model parameters can be
found in Henson et al. [1997]. The measurements are
collected at a sampling interval (T ) of 0.1 hr. The nom-
inal steady state operating condition for computation of
perturbation variables is chosen as the peak point that
corresponds to D = 0:16 and Sf = 23:4;i.e.

Ys = [ 7:3059 25:008 ]
T

The output measurements are corrupted with zero mean
Gaussian white noise with standard deviations 0.1 and
0.3. The process is perturbed by introducing multi-level
PRBS signals (ref. Fig.1 ) in both the manipulated inputs
simultaneously and 9900 data points (equivalent to 990
hours of plant run) are collected. The collected output
data set used for the system identi�cation exercise. It
can be observed that the data covers a wide range of
operation and can be viewed as collection of perturbation
studies conducted in the neighborhood of multiple steady
operating conditions.

3.2 Black Box Nonlinear Dynamic Models

For the development of the proposed GOBF-DNN and
GOBF-SNN models, two MISO Wiener-Hammerstein
models of the form (24)-(25) are developed. The input
nonlinear map �[:] in the Wiener-Hammerstein models are
taken as 5� 1 vector

�[u(k)] = [u1(k); u2(k); u
2
1(k); u

2
2(k);

u1(k)u2(k)] (35)
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Fig. 1. Multi-level PRBS input sequence

Table 1. Optimum GOBF poles of Wiener-
Hammerstein Model

Input MISO-1 (X) MISO-2 (P)
u1 [0.1825 0.0557] [0.1043 0.0514]
u2 [0.0804 0.0804] [0.0726 0.0726]
u21 [0.0256] [0.0245]
u22 [0.0737] [0.0513]
u1u2 [0.0627] [0.0543]

Table 2. Hyper-parameter used for the devel-
opment of Neural Networks

Model # p N 	

NARX-DNN 3 6,12,4 "tanh"
GOBF-SNN 1 10 "tanh"
GOBF-DNN 4 4,8,4,2 "tanh"

Initially two MISO Wiener-Hammerstein models with 7
GOBF poles each are identi�ed using the input-output
data set. The optimum location of equivalent continuous
time poles, �i ;identi�ed from data are mentioned in the
Table 1. These poles are related to the GOBF poles as
�i = exp (��iT ). These pole locations are then used to
construct �;� matrices in eq. (26) to generate the state
sequence for training of DNN or SNN. The development
of neural networks requires the tuning of a number of
hyperparameters such as number of hidden layer (p),
number of neurons (N) in each hidden layer and activation
function (	) for each hidden layer that are listed in Table
2. Since, the continuous fermenter is a 3rd order system, it
is proposed to develop MIMO NARX model using a deep
neural net subjected to inputs with 3 delays, i.e. d = 3 in
eq. (28). The number of unknown parameters which are
being estimated for each model are as follow

GOBF-DNN: 14 (GOBF) + 152 (DNN) = 166

GOBF-SNN: 14 (GOBF) + 172 (DNN) = 186
NARX-DNN: 224 (DNN)

3.3 Results and Discussion

The simulation (or in�nite horizon prediction) perfor-
mance of the identi�ed models is validated using an in-
dependent dynamic data set as shown in Figure 2, while
the steady-state behavior (in the neighborhood of the
nominal operating condition) is compared in Figures 3 and
4. Performance comparison in terms of the performance
indices is presented in Table 3. From the Figure 2, it is
observed that the performance of the GOBF-DNN model
is the best amongst the three while the performance of the
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Fig. 2. Dynamic model validation
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Fig. 4. Comparison of steady state behavior w.r.t. D at
Sf = 23:4

GOBF-SNN model is the poorest. This is also re�ected in
the DSSE values reported in Table 3. Although the NARX-
DNN model is able to capture the dynamic behavior of the
plant reasonably well, it fails to capture the steady-state
behavior of the system. On the other hand, the GOBF-
DNN model is able to capture the steady-state behavior of
the plant over a wide range of operations. The GOBF-SNN
model captures the steady-state behavior of the plant at
a high feed substrate concentration or high dilution rate.
But performs poorly for low Sf values. For further in-
vestigation of steady-state behavior of these GOBF-DNN
and GOBF-SNN models, a 3D plot of steady-state outputs
as a function of substrate concentration are plotted for
di¤erent dilution rates as shown in Figures 5 and 6. The
SSSE values corresponding to Fig. 5 and Fig. 6 are given
in Table 4. Except for the high dilution rate, Figures 5 and
6 suggests that the GOBF-DNN model is able to capture
the steady-state behavior of the plant over a wide range
of operation.



Fig. 5. Comparison of steady state behavior of X

Fig. 6. Comparison of steady state behavior of P

Table 3. Comprison of dynamic and steady-
state behaviour of Models using SSE

Model # DSSE SSSE (w.r.t. Sf ) SSSE (w.r.t. D)
NARX DNN 583.5634 1337.9 2785.1
GOBF SNN 1764.3 134.4925 1735.2
GOBF DNN 351.9407 6.3845 48.0078

Table 4. Comparison of steady-state behaviour
w.r.t. dilution rate using SSSE

D(h�1) GOBF SNN GOBF DNN
0.09 1574.1 59.5476
0.10 713.6664 49.2099
0.11 646.0348 28.2202
0.12 544.3256 10.6538
0.13 371.5349 6.4298
0.14 1159.2 13.5248
0.15 1421.5 17.8227
0.16 178.6279 7.9081
0.17 561.0108 10.6411
0.18 2500.9 134.7279
0.19 4456.5 369.8197
0.2 5496.7 355.3697

4. CONCLUSION

In this work, we developed block-oriented Wiener Ham-
merstein models parameterized using generalized ortho-
normal basis �lters (GOBF) using input-output data. The
nonlinear state to output map in a Wiener-Hammerstein
model is constructed using a deep neural network. The
resulting GOBF-DNN model has a nonlinear output error
structure, and, as a consequence, is better suited for carry-
ing out long-range predictions. Since the dynamic compo-
nent is constructed using discrete-time transfer functions,
the resulting model can be viewed as a grey-box model

when compared with a NARX type black-box model de-
veloped using DNN. The e¢ cacy of the proposed model
is demonstrated using a simulation study on a bench-
mark continuous fermenter process, which exhibits input
multiplicity behavior. The simulation study compares the
model simulation performances of the proposed GOBF-
DNN with GOBF-SNN and NARX-DNN models. The
analysis of the simulation study reveals that the NARX-
DNN model shows good dynamic simulation performance.
However, it fails to capture the steady-state characteristics
of the system. On the other hand, the proposed GOBF-
DNN model is able to capture the dynamic and steady-
state behavior of the plant over a wide range of operations.
Comparison of performances based on dynamic as well as
the steady-state indices clearly underscores the advantages
of using a DNN over an SNN for constructing the state to
output map.
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