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Abstract: Most industrial processes involve changes in the operating conditions that may lead to non-
Gaussian process uncertainties and measurement noises. Recently, an Abridged Gaussian Sum Extended 
Kalman Filter (AGS-EKF) and Extended Moving Horizon Estimation (EMHE) frameworks were proposed 
to capture non-Gaussian random uncertainties and noises often present in the chemical systems. Gaussian 
mixture models (GMM) are used in both estimation schemes to efficiently approximate the non-Gaussian 
distributions. Previous studies on EMHE considered a sufficiently long estimation horizon to minimize the 
arrival cost effect. The present work aims to further improve the performance of EMHE by introducing a 
suitable arrival cost estimator to shorten the estimation horizon. As the focus of this study is on systems 
involving non-Gaussian noises, AGS-EKF as a non-Gaussian state estimator is selected to estimate the 
arrival cost. The performance of the proposed estimation framework was tested using the open-loop 
unstable Williams-Otto reactor considering non-Gaussian uncertainties and noises. The results revealed 
that the proposed estimation framework improves the estimation in the presence of non-Gaussian noises 
when compared to the standard framework (MHE combined with EKF) thus making it a suitable estimation 
method for systems involving non-Gaussian noises. 
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1. INTRODUCTION 

Online measurement technologies are not often available for 
key state variables that are critical for online monitoring and 
control. Kalman Filter (KF) and its extensions, e.g., Extended 
Kalman Filter (EKF), as well as Moving Horizon Estimation 
(MHE) are well-known model-driven state estimation schemes 
for applications featuring zero-mean Gaussian process 
uncertainties and measurement noises. However, chemical 
processes often involve changes in the operating conditions 
that may lead to a general class of non-Gaussian process 
uncertainties and measurement noises (e.g., uniform, 
multimodal). It is thus essential that state estimation schemes 
can properly capture the non-Gaussianity to successfully 
monitor and control chemical plants. In our previous works, an 
efficient EKF-based framework, referred to as Abridged 
Gaussian Sum Extended Kalman Filter (AGS-EKF) was 
introduced to capture the non-Gaussianity in the process 
variables (Valipour and Ricardez-Sandoval, 2021a)(Valipour 
and Ricardez-Sandoval, 2021b). Similarly, an Extended 
Moving Horizon Estimation (EMHE) that relaxes the Gaussian 
assumption in the standard MHE was proposed (Valipour and 
Ricardez-Sandoval, 2021c). That approach improves the 
estimation accuracy (in the context of a moving horizon 
estimation framework) for applications involving a general 
class of non-Gaussian process uncertainties and measurement 
noises. The key idea in both AGS-EKF and EMHE schemes is 
to approximate the non-Gaussian distributions of the process 

uncertainties and measurement noises using Gaussian mixture 
models (GMM). In the conventional Gaussian Sum Filter 
(GSF), multiple EKFs are performed simultaneously (one EKF 
using one Gaussian component), and a summation over the 
weighted estimation provided by each EKF represents the 
point estimates. Performing multiple EKFs based on 
individual Gaussian components may increase the 
computational costs and lead to biased estimations. To avoid 
these issues, AGS-EKF and EMHE avoid performing multiple 
EKFs and MHEs for each of the Gaussian components in the 
GMM. Instead, the main characteristics (i.e., the mean value 
and the covariance matrix) of the overall GMM of the 
corresponding process uncertainty variable (or measurement 
noise variable) are used in AGS-EKF and EMHE schemes to 
represent the non-Gaussian distributions in the state estimation 
framework. Both AGS-EKF and EMHE schemes provide the 
point estimates by performing EKF and MHE only once, thus 
avoiding the additional computational costs and biased 
estimations often observed in GSFs. Moreover, for 
applications where distributions of the process uncertainty and 
measurement noise are known a priori and remain unchanged 
throughout the plant operation, the GMMs of the random 
uncertainties and noises can be approximated offline. In such 
scenarios, EMHE and AGS-EKF can improve the accuracy in 
the estimation at no additional computational costs.  

Similar to the standard MHE, a shorter horizon is favourable 
for the purpose of online estimation and closed-loop operation 



 
 

     

 

though it requires a more accurate approximation of the arrival 
cost. However, in (Valipour and Ricardez-Sandoval, 2021c), a 
sufficiently long estimation horizon was considered to 
minimize the effect of arrival cost. Thus, the performance of 
EMHE while considering the effect of arrival cost is a topic of 
interest that have not been investigated to date. Motivated by 
this, the current work aims to investigate the performance of 
EMHE coupled with AGS-EKF as the arrival cost estimator. 
As the focus of this work is on applications involving non-
Gaussian process uncertainties and measurement noises, AGS-
EKF is a suitable candidate as the arrival cost estimator due to 
its efficiency and accuracy for such applications. The 
Williams-Otto reactor as a highly nonlinear and open-loop 
unstable system is considered as the case study to investigate 
the performance of the proposed framework.  

This study is organized as follows: The general formulation of 
EMHE (the lead state estimation scheme) and AGS-EKF (the 
arrival cost estimator) is presented next. Section 3 presents the 
computational experiments performed on the Williams-Otto 
reactor to show the benefits of proposed estimation scheme. 
Concluding remarks and future work are presented at the end. 

2. NON-GAUSSIAN STATE ESTIMATION SCHEME 

Consider a general nonlinear dynamic system with states 𝒙𝒙, 
inputs 𝒖𝒖, measurements 𝒚𝒚, and non-Gaussian process 
uncertainties (𝒘𝒘) and measurement noises (𝒗𝒗): 

𝒙𝒙𝑘𝑘+1 = 𝑓𝑓(𝒙𝒙𝑘𝑘 ,𝒖𝒖𝑘𝑘) + 𝒘𝒘𝑘𝑘 (1) 

𝒚𝒚𝑘𝑘 = ℎ(𝒙𝒙𝑘𝑘 ,𝒖𝒖𝑘𝑘) + 𝒗𝒗𝑘𝑘  

𝒘𝒘,𝒙𝒙 ∈ ℝ𝑛𝑛𝑥𝑥 ,𝒗𝒗,𝒚𝒚 ∈ ℝ𝑛𝑛𝑦𝑦 ,𝒖𝒖 ∈ ℝ𝑛𝑛𝑢𝑢 ,  
𝑓𝑓: ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑢𝑢 → ℝ𝑛𝑛𝑥𝑥 , ℎ:ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑢𝑢 → ℝ𝑛𝑛𝑦𝑦 

where 𝑘𝑘 denotes the time interval. Note that 𝒘𝒘 and 𝒗𝒗 are 
mutually uncorrelated. Moreover, 𝑓𝑓 and ℎ describe the process 
model and the measurement model, respectively. Given the 
nonlinear model presented in (1), the GMMs of the process 
uncertainties and measurement noises are described next. The 
non-Gaussian state estimation framework involving EMHE as 
the lead state estimation scheme engaged with the AGS-EKF 
as the arrival cost estimator are presented in section 2.2. 

2.1 Gaussian Mixture Model 

GMMs is a mixture of several Gaussian distributions that can 
be used to approximate non-Gaussian densities of the process 
uncertainties and measurement noises. That is, the process 
uncertainties 𝒘𝒘 can be approximated by a mixture of 𝑛𝑛𝑛𝑛𝑛𝑛 
Gaussian components, i.e., 𝒩𝒩(𝝁𝝁𝑖𝑖 ,𝑸𝑸𝑖𝑖), as follows: 

𝑝𝑝(𝒘𝒘) = ∑ (𝜶𝜶𝑖𝑖  𝒩𝒩[𝒘𝒘;  𝝁𝝁𝑖𝑖 ,𝑸𝑸𝑖𝑖])𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 ; 

 𝜶𝜶𝑖𝑖 ,𝝁𝝁𝑖𝑖 ∈ ℝ𝑛𝑛𝑥𝑥;𝑸𝑸𝑖𝑖 ∈ ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥          
(2) 

∑ 𝜶𝜶𝑖𝑖  𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 = 𝟏𝟏;    𝜶𝜶𝑖𝑖  ≥ 𝟎𝟎;     (3) 

where 𝜶𝜶𝑖𝑖 represents the weight assigned to the 𝑖𝑖P

th Gaussian 
components in the mixture. These non-negative weights are 

normalized; thus, for each of the state variables included in 𝑛𝑛𝑥𝑥 
the summation of the weights adds to unity, as shown in (3). 
Likewise, GMMs involving 𝑛𝑛𝑛𝑛𝑛𝑛 Gaussian components, i.e., 
𝒩𝒩(𝝉𝝉𝑖𝑖 ,𝑹𝑹𝑖𝑖), are considered to approximate the non-Gaussian 
distributions of the measurement noises, i.e., 

𝑝𝑝(𝒗𝒗) = ∑ (𝜷𝜷𝑖𝑖  𝒩𝒩[𝒗𝒗;  𝝉𝝉𝑖𝑖 ,𝑹𝑹𝑖𝑖])𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 ; 

𝜷𝜷𝑖𝑖 , 𝝉𝝉𝑖𝑖 ∈ ℝ𝑛𝑛𝑦𝑦;𝑹𝑹𝑖𝑖 ∈ ℝ𝑛𝑛𝑦𝑦×𝑛𝑛𝑦𝑦         
(4) 

∑ 𝜷𝜷𝑖𝑖  𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 = 𝟏𝟏;    𝜷𝜷𝑖𝑖  ≥ 𝟎𝟎;     (5) 

where 𝜷𝜷𝑖𝑖 is the corresponding weights assigned to the 𝑖𝑖P

th 
Gaussian components in the mixture. The mean-value (𝝉𝝉𝑖𝑖 and 
𝝁𝝁𝑖𝑖), covariance matrix (𝑹𝑹𝑖𝑖 and 𝑸𝑸𝑖𝑖), and the weights (𝜷𝜷𝑖𝑖 and 
𝜶𝜶𝑖𝑖) corresponding to each Gaussian component in the mixture 
represent the parameters that need to be estimated in the 
GMM. The Expectation-Maximization (EM) algorithm is an 
efficient method used to estimate the GMM parameters. This 
method starts with an adequate user-defined initial guess for 
the Gaussian components’ parameters. The first step in the EM 
algorithm is to draw a sufficiently large number of samples 
from the original non-Gaussian distribution. The Expectation-
step (E-step) determines the possibility that a sample follow 
the 𝑖𝑖P

th Gaussian component in the mixture (membership 
weight). The membership weight for each sample is 
determined based on the probability density function 
(likelihood) of each sample given the 𝑖𝑖P

th Gaussian component. 
The next step, Maximization-step (M-step), the membership 
weights provided by E-step are used to update the 
corresponding weight, mean value, and covariance of each 
Gaussian component in the GMM. Both the E-step and M-step 
are performed in a recursive fashion until the likelihood does 
not change significantly from one iteration to another. More 
details about this method are found elsewhere (Dinov, 
2008)(Bilmes, 1998). 

The number of Gaussian components in the mixture (i.e., 𝑛𝑛𝑛𝑛𝑛𝑛 
and 𝑛𝑛𝑛𝑛𝑛𝑛), is a user defined parameter, which is a trade-off 
between the accuracy of GMM and CPU time (i.e., the 
accuracy improves as the number of Gaussian components 
increases, at the expense of larger computational costs). 
Preliminary tests are thus required to determine a suitable 
number of 𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛𝑛𝑛. These tests begin with the smallest 
reasonable guess for the number of Gaussian components. For 
instance, if the distribution is multi-modal, an appropriate 
choice is to set the Gaussian components to the number of 
modes in the non-Gaussian density. Given this initial guess for 
𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛𝑛𝑛, the EM algorithm is performed to obtain the 
GMMs. The test stops when the resulting GMMs can 
adequately capture the non-Gaussian distributions of the 
random noises and process uncertainties. Otherwise, the tests 
continue with a one-to-one increase in the number Gaussian 
components until the desired accuracy for the GMM is 
satisfied. As these tests are not intensive and are performed 
offline, they do not affect the computational costs of the online 
state estimation schemes. A detailed analysis on the CPU costs 
was presented in our previous work (Valipour and Ricardez-
Sandoval, 2021a). 



 
 

     

 

Once the individual components in the GMMs presented in 
(2)-(5) have been identified and estimated, the mean value 
(𝝁𝝁𝑮𝑮𝑮𝑮 and 𝝉𝝉𝑮𝑮𝑮𝑮) and covariance matrix (𝑸𝑸𝑮𝑮𝑮𝑮 and 𝑹𝑹𝑮𝑮𝑴𝑴) of the 
overall GMMs of the uncertainties and noises can be 
determined based on the mean value, covariance, and the 
weights corresponding to each 𝑖𝑖P

th Gaussian components in the 
mixture, i.e.,  

𝝁𝝁𝑮𝑮𝑮𝑮 = ∑ 𝜶𝜶𝑖𝑖⨀𝝁𝝁𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1    

𝑸𝑸𝑮𝑮𝑮𝑮 = ∑ 𝜶𝜶𝑖𝑖⨀𝑸𝑸𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 +  

∑ 𝜶𝜶𝑖𝑖⨀(𝝁𝝁𝑖𝑖 − 𝝁𝝁𝑮𝑮𝑮𝑮)(𝝁𝝁𝑖𝑖 − 𝝁𝝁𝑮𝑮𝑮𝑮)𝑻𝑻𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1   

𝝉𝝉𝑮𝑮𝑮𝑮 = ∑ 𝜷𝜷𝑖𝑖⨀𝝉𝝉𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1   

𝑹𝑹𝑮𝑮𝑮𝑮 = ∑ 𝜷𝜷𝑖𝑖⨀𝑹𝑹𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1 +  

∑ 𝜷𝜷𝑖𝑖⨀(𝝉𝝉𝑖𝑖 − 𝝉𝝉𝑮𝑮𝑮𝑮)(𝝉𝝉𝑖𝑖 − 𝝉𝝉𝑮𝑮𝑮𝑮)𝑻𝑻𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=1   

𝝁𝝁𝑮𝑮𝑮𝑮 ∈ ℝ𝑛𝑛𝑥𝑥  ; 𝝉𝝉𝑮𝑮𝑮𝑮 ∈ ℝ𝑛𝑛𝑦𝑦 ;𝑸𝑸𝑮𝑮𝑮𝑮 ∈ ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥;𝑹𝑹𝑮𝑮𝑮𝑮
∈ ℝ𝑛𝑛𝑦𝑦×𝑛𝑛𝑦𝑦  

(6) 

 

where symbol ⨀ indicates an element-wise multiplication. 

2.2 EMHE combined with AGS-EKF framework  

The EMHE problem considers 𝒘𝒘𝑘𝑘~𝒩𝒩(𝝁𝝁𝑮𝑮𝑮𝑮,𝑸𝑸𝑮𝑮𝑮𝑮) and 
𝒗𝒗𝑘𝑘~𝒩𝒩(𝝉𝝉𝑮𝑮𝑮𝑮,𝑹𝑹𝑮𝑮𝑮𝑮) determined from (6) to describe the process 
uncertainties and measurement noises affecting the operation, 
respectively. Therefore, the EMHE problem can be described 
as follows(Valipour and Ricardez-Sandoval, 2021c):  

min
{𝒙𝒙𝑗𝑗,𝒘𝒘𝑗𝑗}𝑗𝑗=𝑘𝑘−𝑁𝑁

𝑘𝑘−1
𝛹𝛹 + 𝛬𝛬 + 𝜑𝜑𝑘𝑘−𝑁𝑁  

s.t. 

𝛹𝛹 = � �𝒘𝒘𝑗𝑗 − 𝝁𝝁𝑮𝑮𝑮𝑮�
𝑸𝑸𝑮𝑮𝑮𝑮

−1
2𝑘𝑘−1

𝑗𝑗=𝑘𝑘−𝑁𝑁
   

𝛬𝛬 = � �𝒗𝒗𝑗𝑗 − 𝝉𝝉𝑮𝑮𝑮𝑮 �
𝑹𝑹𝑮𝑮𝑮𝑮

−1
2𝑘𝑘

𝑗𝑗=𝑘𝑘−𝑁𝑁+1
  

(7) 

𝒙𝒙𝑗𝑗+1 = 𝑓𝑓�𝒙𝒙𝑗𝑗 ,𝒖𝒖𝑗𝑗� + 𝒘𝒘𝑗𝑗  ;∀𝑗𝑗 = 𝑘𝑘 − 𝑁𝑁, …𝑘𝑘 − 1   

𝒚𝒚𝑗𝑗 = ℎ�𝒙𝒙𝑗𝑗 ,𝒖𝒖𝑗𝑗� + 𝒗𝒗𝑗𝑗  ;  ∀𝑗𝑗 = 𝑘𝑘 − 𝑁𝑁 + 1, … 𝑘𝑘  

𝑔𝑔�𝒙𝒙𝑗𝑗 ,𝒖𝒖𝑗𝑗,𝒘𝒘𝑗𝑗 ,𝒚𝒚𝑗𝑗� ≤ 0; ∀𝑗𝑗 = 𝑘𝑘 − 𝑁𝑁, …𝑘𝑘  

𝒙𝒙𝒍𝒍 ≤ 𝒙𝒙𝑗𝑗 ≤ 𝒙𝒙𝒖𝒖 ;              ∀𝑗𝑗 = 𝑘𝑘 − 𝑁𝑁, … 𝑘𝑘  

   𝑔𝑔: ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑢𝑢×𝑛𝑛𝑥𝑥×𝑛𝑛𝑦𝑦 → ℝ𝑛𝑛𝑔𝑔;  𝒙𝒙𝒍𝒍,𝒙𝒙𝒖𝒖 ∈ ℝ𝑛𝑛𝑥𝑥  
where the index 𝑗𝑗 is the time interval within the estimation 
horizon 𝑁𝑁. Moreover, 𝑔𝑔 represents a general set of the 
inequality constraints present in the system, excluding the 
bounds on the states and the inputs. The vectors 𝒙𝒙𝒍𝒍, and 𝒙𝒙𝒖𝒖 
represent the lower and upper bounds on the states, 
respectively. As shown in (7), 𝛹𝛹 and 𝛬𝛬 represent the ℓ2-norm 
for the process uncertainties and measurement noises, 
respectively. Note that the standard MHE is a special case of 
EMHE that holds the zero-mean Gaussian assumption for the 
noises and uncertainties. That is, EMHE is equivalent to the 
standard MHE problem when the system follows Gaussian 

distributions for the process uncertainty and measurement 
noises and 𝝁𝝁𝑮𝑮𝑮𝑮=0 and 𝝉𝝉𝑮𝑮𝑮𝑮 = 𝟎𝟎. The arrival cost (𝜑𝜑𝑘𝑘−𝑁𝑁) in 
problem (7) is defined as follows:   

𝜑𝜑𝑘𝑘−𝑁𝑁 = ‖𝒙𝒙𝑘𝑘−𝑁𝑁 − 𝒙𝒙�𝑘𝑘−𝑁𝑁‖𝑷𝑷𝑘𝑘−𝑁𝑁−1
2  (8) 

where 𝒙𝒙�𝑘𝑘−𝑁𝑁 and 𝑷𝑷𝑘𝑘−𝑁𝑁 are the mean value and the covariance 
matrix of the arrival cost term that are typically estimated 
online using a standard state estimation scheme, e.g., EKF, 
Particle Filter (PF), Unscented Kalman Filter (UKF) (López-
Negrete et al., 2011). The most common arrival cost estimator 
is EKF due to its efficiency and accuracy. However, both EKF 
and UKF consider that the random noises and uncertainties 
follow zero-mean Gaussian distributions. Although PF is a 
sampling-based approach that can deal with non-Gaussian 
distributions, it requires significant additional computational 
costs when compared to EKF. Thus, in present study, AGS-
EKF is used as the arrival cost estimator to perform EMHE for 
applications featuring non-Gaussian process uncertainties and 
measurement noises. The AGS-EKF is presented next. 

The following expressions describe the AGS-EKF method as 
the arrival cost estimator for non-Gaussian process 
uncertainties and measurement noises approximated using 
𝒘𝒘𝑘𝑘~𝒩𝒩(𝝁𝝁𝑮𝑮𝑮𝑮,𝑸𝑸𝑮𝑮𝑮𝑮) and 𝒗𝒗𝑘𝑘~𝒩𝒩(𝝉𝝉𝑮𝑮𝑮𝑮,𝑹𝑹𝑮𝑮𝑮𝑮) (Valipour and 
Ricardez-Sandoval, 2021a)(Valipour and Ricardez-Sandoval, 
2021b):  

𝒙𝒙�𝑘𝑘−𝑁𝑁|𝑘𝑘−𝑁𝑁−1 = 𝑨𝑨𝑘𝑘−𝑁𝑁−1𝒙𝒙�𝑘𝑘−𝑁𝑁−1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  
+𝑩𝑩𝑘𝑘−𝑁𝑁−1𝒖𝒖𝑘𝑘−𝑁𝑁−1 + 𝝁𝝁𝑮𝑮𝑮𝑮 

𝑷𝑷𝑘𝑘−𝑁𝑁|𝑘𝑘−𝑁𝑁−1
= 𝑨𝑨𝑘𝑘−𝑁𝑁−1𝑷𝑷𝑘𝑘−𝑁𝑁−1|𝑘𝑘−𝑁𝑁−1𝑨𝑨𝑘𝑘−𝑁𝑁−1𝑇𝑇 + 𝑸𝑸𝑮𝑮𝑮𝑮 

(9) 

where 𝑨𝑨𝑘𝑘−𝑁𝑁−1=𝜕𝜕𝜕𝜕(𝒙𝒙,𝒖𝒖)
𝜕𝜕𝒙𝒙

|
 

𝒙𝒙 = 𝒙𝒙�𝑘𝑘−𝑁𝑁−1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ,𝒖𝒖 = 𝒖𝒖𝑘𝑘−𝑁𝑁−1; 

𝑩𝑩𝑘𝑘−𝑁𝑁−1=𝜕𝜕𝜕𝜕(𝒙𝒙,𝒖𝒖)
𝜕𝜕𝜕𝜕

|
 

𝒙𝒙 = 𝒙𝒙�𝑘𝑘−𝑁𝑁−1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ,𝒖𝒖 = 𝒖𝒖𝑘𝑘−𝑁𝑁−1 

𝑲𝑲𝑘𝑘−𝑁𝑁
= 𝑷𝑷𝑘𝑘−𝑁𝑁|𝑘𝑘−𝑁𝑁−1𝑯𝑯𝑘𝑘−𝑁𝑁

𝑇𝑇 /(𝑯𝑯𝑘𝑘−𝑁𝑁𝑷𝑷𝑘𝑘−𝑁𝑁|𝑘𝑘−𝑁𝑁−1𝑯𝑯𝑘𝑘−𝑁𝑁
𝑇𝑇

+ 𝑹𝑹𝑮𝑮𝑮𝑮) 

𝒙𝒙�𝑘𝑘−N
= 𝒙𝒙�𝑘𝑘−𝑁𝑁|𝑘𝑘−𝑁𝑁−1

+ 𝑲𝑲𝑘𝑘−𝑁𝑁�𝒚𝒚𝑘𝑘−𝑁𝑁 − ℎ�𝒙𝒙�𝑘𝑘−𝑁𝑁|𝑘𝑘−𝑁𝑁−1,𝒖𝒖𝑘𝑘−𝑁𝑁� − 𝝉𝝉𝑮𝑮𝑮𝑮� 

𝑷𝑷𝑘𝑘−𝑁𝑁 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘−𝑁𝑁𝑯𝑯𝑘𝑘−𝑁𝑁)𝑷𝑷𝑘𝑘−𝑁𝑁|𝑘𝑘−𝑁𝑁−1 

(10) 

where 𝑯𝑯𝑘𝑘−𝑁𝑁=𝜕𝜕ℎ(𝒙𝒙,𝒖𝒖)
𝜕𝜕𝜕𝜕

|
 

𝒙𝒙 = 𝒙𝒙�𝑘𝑘−𝑁𝑁−1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ,𝒖𝒖 = 𝒖𝒖𝑘𝑘−𝑁𝑁 

𝑷𝑷 ∈ ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥 ,𝑨𝑨 ∈ ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥 ,𝑩𝑩 ∈ ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑢𝑢 ,𝑲𝑲 ∈ ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑦𝑦 ,𝑯𝑯
∈ ℝ𝑛𝑛𝑦𝑦×𝑛𝑛𝑥𝑥  

where 𝑲𝑲𝑘𝑘−𝑵𝑵 is the Kalman gain evaluated at the corresponding 
time interval 𝑘𝑘 − 𝑁𝑁, which consists of elements with values 
between 0 and 1 that represent the reliability of the 
measurements, i.e., more accurate measurements make the 
Kalman gain elements closer to the unity. Moreover, 𝑨𝑨, 𝑩𝑩, and 
𝑯𝑯 are the sensitivity matrices in the linearized state-space 



 
 

     

 

model of the system around a nominal operating condition, i.e., 
they describe the relation between states with states, states 
with inputs, and states with measurements, respectively. 
Similar to EKF, these sensitivity matrices are updated at each 
time interval (i.e., when 𝑘𝑘 is updated) based on the 
corresponding measurements, inputs, and estimated states 
available. Note that the AGS-EKF presented in (9)-(10) is a 
general formulation of the EKF, i.e., AGS-EKF and EKF are 
equivalent when 𝝁𝝁𝑮𝑮𝑮𝑮=0 and 𝝉𝝉𝑮𝑮𝑮𝑮 = 𝟎𝟎.  

Fig. 1 presents a schematic of the state estimation framework 
proposed in this work. Similar to MHE, the arrival cost (𝜑𝜑𝑘𝑘−𝑁𝑁) 
in EMHE summarizes the historical information not 
considered in the estimation horizon, i.e., the information from 
the initial time interval 0 to the beginning of the estimation 
horizon 𝑘𝑘 − 𝑁𝑁. That is, at the current time interval 𝑘𝑘, the 
arrival cost estimator uses the posterior estimations provided 
by EMHE at time 𝑘𝑘 − 𝑁𝑁 − 1 (i.e., 𝒙𝒙�𝑘𝑘−𝑁𝑁−1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  in (9)) as well as 
the online measurements available from the sensors at the 
instant (𝒚𝒚𝑘𝑘−𝑁𝑁) to provide an approximation of the posterior 
distribution of states at time 𝑘𝑘 − 𝑁𝑁 to EMHE, as shown in (10).  

 

Fig. 1. A schematic of the state estimation framework 

3. COMPUTATIONAL EXPERIMENTS 

The computational experiments conducted to this work aim to 
show the benefits of the application of the combined EMHE 
and AGS-EKF estimation framework over the standard MHE 
and EKF under scenarios involving non-Gaussian process 
uncertainties and measurement noises. For this purpose, the 
Williams-Otto reactor as a highly nonlinear dynamic system 
has been considered as a case study. The Williams-Otto reactor 
is an open-loop unstable system widely used to assess the 
performance of control and estimation schemes proposed in 
the literature (Varshney et al., 2019)(Roberts, 1979)(Matias 
and Le Roux, 2018)(Marchetti, 2013). The Williams-Otto 
reactor considers the following three reactions: 

𝐴𝐴 + 𝐵𝐵
𝑘𝑘1→ 𝐶𝐶 𝑘𝑘1 = 1.6599 × 106𝑒𝑒−6666.7/𝑇𝑇𝑇𝑇  𝑠𝑠−1 

𝐵𝐵 + 𝐶𝐶
𝑘𝑘2→ 𝑃𝑃 + 𝐸𝐸 𝑘𝑘2 = 7.2117 × 108𝑒𝑒−8333.3/𝑇𝑇𝑇𝑇  𝑠𝑠−1 

𝐶𝐶 + 𝑃𝑃
𝑘𝑘3→ 𝐺𝐺 𝑘𝑘3 = 2.6745 × 1012𝑒𝑒−11111/𝑇𝑇𝑇𝑇  𝑠𝑠−1 

where 𝑘𝑘1, 𝑘𝑘2, and 𝑘𝑘3 denote the reaction rate constant for the 
corresponding reactions. The mechanistic model describing 
this process is as follows: 

𝑊𝑊
𝑑𝑑𝑋𝑋𝐴𝐴
𝑎𝑎𝑎𝑎

= 𝐹𝐹𝐴𝐴 − (𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐵𝐵)𝑋𝑋𝐴𝐴 − 𝑟𝑟1 

𝑊𝑊
𝑑𝑑𝑋𝑋𝐵𝐵
𝑎𝑎𝑎𝑎

= 𝐹𝐹𝐵𝐵 − (𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐵𝐵)𝑋𝑋𝐵𝐵 − 𝑟𝑟1 − 𝑟𝑟2 

𝑊𝑊
𝑑𝑑𝑋𝑋𝐶𝐶
𝑎𝑎𝑎𝑎

= −(𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐵𝐵)𝑋𝑋𝐶𝐶 + 2𝑟𝑟1 − 2𝑟𝑟2 − 𝑟𝑟3 

𝑊𝑊
𝑑𝑑𝑋𝑋𝐸𝐸
𝑎𝑎𝑎𝑎

= −(𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐵𝐵)𝑋𝑋𝐸𝐸 + 𝑟𝑟2 

𝑊𝑊
𝑑𝑑𝑋𝑋𝐺𝐺
𝑎𝑎𝑎𝑎

= −(𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐵𝐵)𝑋𝑋𝐺𝐺 + 1.5𝑟𝑟3 

𝑊𝑊
𝑑𝑑𝑋𝑋𝑃𝑃
𝑎𝑎𝑎𝑎

= −(𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐵𝐵)𝑋𝑋𝑃𝑃 + 𝑟𝑟2 − 0.5𝑟𝑟3 

𝑟𝑟1 = 𝑘𝑘1𝑋𝑋𝐴𝐴𝑋𝑋𝐵𝐵𝑊𝑊;   𝑟𝑟2 = 𝑘𝑘2𝑋𝑋𝐵𝐵𝑋𝑋𝐶𝐶𝑊𝑊;   

𝑟𝑟3 = 𝑘𝑘3𝑋𝑋𝐶𝐶𝑋𝑋𝑃𝑃𝑊𝑊 

(11) 

where 𝑊𝑊 = 2104.7𝑘𝑘𝑘𝑘 represents the mass hold up of the 
reactor; 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3 are the reaction rates. The reactant A and 
B represent the main reactants of this set of reactions; P is the 
main product in the Williams-Otto reactor, whereas E and G 
are the by-products of this process. The reactor temperature is 
set to 𝑇𝑇𝑅𝑅 = 366.05 𝐾𝐾, and the mass flowrates for the reactant 
A and B are 𝐹𝐹𝐴𝐴 and 𝐹𝐹𝐵𝐵, respectively. The nominal value for 
these flowrates are  𝐹𝐹𝐴𝐴 = 1.8 𝑘𝑘𝑘𝑘

𝑠𝑠
 and 𝐹𝐹𝐵𝐵 = 6.1 𝑘𝑘𝑘𝑘

𝑠𝑠
. Note that 𝐹𝐹𝐴𝐴 

is the main disturbance considered for this system, i.e., 𝐹𝐹𝐴𝐴 is 
subjected to a normally distributed random disturbance with a 
standard deviation set to 1 𝑘𝑘𝑘𝑘/𝑠𝑠. To test the performance of 
our estimation framework, the distributions of the process 
uncertainties and measurement noises are assumed to become 
non-Gaussian following such external disturbances. The 
Williams-Otto reactor consists of six states, i.e., 𝑋𝑋𝐴𝐴, 𝑋𝑋𝐵𝐵, 𝑋𝑋𝐶𝐶, 
𝑋𝑋𝐸𝐸, 𝑋𝑋𝐺𝐺, and 𝑋𝑋𝑃𝑃, each representing the mass fractions of the 
corresponding chemical components. The nominal steady-
state values of the states are reported in Table 1.  

Table 1. Nominal values of states for the 
Williams-Otto reactor 

Process Variables Base case value 
𝑋𝑋𝐴𝐴 0.090 
𝑋𝑋𝐵𝐵 0.399 
𝑋𝑋𝐶𝐶 0.015 
𝑋𝑋𝐸𝐸 0.141 
𝑋𝑋𝐺𝐺 0.110 
𝑋𝑋𝑃𝑃 0.105 

The mass fractions for the reactants A and B as well as the final 
product P can be measured online, i.e., 𝑋𝑋𝐴𝐴, 𝑋𝑋𝐵𝐵, and 𝑋𝑋𝑃𝑃. The 
linear observability of the process was confirmed, i.e., the 
linear observability matrix was full-rank at the nominal 
operating condition indicated in Table 1. In the present work, 
the Williams-Otto reactor is assumed to be subjected to 
uncorrelated bimodal process uncertainties and uniform 
measurement noises. Fig. 2 illustrates the process uncertainty 
and the measurement noise associated with 𝑋𝑋𝐴𝐴. The red solid 



 
 

     

 

lines in this figure represents the GMM provided by the EM 
algorithm, which approximates the true non-Gaussian 
densities. The rest of process uncertainty variables and 
measurement noise variables considered in this case study 
follow similar distributions and are not shown here for brevity. 
Note that the number of Gaussian components considered in 
the mixture of each bimodal process uncertainty variable was 
set to two, i.e., 𝑛𝑛𝑛𝑛𝑛𝑛 = 2 whereas three Gaussian components 
were considered in the mixture of each uniform process 
measurement noise, i.e., 𝑛𝑛𝑛𝑛𝑛𝑛 = 3. 

 

 
Fig. 2. Histogram for the true non-Gaussian 

distribution and the GMM approximation of the 
process uncertainty and measurement noise 

associated with 𝑋𝑋𝐴𝐴 
As indicated above, the standard MHE (with EKF as the arrival 
cost) was implemented in this work to compare the 
performance of the proposed estimation scheme. The standard 
MHE and EKF assume that process uncertainties and 
measurement noises follow zero-mean Gaussian distributions. 
Hence, the standard deviation for each process uncertainty is 
set to 0.1% of the nominal steady-state value of the 
corresponding state variable. Likewise, the standard deviation 
for each measurement noise is set to 0.5% of the nominal 
steady-state value of their corresponding measurable state. 
Preliminary tests were performed to select adequate standard 
deviations for the random variables in favour of achieving a 
high performance in the standard MHE and EKF schemes. The 
sampling interval for this process is set to 1 s. The length of 
estimation horizon for both EMHE and MHE is set to 8 s, 
which is sufficiently long to show the impact of the arrival cost 
while requiring a relatively short CPU time to provide the 
point estimates online. The state estimation scheme shown in 
Fig. 1 was initialized assuming that the states are +1% away 
from the nominal true plant states reported in Table 1. As the 
state variables in the process are mass fractions, lower and 
upper bounds on the states are set to 0 and 1, respectively. 

The computational experiments presented in this section were 
implemented in Python 3.7 on a computer running Microsoft 
Windows Server 2016 standard. The computer was equipped 
with 16 GB RAM and Intel(R) Core(TM) i7-9700K CPU @ 
3.60GHz. The mean squared error (MSE) is used as the metric 
to compare the accuracy offered by each estimation 
framework. The MSE for the 𝑚𝑚P

th state variable obtained by 

performing the 𝑛𝑛P

th state estimation scheme can be estimated as 
follows:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝑚𝑚
(𝑛𝑛) = 1

𝑡𝑡𝑓𝑓
∑ �𝑥𝑥�𝑘𝑘,𝑚𝑚

(𝑛𝑛) − 𝑥𝑥𝑘𝑘,𝑚𝑚�
2𝑡𝑡𝑓𝑓

𝑘𝑘=0   (12) 

where 𝑡𝑡𝑓𝑓  is the final time interval considered in the 
experiments; 𝑚𝑚 ∈ {1, 2, … ,𝑛𝑛𝑥𝑥}; 𝑛𝑛 ∈
{MHE with EKF, EMHE with AGS − EKF}; 𝑥𝑥�𝑘𝑘,𝑚𝑚

(𝑛𝑛)  and 𝑥𝑥𝑘𝑘,𝑚𝑚 are 
scalars representing the estimated state and the plant output at 
time interval 𝑘𝑘, respectively. Note that the plant output is the 
output of the plant model involving additive process 
uncertainties, excluding the measurement noises, as shown in 
Fig. 1.  

 

 

 
Fig. 3. Estimation provided by EMHE combined 

with AGS-EKF, and MHE combined with EKF for 
(a) 𝑋𝑋𝐶𝐶; (b) 𝑋𝑋𝐸𝐸; (c) 𝑋𝑋𝐺𝐺 

Fig. 3 shows the estimations provided by EMHE combined 
with AGS-EKF and the standard MHE combined with EKF for 
the unknown states 𝑋𝑋𝐶𝐶, 𝑋𝑋𝐸𝐸, and 𝑋𝑋𝐺𝐺. Table 2 reports the error 
in the estimation of the unknown states using the two 
estimation frameworks considered in this work. According to 

(a) 

(b) 

(c) 



 
 

     

 

Fig. 3 and Table 2, the estimation accuracy improved 
significantly when using the EMHE combined with AGS-EKF 
framework. As shown in Table 2, the estimation error for 𝑋𝑋𝐺𝐺 
and 𝑋𝑋𝐸𝐸 was reduced by an order of magnitude when 
performing EMHE combined with AGS-EKF instead of the 
standard MHE combined with the standard EKF. Moreover, 
the estimation provided by EMHE combined with AGS-EKF 
for 𝑋𝑋𝐶𝐶 is approximately 50% more accurate than that provided 
by MHE combined with EKF. This is because EMHE and 
AGS-EKF make use of the main characteristics of the GMMs 
and are able to capture the non-Gaussianity in the distributions 
of the process uncertainties and measurement noises. On the 
other hand, neither standard MHE nor the standard EKF are 
capable of handling the non-Gaussianity present in the process 
thus resulting in an overall loss in the estimation performance. 

Table 2. MSE for unknown states 𝑋𝑋𝐶𝐶, 𝑋𝑋𝐸𝐸, and 𝑋𝑋𝐺𝐺 using 
different estimation schemes 

Estimation method (n) 𝑀𝑀𝑀𝑀𝑀𝑀𝑋𝑋𝐶𝐶
(𝑛𝑛) 𝑀𝑀𝑀𝑀𝑀𝑀𝑋𝑋𝐸𝐸

(𝑛𝑛) 𝑀𝑀𝑀𝑀𝑀𝑀𝑋𝑋𝐺𝐺
(𝑛𝑛) 

MHE with EKF 3.18e-6 7.11e-4 6.14e-4 

EMHE with AGS-EKF 1.62e-6 4.55e-5 3.51e-5 

In the present work, the non-Gaussian distributions of the 
process uncertainties and measurement noises are assumed to 
be known a priori and remain unchanged throughout the plant 
operation, which is a common assumption made when 
performing MHE and EKF (López-Negrete et al., 
2011)(Haseltine and Rawlings, 2005). Thus, the proposed 
EMHE combined with AGS-EKF performs the EM algorithm 
offline, i.e., approximate the GMMs of the non-Gaussian 
distributions offline. As a result, the EMHE combined with 
AGS-EKF framework improves the estimation accuracy for 
the applications with non-Gaussian process uncertainties and 
measurement noises at no additional computational costs. For 
instance, for the current case study, the averaged CPU time 
required to perform the point estimation is 0.27 s in both 
EMHE combined with AGS-EKF and MHE combined with 
EKF. Note that under scenarios that the non-Gaussianity in the 
densities of these random variables is caused due to scheduled 
changes in the plant operation, the non-Gaussian distributions 
of these variables can be updated online as long as the 
distributions are known a priori. In that case, EMHE and 
AGS-EKF would need to be updated with the revised GMMs, 
which may result in a relatively small additional computational 
cost.  

4. CONCLUSIONS 

This work investigated the performance of the combined 
EMHE and AGS-EKF as the lead state estimator and the 
arrival cost estimator, respectively. The key advantage of these 
framework compared to the standard MHE combined with the 
standard EKF as the arrival cost estimator is under scenarios 
where the process uncertainties and measurement noises 
follow non-Gaussian distributions. The results of performing 
both the proposed and the standard frameworks for a highly 
nonlinear open-loop unstable process such as the Williams-
Otto reactor revealed that the proposed EMHE combined with 
AGS-EKF framework was able to improve the estimation at 

no additional computational costs. Future work considers 
testing the performance of EMHE combined with AGS-EKF 
considering scheduled operational changes that lead to 
changes in the known non-Gaussian distributions of the 
process uncertainties and measurement noises. Moreover, 
future work also considers the present EMHE with AGS-EKF 
framework for scenarios featuring process uncertainties and 
measurement noises for which their non-Gaussian 
distributions are not known a priori due to 
unscheduled/sudden changes in the operation. In addition, 
systems involving structured model uncertainty will also be 
considered as part of the future work. 
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