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Abstract: Rotating machines, such as pumps and compressors, are critical components in refinery and 
chemical plants used to transport fluids between processing units. Bearings are often the critical parts of 
rotating machinery, and their failure could result in economic loss and/or safety issues. Therefore, 
estimation of the remaining useful life (RUL) of a bearing plays an important role in reducing production 
losses and avoiding machine damage. Because bearing failure mechanisms tend to be complex and 
stochastic, data-driven RUL estimation approaches have found more applications. This work proposes a 
novel RUL estimation method based on systematic feature engineering and extreme learning machine 
(ELM). The PRONOSTIA dataset is used to demonstrate the effectiveness of the proposed method. 
Keywords: remaining useful life, ball bearing, machine learning, feature engineering, extreme learning 
machine. 

1. INTRODUCTION 

Rotating machines, such as pumps and compressors, are 
critical components in refinery and chemical plants used to 
transport fluids between processing units. Rotating machines 
generally cost more to maintain than static equipment in the 
plants because they generally operate at high speed and under 
harsh conditions (e.g., high pressure and corrosive fluids), and 
they consist of many moving parts, leading to frequent failures. 
Failure of bearings, one of the critical parts of rotating 
machinery, could result in economic loss and/or safety issues. 
Thus, estimation of the remaining useful life (RUL) of a 
bearing plays an important role in reducing production losses 
and avoiding machine damage. This estimation can be done 
through the prognostics and health management (PHM) of 
bearings. To improve the reliability of process operation, 
accurate estimation of RUL of a bearing is crucial. This 
enables process engineers to inspect performance and conduct 
maintenance in a timely manner. 

The most commonly used measurements in RUL estimation 
include vibration, oil debris and acoustic emission. In this 
work, we focus on RUL estimation using vibration 
measurements. RUL estimation techniques can be roughly 
classified into two categories: model-based and data-driven 
(Heng et al., 2009; Lee et al., 2014). The former describes 
physics of a system and failure mechanisms through 
mathematical models. If the physics of the system is well 
understood and the model explains failure mechanisms well, 
this approach can provide accurate RUL estimation. In reality, 
however, failure mechanisms tend to be complex and 
stochastic, making the underlying physical principles difficult 

to understand or model. In comparison, data-driven 
approaches apply statistical/machine learning or deep learning 
to historical data and estimate RUL from the data. Therefore, 
data-driven approaches have found more applications in 
estimating RUL of bearings in complex systems. Since data-
driven methods require historical data, their usage can be 
limited to the systems that have sufficient historical data for 
model training. Also, it is not often to obtain the whole failure 
data because the degraded bearings usually get replaced before 
reaching complete failure. Finally, bearing failure process can 
be highly stochastic, e.g., due to material defects and/or 
operation condition changes.  

Some representative data-driven RUL estimation techniques 
proposed in the literature include nonlinear regression 
(Gebraeel et al., 2005), hidden Markov model (HMM) (Dong 
& He, 2007), particle filter (PF) (Qian & Yan, 2015), support 
vector machines (SVM) (Benkedjouh et al., 2013; Yan et al., 
2020), and artificial neural networks (ANN) and deep learning 
(DL) based methods (Ali et al., 2015; Chen et al., 2020; Hinchi 
& Tkiouat, 2018; Pan et al., 2020; Zhu et al., 2018), and many 
others. Interested readers are referred to the review papers (H.-
Z. Huang et al., 2015; Liu et al., 2018; Si et al., 2011) for more 
thorough coverage of different methods in the field. Among all 
the above-mentioned techniques, ANN/DL based approaches 
have drawn the most research interests, which is also the focus 
of this work. We have found that the performances of these 
approaches are not always satisfactory. Therefore, this study 
proposes a new framework for RUL estimation of bearings 
using systematic feature engineering (FE) and extreme 
learning machine (ELM), with the goal of achieving better 
performance than the existing approaches. 



ELM is a feedforward neural network with a single hidden 
layer. It has been shown that the learning speed of ELM is 
extremely fast, and it has better generalization performance 
than the gradient-based learning such as backpropagation in 
most cases (G.-B. Huang et al., 2006). Although ELM has only 
one hidden layer, in theory, ELM can approximate any 
continuous functions. In this work, we use ELM to model the 
complex nonlinear relationship between features extracted 
from a bearing’s vibration signals and the RUL of the bearing. 
Due to limited space, the detailed mathematical description of 
the ELM algorithm is omitted. Interested readers are referred 
to (G.-B. Huang et al., 2006, 2011). 

The remainder of this work is organized as follows. Section 2 
describes the novel framework for RUL estimation. Section 3 
presents the RUL estimation results using a publicly available 
real bearing failure dataset to demonstrate the effectiveness of 
the proposed method. Section 4 draws conclusions of this 
work. 

2. PROPOSED RUL ESTIMATION METHOD 

2.1 Overview 

The proposed method consists of the following four steps: 
health indicator (HI) construction, health status determination, 
feature engineering, and RUL estimation. The first step is to 
construct a reliable HI that is not only closely linked with 
bearing health, but also comparable between different 
bearings. The second step is to determine bearing health status 
based on the constructed HI, i.e., to determine whether the 
bearing is operating normally or there is degradation 
happening. Once a degradation is detected, the third step is to 
employ systematic FE to generate features that are not only 
physically meaningful but also predictive in machine learning. 
Finally, the engineered features are used to train ELM models, 
which are used to predict RUL of test bearings. In this study, 
the PHM 2012 Challenge dataset obtained on the 
PRONOSTIA platform is used to demonstrate the 
effectiveness of the proposed method. The goal of the 
PRONOSTIA platform is to provide useful experimental data 
that describe the degradation behavior of ball bearings through 
their whole operation life (Nectoux et al., 2012). The same 
dataset is used to illustrate the steps involved in the proposed 
method. 

2.2 Health indicator construction 

During the health indicator (HI) construction step, we first 
extract the root mean square (RMS) values from the 
mechanical vibration signal, which is 0.707 times the peak 
value by assuming a sine wave. Previous studies have found 
that RMS values are robust indicators that reflect the 
degradation behavior of ball bearings. According to the 
international standard ISO 2372, when the RMS value of the 
medium mechanical vibration signal reaches 2.0 to 2.2 g, the 
equipment is in a dangerous state (Shiroishi et al., 1997). 
However, it is challenging to determine the RMS failure 
threshold because the bearings, even under the same operation 
condition, can have drastically different degradation 
trajectories, which significantly affect the RMS values. This is 
illustrated in Figure 1 where different bearings have different 

baseline or nominal RMS values during the normal operation 
periods. 

Therefore, the standardized RMS (SRMS) (Pan et al., 2020) is 
utilized to reduce the variation of RMS values between 
different bearings based on the following equation 

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) =  𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖)
1
𝑟𝑟∑ 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟(𝑗𝑗)𝑟𝑟1+𝑟𝑟

𝑗𝑗=𝑟𝑟1

  (1) 

where 1
𝑠𝑠
∑ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗)𝑠𝑠1+𝑠𝑠
𝑗𝑗=𝑠𝑠1

 calculate a nominal value of the RMS 
when the bearing is working normally (e.g., after bearing 
replacement or maintenance). Figure 2 shows SRMS of the 
same bearings as in Figure 1. It can be seen that SRMS values 
fluctuate around 1 during normal operations for all bearings. 
The peak values of SRMS are also more balanced than RMS 
as shown in Figure 1. As a result, SRMS is used as HI in this 
work. 

Figure 1. Different bearings have different baseline or 
nominal RMS values during the normal operation periods 

 

As can be seen in Figure 2, SRMS as HI can be noisy, which 
would negatively affect the RUL estimation. To reduce the 
fluctuation of HI (i.e., SRMS), a moving average (MA) filter 
is used to smooth HI values. In this work, window width of 30 
is used. Figure 3 compares the unsmoothed and smoothed HI 
for Bearing 1-1. 

Figure 2. After standardization, SRMS have similar 
baselines and peak values for different bearings 



Since the full trajectory would not be available when 
estimating RUL for a failing (but not yet completely failed) 
bearing, its HI trajectory will be estimated by either 
polynomial or exponential fitting using the available data, 
whichever gives the smaller fitting error. 

2.3 Health status determination 

Once HI is smoothed by a MA filter, it is ready for health status 
determination – whether the bearing is operating normally, or 
it has started degradation. During the health status 
determination step, we aim to find the degradation onset point 
to start predicting bearing’s RUL. The degradation onset of the 
bearing (a.k.a., time to start prediction or 𝑡𝑡𝑆𝑆𝑆𝑆 ) can be 
determined by investigating the gradient value of HI in a given 
window. In this work 𝑡𝑡𝑆𝑆𝑆𝑆  is detected when the HI gradient 
exceeds a predetermined degradation threshold of 0.005. The 
HI gradient is defined as 

𝑘𝑘𝑖𝑖 =  𝑦𝑦𝑖𝑖(𝑛𝑛)− 𝑦𝑦𝑖𝑖(1)
𝑛𝑛 −1

  (2) 

where 𝑦𝑦𝑖𝑖  is a set of HI values in the ith window, 𝑘𝑘𝑖𝑖  is the 
gradient value in the ith window, n is the window size, which 
is 30 in this study. One example of 𝑡𝑡𝑆𝑆𝑆𝑆 determination is shown 
in Figure 4. 

2.3 Feature engineering 

Usually, HI becomes smooth after MA filtering as shown in 
Figure 3. However, there are cases where HI trajectory still 
fluctuate significantly as shown in Figure 5. In this work, 
monotonicity is used to quantify monotonic trend in HI 
trajectory of training bearings, which is defined as follows. 

Figure 4. 𝑡𝑡𝑆𝑆𝑆𝑆 is determined based on HI gradient 

 

𝜇𝜇 = �
𝑛𝑛𝑑𝑑𝐻𝐻𝐻𝐻>0−𝑛𝑛𝑑𝑑𝐻𝐻𝐻𝐻<0

𝑁𝑁−1
� (3) 

where 𝑑𝑑𝐻𝐻𝐻𝐻  denotes the series of differenced HI values with 
length 𝑁𝑁 − 1, given a series of HI values of length N. 𝑛𝑛𝑑𝑑𝐻𝐻𝐻𝐻>0 
and 𝑛𝑛𝑑𝑑𝐻𝐻𝐻𝐻<0 denote the counts of positive and negative values 
in the 𝑑𝑑𝐻𝐻𝐻𝐻  series, respectively. It can be seen that 𝜇𝜇 ∈ [0,1], 
and the closer the 𝜇𝜇 value is to 1, the better is the monotonicity 
of the HI trajectory. For training bearings, 𝜇𝜇 is calculated using 
all HI values after 𝑡𝑡𝑆𝑆𝑆𝑆. For a testing bearing, 𝜇𝜇 is calculated 
every time when a new HI is made available, i.e., during each 
prediction step. If 𝜇𝜇  is below a certain threshold, which is 
chosen as 0.7 in this work, the following exponential 
smoothing is implemented to improve the monotonicity of the 
HI trajectory. 

𝑦𝑦 = 𝑎𝑎 ∙ 𝑒𝑒𝑥𝑥𝑒𝑒(𝑏𝑏𝑥𝑥) + 𝑐𝑐 ∙ 𝑒𝑒𝑥𝑥𝑒𝑒(𝑑𝑑𝑥𝑥) (4) 

where 𝑥𝑥  and 𝑦𝑦  denote the HI values before and after 
smoothing. 𝑎𝑎 , 𝑏𝑏 , 𝑐𝑐 , and 𝑑𝑑  are the fitting parameters. The 
smoothing process is recursive – i.e., the smoothed HI value at 
t is fitted using all HI values between 𝑡𝑡𝑆𝑆𝑆𝑆 and t. However, the 

(a) 

(b) 

Figure 3. (a) original SRMS; (b) MA smoothed SRMS 

Figure 5 The fluctuations in HI are reduced after exponential 
smoothing, with 𝜇𝜇 increasing from 0.2 (before smoothing) to 1 
(after smoothing) 
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smoothed HI values between 𝑡𝑡𝑆𝑆𝑆𝑆  and 𝑡𝑡 − 1 are not updated. 
Figure 5 shows the HI trajectory of bearing 1-1 before and after 
smoothing, where 𝜇𝜇 is improved from 0.2 to 1. 

Once 𝑡𝑡𝑆𝑆𝑆𝑆 is determined, HI values are normalized based on its 
value at 𝑡𝑡𝑆𝑆𝑆𝑆 . In this work, the bearing complete failure is 
defined when HI (i.e., smoothed SRMS) reaches 4.0. 

HI���(𝑡𝑡) = HI(𝑡𝑡)−HI(𝑡𝑡𝑆𝑆𝑆𝑆)
4.0−HI(𝑡𝑡𝑆𝑆𝑆𝑆)

 (5) 

In this way, starting from 𝑡𝑡𝑆𝑆𝑆𝑆 to complete failure, HI���(𝑡𝑡) varies 
from 0 to 1. One example of a complete HI���(𝑡𝑡) trajectory of a 
training bearing is shown in Figure 6. Note that for test 
bearing, HI can be scaled in the same way once 𝑡𝑡𝑆𝑆𝑆𝑆  is 
determined (i.e., fault is detected).  

Figure 6. HI���(𝑡𝑡)  varies from 0 (at 𝑡𝑡𝑆𝑆𝑆𝑆 ) to 1 (at time of 
complete failure) for a training bearing 

In addition, RUL varies from bearing to bearing. To develop a 
universal model across different bearings, this dependence 
needs to be minimized. To do so, we propose relative RUL at 
time t: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) =
𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙−𝑡𝑡

𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙−𝑡𝑡𝑆𝑆𝑆𝑆
× 100% = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)

𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝑆𝑆𝑆𝑆)
× 100% (6) 

where 𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙  is the bearing’s entire lifetime, 𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) is the RUL 
at time 𝑡𝑡, 𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡𝑆𝑆𝑆𝑆) is the RUL at 𝑡𝑡𝑆𝑆𝑆𝑆. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 varies from 100% 
(when 𝑡𝑡=𝑡𝑡𝑆𝑆𝑆𝑆) to 0% (when t=𝑡𝑡𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙). Note that since the model 
will be trained using 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, the prediction of a test bearing will 
also be 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, which can be back calculated for RUL based on 
Eqn. (6). 

2.4 RUL estimation 

In this work, extreme learning machine (ELM) is used to 
correlate 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)  with HI���(𝑡𝑡) . In other words, the training 
bearings’ HI���(𝑡𝑡) will be used as the inputs to ELM, while their 
known 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) will be used as the outputs for training ELM 
models. Once ELM models are trained, they can be used to 
predict 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) for given HI���(𝑡𝑡) from testing bearings.  

To improve the robustness of the proposed method, this work 
employs ensemble modeling. Specifically, to estimate 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) 
for each testing bearing, the other ten bearings are used as the 
training bearings. Each training model will generate an ELM 
model and be used to predict the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) of the test bearing. 
The final 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) estimation of the test bearing is calculated 
by taking average of the ten 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) estimations: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) =  1
10
∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡, 𝑗𝑗)10
𝑗𝑗=1   (7) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡, 𝑗𝑗) is the test bearing’s 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 at time 𝑡𝑡 estimated 
based on the ELM model trained by bearing 𝑗𝑗. 

3. RESULTS AND DISCUSSIONS 

3.1 Dataset 

In this study, we use the PHM 2012 Challenge dataset for 
evaluating the performance of the proposed method and 
comparing to other methods. The dataset is publicly available 
from NASA’s Prognostics Data Repository: 
https://ti.arc.nasa.gov/c/18/, which consists of real 
experimental data on eleven ball bearings' accelerated life tests 
provided by FEMTO-ST Institute, Besançon, France. The 
vibration sensors are two accelerometers placed on the vertical 
and horizontal axes. The dataset consists of three operating 
conditions and the sampling frequency is 25.6kHz for 0.1 
second and sample interval is 10 seconds. More information 
on the experimental setup and the dataset can be found in 
(Nectoux et al., 2012). 

3.2 Evaluation metrics 

The following three performance metrics are used to evaluate 
and compare the performance of different RUL estimation 
methods: mean absolute error (MAE), root mean square error 
(RSME) and mean absolute percentage error (MAPE). Their 
mathematical definitions are provided below: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−𝑅𝑅�𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖�
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (8) 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �∑ �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−𝑅𝑅
�𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (9) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ �

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−𝑅𝑅
�𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖
�𝑛𝑛

𝑖𝑖=1

𝑛𝑛
× 100% (10) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  and 𝑅𝑅�𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  are the ith actual and predicted 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 , 
respectively, and n is the total number of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 measurements 
available from 𝑡𝑡𝑆𝑆𝑆𝑆 (when RUL prediction starts) to total failure 
(when HI��� reaches 1), which is the same as the total number of 
samples available during that period. 

3.3 Performance comparison 

In this work, we compare the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅’s estimated based on the 
proposed method to those based on a deep neural network 
(DNN) and a DNN with multi-scale feature extraction (DNN-
MSFE). 

For DNN, a conventional neural network (CNN) is 
implemented, where two fully connected (FC) layers with 128 
neurons are used for feature extraction of each sequence, and 
two more FC layers with 64 and 1 neurons are further adopted 
for final 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 regression (Li et al., 2019).  

For DNN-MSFE, the time series vibration signals are 
transformed into time-frequency domain using STFT. Three 
convolutional layers are adopted for feature extraction. The 
generated feature maps in different layers are then 
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concatenated to obtain the features of multiple scales. One 
more convolutional layer with one filter is further 
implemented for information compression. After the flatten 
layer, a fully-connected layer with 128 neurons is used, and 
one neuron is finally attached at the top of the network for the 
RUL estimation (Li et al., 2019). 

The comparison is summarized in Table 1. It can be seen that 
the proposed method outperforms DNN and DNN-MSFE for 
the estimation of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 for all bearings using all performance 
metrics except MAE for bearing 1-5 where the proposed 
method has slightly higher MAE than DNN-MSFE. For seven 
out of eleven bearings, the proposed method reduces MAE, 
RMSE and MAPE in RUL estimation by over 50%. Figure 7 
shows the estimated 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 vs. actual 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 for bearings 1-4 and 
2-4. It can be seen that 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 can be underestimated (Figure 7 
(a)) or underestimated (Figure 7 (b)). 

 
(a) 

 
(b) 

Figure 6 Comparison of estimated and actual RUL’s for (a) 
bearing 1-4 and (b) bearing 2-4. 

It is worth noting that 𝑡𝑡𝑆𝑆𝑆𝑆  estimation for DNN and DNN-
MSFE is based on the kurtosis calculated from the vibration 
data (Li et al., 2019), while 𝑡𝑡𝑆𝑆𝑆𝑆  estimation for the proposed 
method is based on the MA (and exponential if monotonicity 

𝜇𝜇 < 0.7 ) smoothed SRMS as described in Section 2.3. 
Therefore, differences in 𝑡𝑡𝑆𝑆𝑆𝑆  are expected. However, the 
differences do not introduce bias in this comparison as they do 
not favor any one particular approach. 

Table 1 MAE, RMSE and MAPE of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 estimation based 
on the proposed method and two other existing methods 

4. CONCLUSIONS 

In this work we propose a novel RUL estimation method based 
on systematic feature engineering and extreme learning 
machine (ELM). The proposed method consists of four steps. 
The first step is to construct a reliable HI that is not only 
closely linked with bearing health, but also directly 
comparable between different bearings. A standardization 
approach and a MA filter are employed to reduce between-, 
and within-bearing variations, respectively. The second step is 
to determine bearing health status based on the constructed HI. 
In this step, the trend of HI is used to determine whether the 
bearing is operating normally or it has started degradation. If a 
degradation is detected, the degradation onset of the bearing 
(a.k.a., time to start prediction or 𝑡𝑡𝑆𝑆𝑆𝑆) is determined as the time 
of detection. Before RUL estimation, the third step is to 
employ systematic FE to generate features that are not only 
physically meaningful but also predictive for machine learning 
models to accurately estimate RUL. Finally, the engineered 
features of training bearings are used to train ELM models, 
which are then used to predict RUL of test bearings. 

The PHM 2012 Challenge dataset is used for evaluating the 
performance of the proposed method and comparing it to other 
two DNN based methods. The comparison results show that 
the proposed method outperforms DNN and DNN-MSFE for 
the estimation of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 for all bearings using all performance 
metrics, except MAE for bearing 1-5 where the proposed 
method has slightly higher MAE than DNN-MSFE. For seven 
out of eleven bearings, the proposed method reduces MAE, 
RMSE and MAPE in RUL estimation by over 50%. 
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MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
Bearing 1-1 30.4 44.5 174.2 21.4 26.3 62.3 2.38 2.74 9.09
Bearing 1-2 28.5 31.2 113.4 14.7 17.5 52.7 11.73 13.32 29.11
Bearing 1-3 16.3 21.5 59.2 7.8 9 15.8 6.62 8.17 12.79
Bearing 1-4 32.1 34.2 95.8 21.8 24.4 73.4 4.86 5.28 14.82
Bearing 1-5 28.7 33.5 104.3 18.5 22.2 61 18.62 21.4 56.55
Bearing 1-7 16.6 19.6 179.6 8.3 10.3 52.4 6.4 6.97 18.35
Bearing 2-4 22.3 25.2 215.3 6.1 8.9 33.3 5.74 6.87 15.26
Bearing 2-6 29.4 38.5 198.2 20.7 25.7 47.8 4.06 4.74 13.62
Bearing 2-7 38 43.2 212.4 27.4 30.6 114.5 8.94 11.35 23.63
Bearing 3-2 30.4 38.7 110.5 23.1 27.1 52.8 13.15 15.11 41.44
Bearing 3-3 38.5 43.5 156.3 30.4 35.7 69.9 5.82 6.64 21.27

Proposed methodDNN-MSFEDNN
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