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Abstract: The presence of gross errors in the measurements can lead to biased state estimates
when conventional Bayesian estimators are used. This can hamper the model-based monitoring
and control schemes that rely on the accurate state estimates. In this work, we have developed a
framework for robust estimation of the state pro�les for Distributed parameter systems (DPSs),
in the presence of biased measurements. The proposed approach uses an M-estimator to identify
the faulty sensor. The sensor fault diagnosis is then used to augment the state estimator with an
extra state that estimates the drifting sensor bias. The proposed approach has been applied to
an Auto-Thermal tubular reactor system. The proposed scheme successfully isolates the biased
temperature sensors and includes or removes additional bias states as and when required. The
gross errors/biases are estimated and subsequently accommodated to provide accurate estimates
of spatial pro�les of reactor concentration and temperature.
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1. INTRODUCTION

Online estimation of state pro�les of the system is an
essential part of any model based monitoring and control
schemes for distributed parameter systems (DPSs). The
quality of the measurements obtained from the plant is
critical to the e�cacy of the estimator. In practice, the
measurements available can be corrupted with gross errors
such as outliers, biases, and drifts that may arise due
to miscalibration, fouling of sensors, or uctuations in
some parameters. These gross errors can lead to biased
estimates of the state pro�les. However, relatively limited
literature can be found on the sensor fault diagnosis and
accommodation for DPSs (Ferdowsi et al. (2019)).

When the measurements are susceptible to gross errors,
a sensor fault diagnosis framework is required to negate
the impact of these unknown uncertainties on state es-
timates. Many fault diagnosis schemes are available in
the literature for the lumped parameter systems (LPSs)
based on Bayesian state estimation schemes. These include
active approaches that involve isolating the source of gross
error, estimating its magnitude, and explicitly compen-
sating for the gross errors in the measurements while
performing state estimation for the system (Rangegowda
et al. (2020)). Passive approaches, on the other hand, make
the state estimates insensitive to the gross errors in the
measurements by eliminating the biased sensor (Valluru
et al. (2018)). These approaches integrate a Maximum-
likelihood type estimator (or M-estimator) along with the
Bayesian state estimators to make estimates robust to
gross errors in the measurements. The robust estimation
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schemes, in general, eliminate the use of faulty measure-
ments which leads to loss of information.

In this work, we have proposed an active method for
sensor fault diagnosis of a DPSs by combining an M-
estimator with a conventional state estimation scheme.
The ability of the M-estimator to block a faulty sensor is
used to isolate the faulty sensor. Subsequently, the bias
present in the sensor measurements is estimated using
the random walk model in combination with the state
estimator. Thus, the proposed scheme makes use of the
biased measurement for state estimation with implicit
(or active) bias compensation. A reduced-order model of
a DPSs is constructed using the orthogonal collocation
(OC) technique and further used to develop a DAE-
EKF that uses measurements distributed throughout the
spatial domain for the reconstruction of state pro�les (Seth
et al. (2021)). An M-estimator is used in parallel for the
identi�cation of faulty sensor(s). M-estimators are robust
to the gross errors in the measurements as the inuence
function of these estimators is bounded even when the bias
magnitudes become large (de Menezes et al. (2021)). The
proposed approach uses the information of the gradient
of the inuence function of the chosen M-estimator for
sensor fault detection. Once the occurrence of a sustained
gross error in a sensor is con�rmed, the state-space model
is augmented with an additional state for simultaneous
estimation of the bias. Further, disappearance of the
bias in the measurement is detected using hypothesis
testing and the augmented state is removed when the
bias magnitude is reduced to zero. The proposed active
approach continues to use the biased measurement for
state pro�le reconstruction. The proposed approach can



deal with multiple faulty sensors, where the biases can
occur sequentially in time.

Rest of the paper is organized as follows: Section 2 gives
the details of the process model used for simulations.
Section 3 gives the methodology applied for sensor fault
diagnosis. Simulation results are presented in Section 4
and main conclusions of the work are given in Section 5.

2. PROCESS MODEL

In general the dynamics of a DPSs is represented by a set
of PDEs along with the boundary conditions and initial
conditions. The dynamic system considered in this work
can be represented by the set of coupled PDEs given by
Eq. (1) along with the boundary and initial conditions (Eq.
(2)-Eq. (5)) given as:
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where, 1 � r � n (4)

x1(z; 0) = a1(z); x2(z; 0) = a2(z); :::; xn(z; 0) = an(z)
(5)

Here, x = [x1; :::; xr; :::; xn]
T is the state vector containing

n state variables and xr denotes the r
th state variable of

the system, t 2 [0;1) denotes the temporal domain, and
z 2 [0; 1] denotes the spatial domain, u(t) denotes the
vector of manipulated inputs to the system. To analyze
such systems a common approach is to discretize the PDEs
to a reduced order model consisting of di�erential and
algebraic equations (DAEs).

2.1 Reduced Dimensional Model

Using (N+1)th order Lagrange polynomial and its deriva-
tives for discretizing the PDEs in spatial domain, a re-
duced order model can be constructed as follows (Seth
et al. (2021)):
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where, �r = [�r;1; �r;2; :::; �r;N+1]
T is the vector con-
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represents the augmented state vector. L0(�i) and L
00(�i)

represents the vectors of coe�cients for �rst and second
derivatives of the Lagrange polynomial, calculated at ith

collocation point respectively. Further, this reduced-order
model can be represented in a discrete time form as follows:

�d;k = F(�d;k�1;�a;k�1;uk�1) +wk�1 (9)

02n�1 = �(�d;k;�a;k;uk�1) (10)

where,

F(�d;k�1;�a;k�1;uk�1) = �d;k�1 +

Z kTs
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f(�d;�a;uk�1)dt

(11)
Here, k = 0; 1; 2; ::: represents the discrete sampling in-
stants, F and� are the di�erential and algebraic operators
of the discrete time system, wk�1 � N (0;Qw) is Gaussian
noise a�ecting the di�erential states of the system with
noise covariance matrix Qw; Ts is the sampling interval
of the system, �d 2 Rnd , nd = n(N � 1), represents the
values of the di�erential states, obtained at the internal
collocation points (2 � i � N) and �a 2 Rna , na = 2n,
represents the values of algebraic states obtained from the
boundary conditions of the system (i = 1 and i = N + 1).
The vectors �d and �a can be further combined to form
the augmented state vector � 2 Rn(N+1). Note that �
gives the state values at only collocation points. u 2 Rnu
represents the manipulated inputs.

2.2 Measurement Model

It is to be noted that the spatial locations of the sensors
need not correspond to the location of the collocation
points. Thus, to develop the measurement model, it re-
quires the development of relationships between the states
and the measurements. Thus, the measurement matrix,
C, that relates the states with the outputs is obtained by
interpolation using the Lagrange polynomials constructed
using di�erential and algebraic states. Details of construc-
tion of matrix C can be found in Seth et al. (2021).
Further, the measurements are assumed to be obtained
at regular sampling intervals and are given by Eq. (12):

Yk = C�k + vk (12)

where;C =[blkdiag(C1; :::; Cr; :::; Cn)] and Cr is the mea-
surement matrix for the rth state variable and vk 2 Rm
represents the measurement noise at instant k; which is
modeled as zero mean Gaussian white noise with covari-
ance matrix R:

As mentioned earlier the measurements can occasionally
be corrupted with bias. Assuming that a drifting bias in
the sth sensor occurs at instant ks0, the measured outputs
after the occurrence of the bias can be represented as:

Yk = C�k + vk + �s;kes;k�s(k � ks0); k � ks0 (13)

where, �s;k represents the time varying magnitude of the

bias occurring in the sth sensor. Note that bias magnitude
can vary with the sampling instants k � ks0 and es;k 2 Rm
is a unit vector which is de�ned as:

es;k = [0; :::; 1; :::; 0]
T (14)

where the sth element is 1 and rest are zero. Here, �s(k�
ks0) represents a unit step function, de�ned as:

�s(k � ks0) =
�
0 if k < ks0
1 if k � ks0

(15)

Similarly, if at a later instant kj0, a bias occurs in the j
th

sensor, then the corresponding measurement variation will
be represented as: Yk = C�k + vk + �j;kej;k�j(k � kj0):



In this work, the reduced DAEs model (Eqs. (9) - (11))
together with measurement models Eqs. ((12) - (15)) are
used for simulating plant behavior. Also, the reduced
DAEs model (Eqs. (9) - (11)) and the measurement model
Eq. (12) are used to develop EKF under the fault free
conditions.

3. SENSOR FAULT TOLERANT STATE
ESTIMATION

In the absence of biased measurements, state estimation
is carried out using Extended Kalman Filter for DAEs
system (DAE-EKF) (Mandela et al. (2010)).

Prediction Step:b�d;kjk�1 = F(b�d;k�1jk�1; b�a;k�1jk�1;uk�1) (16)

02n�1 = �(b�d;kjk�1; b�a;kjk�1;uk�1) (17)

Pkjk�1 = �k�1Pk�1jk�1�
T
k�1+�k�1Qw�

T
k�1 (18)

Update Steps:b�kjk = b�kjk�1 +Kk(Yk �Cb�kjk�1) (19)

Pkjk = (I�KkC)Pkjk�1 (20)

where, Kk is the kalman gain de�ned as:

Kk = Pkjk�1C
T (CPkjk�1C

T +R)�1 (21)

For consistency of algebraic states, only the updated dif-
ferential state vector b�d;kjk obtained using Eq. (19) is re-
tained and the algebraic states are computed from the Eq.
(10). Finally, the updated state vector is transformed to
construct n continuous functions (b�1(z); b�2(z); :::; b�n(z)),
each of which represents the estimated spatial state pro�le
of the system as a function of spatial variable z:bXk(z) = Lzb�kjk (22)

where,

Lz = [blkdiag(LTz ;LTz ; :::;LTz )]n�n(N+1) (23)

Lz= [L1(z) L2(z) ::: LN+1(z) ]
T

(24)

where, L1(z); L2(z); :::; LN+1(z) are the Lagrange polyno-
mial coe�cients of (N + 1)th order Lagrange polynomial

and bXk(z) = [ b�1(z) b�2(z) ::: b�n(z) ]T : Thus, an estimate
of the state pro�le over the entire spatial domain can be
constructed (Seth et al. (2021)).

3.1 Biased Sensor Isolation using M-estimator:

An M-estimator is de�ned as the function of a normalized
measurement error or studentized error vector, i.e., the
di�erence between the actual and estimated measurement
normalized by the standard deviation. At kth instant it
can be de�ned as:

�k = S
�1[(Yk �C�k)] (25)

where
S = R

1
2 = diag[�1; :::; �s; :::; �m] (26)

Here, �s represents the standard deviation of the measure-
ment noise in the sth sensor and diag[:] operator represents
a diagonal matrix constructed using the diagonal elements
of the matrix argument.

In the present work the Hampel's three part redescending
estimator is considered. For sth sensor measurement of �k

i.e., �k;s; where s = 1; 2; :::;m, the redescending estimator
can be de�ned as follows:
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where (a; b; c) are the three tuning parameters which sat-
isfy the condition c � b+2a. Details of the tuning of these
parameters can be referred from Valluru et al. (2018).
The inuence function , 	(�k;s); (which is proportional
to the �rst derivative of the M-estimator) is the measure
of the robustness of any given M-estimator. Behavior of
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Fig. 1. Comparison of Hampel's redescending estimator
with Least squares estimator

redescending estimator with normalized error is demon-
strated by Figure (1) where it is compared with the least
squares estimator. It can be observed that as the abso-
lute value of normalized error

���k;s�� becomes larger, the
redescending estimator becomes bounded, thereby indi-
cating the robustness of redescending estimator to large
measurement errors. Also, as the normalized errors corre-
sponding to the sth sensor crosses a threshold value, the
gradient of inuence function r	(�k;s) becomes negligible
(ref: Appendix). Therefore, by using the information of
gradient of the inuence function r	(�k), i.e.,

r	(�k) =
�
@	(�k;1)

@�k;1
; :::;

@	(�k;m)

@�k;m

�T
(28)

the sensor which is biased is detected.

Since the true states �k de�ned in normalized measure-
ment error vector Eq. (25) are unknown, in this work,
we propose to use the normalized innovation sequence
for constructing the M-estimator. Hence, the normalized
innovation error vector is de�ned as:

�k � (�k)�1[(Yk �Cb�kjk�1)] (29)

where;�k = ( diag[PE;k])
1
2 (30)

PE;k = (CPkjk�1 C
T +R) (31)

Here, �k is de�ned by taking an approximation of PE;k
under the assumption that the o� diagonal elements are
relatively small and only the diagonal elements of matrix
PE;k are considered.



After the detection of biased sensor (lets say sth sensor is
detected to be faulty), we observe the corresponding value
of the gradient of the inuence function i.e., r	(�k;s) over
the window of nf sampling instants. This is referred to as
fault con�rmation window. If the majority of the values of
r	(�k;s) in the fault con�rmation window appear to be
zero (indicating that the measurements from the sensor
are faulty) then the sensor is con�rmed to be biased at
instant ks;c � ks0 + nf . This is done to di�erentiate
whether the variation in measurements are due to some
random error or due to the presence of gross errors. Once
the bias in the sensor is con�rmed, further correction is
performed to reduce the e�ect of bias measurements on
the state pro�le estimates. Although, in this work, we
have used the Hampel's redescending M-estimator, the
approach presented can also be implemented using other
M-estimators.

3.2 Estimating and Accommodating the Bias Estimates:

Assuming that bias in the sth sensor has been con�rmed at
sampling instant k � ks;c, we augment the state dynamics
vector, �k with an extra variable for the sensor bias
and the resulting augmented vector is given as: Xk =�
�Tk �Ts;k

�T
:This is achieved under the assumption that

the sensor bias is modelled as a random walk process, i.e.,

�s;k = �s;k�1 + w�;k�1 (32)

where, �s;k is the magnitude of bias in the s
th sensor

occurring at kth sampling instant, and w�;k�1 is assumed
to be zero mean Gaussian distribution with variance as
Q� , which is treated as a tuning parameter. The DAE-
EKF algorithm is then applied for the augmented system
with the state noise covariance matrix modi�ed as follows:

Qk�1 = blkdiag(�k�1Qw�
T
k�1; Q�) (33)

and the augmented measurement matrix Ck modi�ed as
follows:

Ck = [C es;k ] (34)

where, es;k is de�ned in the section 2:2. The resulting

updated augmented state vector bXT
kjk is a stacked vector

of estimates of updated state vector b�kjk and the updated
bias magnitude corresponding to the sth sensor, b�s;k, i.e.,bXkjk =

h b�Tkjk b�Ts;k iT (35)

Similarly, if the bias occurs in the jth sensor, it can be
estimated and corrected for by modifying Ck, by replacing
es;k with ej;k and so on. For consistency of algebraic states,
the di�erential state vector b�d;kjk is retained and the

algebraic states are computed from the Eq.(10). Further it
is transformed to the spacial state pro�les using Eq. (22).

3.3 Hypothesis Testing

In case when the sensor bias is restored to zero value, we no
longer need the augmented structure and evaluate the bias
estimates. So, we can remove the additional state when
we have bias free measurements. To verify the absence
of bias in the measurements at kth sampling instant, we
perform two-tailed t-test on the sample of bias estimates of

size p, i.e., b�s;k�p+1; b�s;k�p+2; :::; b�s;k: Assuming that the

sample of estimates considered is derived from a Gaussian
distribution with mean � and unknown variance, the t-test
is performed to test the following hypotheses:

H0 : � = 0 and H1 : � 6= 0 (36)

The t-score (� [k�p+1;k]) for the test over the time window
[k � p+ 1; k] is given as:

� [k�p+1;k] =

p
pb��;k ����� where � =

Pp
i=1
b�s;k�p+i
p

(37)

where, b�2�;k is the sample variance over the time window
[k � p + 1; k]. We accept the null hypothesis i.e, we
can claim that bias in the sensor has reduced to zero if
� [k�p+1;k] � t�=2;p�1; where t�=2;p�1 is the critical value
that is determined by the signi�cance level � and the
degrees of freedom (p� 1).

4. SIMULATION STUDIES

In this section, we demonstrate the performance of the
proposed algorithm for identifying the biased sensor as
well as quantifying the amount of gross error. Simulation
studies are carried out on an Auto-Thermal tubular reac-
tor system which is a two state system namely, dimension-
less concentration (C) and dimensionless temperature (T).
The coupled PDEs governing the pseudo homogeneous
dynamic model of the system is given in Berezowski et al.
(2000). For our simulation purpose following values of
various parameters have been used (Pacharu et al. (2012)):
Pem = 100; PeT = 100; TH0

= 0; � = 2;  = 0:3;
Da = 0:15; � = 2;  = 10; ! = 1:4: The PDEs are
spatially discretized at 11 internal collocation points space
i.e , N +1 = 13: This results in 22 di�erential states and 4
algebraic states. The temperature of cooling medium (TH)
is treated as manipulated input and assumed to vary as
PRBS signal with frequency range [ 0 0:1 ] and the nominal
value TH0

= 0 units. Only temperature measurements
were assumed to be available from the 6 sensors placed
at equidistant spatial locations given as: 0; 0:2; 0:4; 0:6; 0:8
and 1: Other relevant �lter parameters are:Qw = 0:001

2�
I2(N�1)�2(N�1);R = 0:0052�I6�6; Q� = 0:0042. The sim-
ulations were carried out for 500 sampling instants (Ts =
0:1). The measurements from 2nd and 4th sensors were
assumed to be corrupted with biases varying di�erently
with time. The length of the fault con�rmation window is
chosen as nf = 5:. Hypothesis testing is performed with
95% con�dence interval and 20 degrees of freedom i.e., p
= 21. The tuning parameters for the M-estimator used
for simulation purposes are, a = 1 ; b = 1 and c = 5 : The
biases introduced in the 2nd and 4th sensors and the corre-
sponding estimates obtained from the proposed algorithm
are given by Figure (2) and Figure (3) respectively.

To check the e�ectiveness of the proposed approach, state
estimates for the two di�erent �lter implementations have
been considered:

Case A: State pro�le estimation under the inuence
of biased measurements using DAE-EKF without fault
diagnosis and bias estimation.

Case B: State pro�le estimation under the inuence of
biased measurements using DAE-EKF and M-estimator
for fault diagnosis and accommodation.



In case B, the biases in the sensors have been accurately
estimated as shown in Figures 2 and 3. Note that the
bias estimation starts only after the bias in the sensors
is con�rmed and further simultaneous DAE-EKF is used
for estimating both states and the bias in sensors. Further
from these �gures it is noted that the biases in the sensors
are estimated till the gross error in the sensor(s) reduces
to zero and stops after con�rmation of the availability of
the unbiased measurements by performing the hypothesis
test given in section 3:4: Figures 4 and 5 represent the
comparison of true states, biased measurements and the
state estimates of the reactor temperature (T ), obtained
for both the cases. The comparison has been made at
the locations where biased sensors are assumed to be
placed. As can be inferred from the Figures, the proposed
algorithm works e�ciently in estimating the true values of
the states even when the measurements obtained from the
sensors are corrupted with gross errors. The con�rmation
of the biased measurements and subsequent correction to
obtain the accurate estimates of the states can also be no-
ticed from Figures 4 and 5. Figure (6) shows the variation
of innovation errors for the faulty sensors evaluated for
both the cases. It can be seen that for case B, innovations
for both the faulty sensors are reduced to zero mean
immediately after the occurrence of bias, even though the
measurements obtained from the plant continues to be
biased. Further it can be seen that the bias present in one
of the sensors can also e�ect the innovations computed
using other sensors since the biased measurements from
any sensor will e�ect the state estimates throughout the
spatial domain.
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Fig. 2. Bias introduced in the 2nd sensor and the corre-
sponding estimates

0 50 100 150 200 250 300 350 400 450 500
sampling  instants

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

0.01

B
ia

s (
4th

 se
ns

or
)

Bia s estima tes True bia s

Bias estimation started

Bias introduced in the sensor

Bias estimation stops for 4 th sensor
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The state pro�le estimates at 100th sampling instant
(when 2nd sensor is biased) is also compared for both the
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Fig. 4. Comparison of true states, biased measurements
and state estimates obtained for both the cases for
2nd sensor (z = 0:2)
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Fig. 5. Comparison of true states, biased measurements
and state estimates obtained for both the cases for
4th sensor (z = 0:6).
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case studies in Figure (7). The pro�le estimates obtained
corresponding to Case B are fairly accurate for both the
measured as well as unmeasured state variables while the
estimates obtained from Case A are highly inaccurate.

The estimation performance of the proposed algorithm was
also examined by evaluating the root pro�le estimation
squared error (RPSE) de�ned as follows:

RPSE(k) =

vuuut 1Z
0

(PSE(z))dz (38)

where,

PSE(z) =
n
Lz

�
�r;k � b�r;kjk�o2

where, Lz

�
�r;k � b�r;kjk� de�nes the pro�le error as a

function of spatial variable z for the rth state variable
at kth sampling instant. At kth sampling instant, Eq.(38)
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Fig. 7. Pro�le estimates for dimensionless concentration
(C) and dimensionless temperature (T) obtained at
100th sampling instant for both the case studies.

gives the root of integrated value of the squared estimation
error calculated throughout the spatial domain. The RPSE
values for dimensionless concentration (C) and dimension-
less temperature (T) obtained for both the case studies
are represented in Figure (8). It is evident from the Figure
that for case B, the e�ects of biased measurements on the
pro�le estimates of both the measured and the unmeasured
states are reduced soon after the appearance of bias in the
sensors.
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Fig. 8. RPSE values for dimensionless concentration (C)
and dimensionless temperature (T) for both the cases.

5. CONCLUSIONS

In this work, a framework for estimating the state pro�les
of a Distributed Parameter system is developed which is
robust to the gross errors or bias in the measurements.
A tubular reactor case study involving the occurrence
of biases in two sensors placed at di�erent locations in
space is considered to investigate the performance of the
proposed algorithm. From the results it can be claimed
that a properly tuned M-estimator can be employed par-
allelly to the EKF to quickly identify and isolate the
faulty sensor in a spatially distributed system. The pro-
posed algorithm automates the fault detection, isolation
and magnitude estimation by explicitly incorporating it
with simultaneous DAE-EKF algorithm and correct the
biased measurements. The augmentation is carried out by
adding or removing an additional state variable as and
when a bias in a sensor is detected and the bias reduces to
zero. Simulation results presented in the work shows that
fairly accurate state pro�le estimates of the system are
obtained by using the proposed framework in the presence
of a biased sensor. Results presented in this work reveal
that the framework developed can work e�ciently with

sequential bias occurring in one or more sensors. Moreover,
unlike the conventional M-estimator based schemes that
eliminate the faulty sensor measurement, the proposed
approach continues to use the biased measurement for
state estimation thereby preventing any loss of informa-
tion. Thus, the proposed algorithm is suited for accurate
estimates of the state pro�les of a distributed parameter
system una�ected by the biased measurements.

Appendix- 1

The inuence function, 	(�k;s) and its gradient r	(�k;s)
for the redescending estimator are given as follows:

	(�k;s) =

8>>>><>>>>:
�k;s; 0 �

���k;s�� � a
�a; a <

���k;s�� � b
�a
�
c�

���k;s���
c� b ; b <

���k;s�� � c

0;
���k;s�� > c

(39)

r	(�k;s) =
@	(�k;s)

@�k;s
=

8>>><>>>:
1; 0 �

���k;s�� � a
0; a <

���k;s�� � b
�a
c� b ; b <

���k;s�� � c

0;
���k;s�� > c

(40)
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